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Notes 

On the Solution of Troesch’s Nonlinear Two-Point Boundary 
Value Problem Using an Initial Value Method 

This paper treats the nonlinear, two-point boundary value problem formulated 
by Weibel [l] and Troesch [2], which is to solve the nonlinear differential equation, 

d2y/dx2 = n sinh(ny), 

subject to the boundary conditions 

n > 1, (1) 

y(0) = 0.0, (2) 

y(1) = 1.0. (3) 

As was pointed out by Troesch [2] and Ehrlich [3], this two-point boundary 
value problem is inherently unstable and difficult. Roberts and Shipman [4] 
suggested that this equation can be solved by the combination of three methods, 
namely, the perturbation technique, the parallel shooting method, and the con- 
tinuation method. This combination of methods is necessary since none of these 
methods by itself is sufficiently potent. This method gives accurate solutions of 
Eq. (1) for 12 < 5. For n > 5, however, their results do not converge to sufficient 
accuracy. Subsequently, Jones [5] used a modified Newton method for the solution 
of this problem. Even though accurate solutions are obtained for large values of n, 
the number of iterations is increased considerably. As an example, the number of 
iterations for n = 10 is 53. Most recently, Miele, Aggarwal, and Tietze [6] 
applied a modified quasi-linearization method in which the interval of integration 
is subdivided into a number of subintervals. While the number of iterations is 
greatly reduced, the number of subintervals is large for large values of n. To 
demonstrate this point, let us again consider the solutions for n = 10. Accurate 
solutions are obtained with only 9 iterations, which represent a significant improve- 
ment over Jones’ [5] 53 iterations. However, the interval of integration has to be 
divided into as many as 18 intervals and, for each subdivision, 100 integration 
steps are needed. It therefore requires a total of 16,200 integration steps (for 9 
iterations) to obtain the solution for n = 10. 

In this paper, a noniterative method, known as the method of transformation 
groups, will be applied for the solution of this problem. The method is simple and 
less time-consuming, and the results are accurate. 
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Two-point boundary value problems are very common in various disciplines 
of applied science and engineering. Traditional methods of solving this type of 
equations rely heavily on the so-called Shooting Technique or its modifications. In 
a shooting method, the missing initial condition is assumed and the differential 
equation is integrated as an initial value problem until the independent variable 
reaches the terminal point. The calculated terminal condition is then compared with 
the given terminal condition. If they agree within a certain specified degree of 
accuracy, the assumed value is the correct answer. Otherwise, another value has to 
be selected (in some systematic way). This iterative approach is sometimes time- 
consuming and may run into difficulty of convergence due to the special charac- 
teristics of the problem, such as that of Eq. (1) as discussed in [l-6]. The method of 
transformation groups is a very effective alternative method of solving this kind 
of problems in that the method is noniterative. It was initiated by Tiipfer [7] and 
extended by Klamkin [8] and Na [9, IO]. By this method, the original two-point 
boundary value problem is first converted to an initial value problem using a 
transformation. The required initial condition of this equation is determined in the 
process of transformation. This initial value problem can be solved by any 
numerical integration scheme. By transformation back to the original variables, 
the solution of the original nonlinear boundary value problem is obtained. The 
entire process is relatively fast and the results are found to be accurate. 

To solve Eq. (1) by this noniterative method, let us introduce a new dependent 
variable, 

z = ny. (4) 

Equation (1) and its boundary conditions then become 

d2z/dx2 = n2 sinh z, (5) 

subject to the boundary conditions 

z(0) = 0, (6) 

z(1) = n. (7) 

To reduce the problem into an initial value problem, let us introduce the so- 
called linear transformation as 

x = XA”‘, z = ZA”‘, . 63) 

where A is known as the “parameter of transformation” and LYE and o12 are constants 
to be determined. Under this transformation, Eq. (5) becomes 

dzZ/dZ2 = n2A2al-a¶ sinh(A%). (9) 
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Equation (9) will be identical in form to Eq. (5) if we put 

cl, - - 0, 
(10) 

3 = $A2T-o12 

Equation (9) then gives 

d%/dS = fi2 sinh(l). (11) 

The next step in this method is to define the still-unknown initial slope to be 
equal to the parameter of transformation; i.e., 

dz(O)/dx = A, 

which, upon transformation, gives 

(12) 

A”*-“‘(&(O)/dx) = A. (13) 

Since 01~ is still an arbitrary constant, we may choose 

to reduce Eq. (13) to 

Equations (10) and (14) give 

a2 - q = 1 

dF(O)/dX = 1. 

(14) 

(15) 

011 = -1, CL2 = 0. (16) 

The boundary condition at X = 0 (Eq. (6)) is transformed to 

I(0) = 0. (17) 

Finally, the parameter of transformation can be evaluated from the boundary 
condition at the second point (Eq. (7)) as 

,f%X = 1 . A%~ = ~A0.5%--or, 

or 
E = A:,? = iiA. (18) 

Elimination of A in Eq. (18) gives 

z = ii(Z) (at the second point). (19) 

The solution of Eq. (5) then follows these steps: First, a value of ii is assigned. 
Second, Eq. (11) is integrated as an initial value problem using initial conditions 
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(15) and (17). Third, referring to Eq. (18), the integration in the second step is 
continued until Eq. (19) is satisfied. The value of A at this point will be the 
parameter of the transformation, as shown in Eq. (18). Fourth, the corresponding 
value of n can be calculated by Eq. (10). The process can be repeated by assuming 
another value of 6 and the solution of Eq. (5) for another value of n will be obtained. 
By assuming a family of values of i$ a family of solutions for a family of values of n 
can be generated. The only difference between the results from such a method 
as compared with those from iterative methods is that the values of n are not 
equally spaced numbers, even though the values of ii are. Table I shows 

TABLE I 

Selected Missing Initial Slopes, dy(O)/cfx, for Various A’S 

Ii n This method Iterative 

21 4.956 0.04762 0.04761 

22 5.007 0.04545 0.04543 

55.74 6.000 0.1794q10-‘) 0.17944(10-‘) 

145.6 7.000 0.68681(10-1) O.68695(1O-p) 

386.85 8.001 0.25850(10-*) O.25851(1O-z) 

1037.0 9.001 0.99432(Ws) 0.99434(10-3) 

2790.6 9.999964 O.358346(1O-8) O.358347(1O-3) 

20,500.o 12.003 0.48781(10-4) 0.48779(10-“) 

150,000.0 13.997 O.66667(1O-6) O.66675(1O-5) 

some of the solutions for a range of values of ti. If the data are needed for plotting 
the missing slope as a function of n, the results such as those shown in Table I are 
sufficient. If tabulation of the missing slope for a few integer values of n is desired, 
a simple Lagrange interpolation formula can be used for such purposes. Since only 
solutions for n > 5 are of numerical interest, the results presented in Table I are 
in this range, even though the method can be applied to both small and large 
values of n. 

To check the accuracy, the results are compared with those using an iteration 
method (Runge-Kutta forward integration by manually adjusting the missing 
initial slope on the terminal of the digit computer system). Such solutions are also 
shown in Table I (the last column). Also, in Table II, the solutions of y and dy/dx 
as functions of x for n = 8 are compared with the solutions by iteration. The 
agreement is excellent. 
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TABLE II 

Comparison with Iterative Solutions for n = 8 

This method Iterative 

X Y 

0.0 O.OOOOO 

0.2 O.76779(lO--s) 
0.4 0.39585(10-*) 
0.6 0.19649(10-‘) 
0.8 0.98566(10-l) 
1.0 1 .OOi-ll 1 

dy;dx 

O.2585qlO-p) 
0.66649(10-*) 
0.3 1778(10-l) 
0.15739 
0.80923 
0.5461 l(lO*) 

Y dyldx 

O.OOOOO 

0.7677q10-3) 
O.3958l(1O-z) 
0.19649(10-l) 
0.98550(10-‘) 
l.OOOOO 

0.25851(10-‘) 
0.66641(10-‘) 
0.31775(10-‘) 
0.15739 
0.80907 
0.54605(1~) 

TABLE III 

Comparison of Solutions by Various Methods 

This method Miele et al. [6] Jones [5] 
___- 

n dy(Wdx dy( 1) ‘d.t dy(O),‘dx dy(l):‘dx dy(O).idx dvU)ldx 

5 0.45754(10-l) 12.000 0.45750(10-‘) 12.1005 0.457(10-l) - 
6 o.l794qlo-‘) 20.0072 0.17951(10-‘) 20.0358 - - 

10 O.35835(1O-3) 149.168 0.35834(10-3) 148.4064 O.356(1O-3) 148.4 

Table III compares the accuracies of &J(O)/& and dy(l)/dx obtained by the 
present method with those presented by Miele, Aggarwal and Tietze [6] and by 
Jones [5]. Again, close agreement is obtained. 

To conclude, the method offers a very effective alternative for problems of this 
type where solutions of the equation for a range of values of the parameter (in this 
problem, the parameter is n) are required. 
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