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In a recent paper P. M. Prenter has shown that the Weierstrass theorem can 
be lifted up to a real separable Hilbert space H. In this paper H is equipped 
with an identity resolving orthoprojector chain. The Weierstrass type result of 
Prenter, namely, if f is any continuous function on H, then there exists a finite 

order approximating polynomic operator on every compact K C H, is sharpened 
by the extension: if f is strictly causal (strictly anticausal) then the polynomic 

approximation can also be strictly causal (strictly anticausal). Other extensions 
in the same spirit are developed and the results are interpreted in the setting of 
Volterra operators on L, . 

1. INTRODUCTION 

Let X, Y be Hilbert spaces and K a compact subset of X. Let C(K) denote 

the space of continuous functions on X to Y, restricted to K. The norm on 

C(K) is uniform 

If-g II = n&F IlfW - g(x)ll - 

When X = Y = R, the real line, the classical Weierstrass theorem states 

that the polynomials over R are dense in C(K). If X = Rn and Y = R 
then the Stone-Weierstrass theorem shows that the polynomials in n variables 

are dense in C(K). Finally if X = Y = H, a real separable Hilbert space, 

then Prenter [I] has shown that the polynomic operators are dense in C(K). 
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The above line of development recognizes and utilizes only the topological 
properties of the functions in question. In most applications, however, the 

functions also have a causality structure which is equally important. In the 
present paper we show that the causality structure of a function can, in part, 
be superimposed on its polynomic approximation without disturbing the 
Prenter result. 

To give some indication of our extension consider H L- L,(O, T) and f  a 

continuous function on H while KC H is compact. For arbitrary E > 0 the 
Prenter result gives a finite polynomic operator g such that 

A minor extension of the Prenter result is that g can be computed by the 
formula 

... [Q,$, s1 ... s,) fi X(Q) ds, , 
u 

1 

where each of the N kernels is separable, that is, 

Q&, ~1 a..., sn) = i f qi,j ,..., fk I) e,(s,) &,) -.* 4sn).fdt)l 

2=1 i,....k=l 

where (eJ, Vi) CJ%O, T). 

A major extension consists of the proof that if f  is causal (strictly causal) 

(example and definition follow) then the above approximation is valid with 
kernel satisfying 

Qn(t, s1 ,..., s,) = 0, max{s,) > t. 

With regard to the strict causality condition it suffices for the moment to 

give an example of such a function in L,(O, T). 

EXAMPLE 1. Let h be any Lipschitz continuous function on R and h the 
map on L,(O, T) determined by 

@W(t) = @W t E [O, T]. 

For (tj) any sequence satisfying 0 < t, < t, ... < T and (gj> E II the map Tl 
is computed by 

(T&(t) = Cw(t - tA t E [0, T]. 

The map T, is determined for g ELJO, T] by 

(T&(t) =’ Jotg(t - T) ix(~) dr, t E [0, T]. 
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Then Tl, T, and the composition f = k(T, + TJ all satisfy the strict 
causality requirement described in Section 2. 

2. MATHEMATICAL PRELIMINARIES 

The properties of multilinear operators have been considered in [l-6] 
and they shall be very tersely summarized here. If X is a linear space 
andXk =X x **a x X (k foId product) then a k-linear map IV, is a function 
from X” to X which is linear in each argument, that is, 

W&1 P.S., q’ + px; )..., xlc] = aW,[x, ,...) Xi’ )..., XI;] + pwj&c, ,..., x; ,..., Xk] 

holds for all 01, 8, xi’, xy, and i = I,..., k. Each k-linear function W, induces 
a k-power function 

l&.(x) = w&x,..., x], XEX. 

A potynowlic function f is any finite sum 

f(x) = f %&). 
k=O 

We say that f is of order n if f is computable by this formuIa where n is the 
highest multiplicity. 

Without loss in generality, we shall work with symmetric multilinear 
functions, that is, functions which are invariant under permutations of 
variables. For example W, is symmetric if W,[x, y] = W,[y, x] for all 
x, y E H. Our interest primarily is with polynomic functions in which case 
we shall identify with the symmetric k-linear generator of each k-power term. 

The causality structure of interest in this paper is intertwined with the 
concept of a Hilbert resolution space. This has been dealt with in [7-l I] and 
in conjunction with multipower probIems in [2], [3], and [5]. Our review 
here will summarize the minimal notation necessary to proceed with the 
article. 

Let H denote a Hilbert space and v a linearly ordered set with minimal and 
maximal elements a, b E V. A family R = (Pt; t E V} of orthoprojectors on H 
is a resolution of the identity if 

(i) P”(H) = 0, Pb(H) = H, and P”(H)3 Pz(H) whenever k > I; 

(ii) R is weakly closed. 

In (ii) we insist that if (Pi> is a sequence of R! such that Pix+ Px where P 
is an orthoprojector then P E R. In some cases we shall assume that Y is 
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continuous and that R is complete in the sense that for every k < I, k, 1 E v  
there exists m E v  such that k < m < 1, moreover II(P” - P”) x Ii + 0 as 
k ---f 1 for all x E H. The set H, equipped with R is called a Hilbert resolution 
space. 

A function f on H is said to be causal if Ptx 1 P”_v Z. Pif(x) = P’f(y) for 

all t E V, X, y  E H. The statement Plf = PtfPt all t E V, is a necessary and 
sufficient condition for causality. A multilinear map is causal if it is causal 
linear in each argument. In Section 3 we shall introduce other causality 
structure properties appropriate to the analysis. 

For ease of referral we state here the Prenter-Stone-Weierstrass theorem 

El]. 

THEOREM 1. If H is a real separable Hilbert space, k- a compact set, 
f E C(H)-the continuous functions on H then there exists a po[_ynomic function 
p such that 

y~$llf(4 - P(X)11 < E for every E > 0. 

3. APPROXIMATIONS OF FINITE RANK 

In this section we redevelop some of Prenter’s results and sharpen others 

by constructive methods which facilitate the latter sections. One result is the 
representation theorem for approximating polynomic operators. 

In the following, K is a compact set of the real separable Hilbert space H. 
Let E, denote a finite l/n cover of K. Such covers exist for n = 1, 2,... and 

by taking unions the condition E, C E,+1 can easily be met. 
Suppose that (E,) is such a nested family of finite covers and that 

L, = span(E,). Each L, is finite dimensional, with dimension not exceeding 
the number of points in its generating E, . It is also obvious that 

where 

4a;L) < 4a; E,) < l/n, 

d(a; A) = inf{ll a - x I/: x E A}. 

We prove first a modification of a well-known result on compact sets (see 
Maurin [I21 page 151). 

LEMMA 1. If  the set K C H is compact there exists a sequence of linear jinite 
rank operators {S,} such that 

(a) S, + Ipointwise on H 

(b) S, -+ I uniformly on K. 
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Proof. Take S, to be the orthogonal projection on L, described above. 
Then S, has finite rank. Moreover the containment L, C L,+l and the separa- 
bility of H implies 

II $2x - x II - 0, XEH 

which proves (a) while on K 

II aax - x II d 4x, L) G l/n, XEK 

holds from which (b) follows. 
We turn now in the approximation direction. 

LEMMA 2. If  f is a continuous map on H and KC H is compact, then there 

exists a sequence {S,} of jinite rank linear operators and a polynomic operator p, 
such that 

IIf - (P&J b>ll < 6, XEK 

which holds for all E > 0 and all n 3 N. 

Proof. A polynomic operator is a finite sum of multipower operators. 
Recall (see ES, Appendix II]) that for any polynomic operator P there exists a 
continuous linear operator valued map T(x, y) such that 

P(X) - P(Y) = W? YXX - Y), x,y~H. 

In particular, 

ll(PS&4 - P(x)11 G II q&J, x>ll II snx - x II 

,( M. II &x - x II , x E K, 

where M follows from the continuity of T and the compactness of K. Now 
using the results of Theorem 1 we pick p such that 

llf (4 - P(x)ll < 4, XEK. 

The lemma then follows from the obvious norm inequalities on the expansion 

f  (4 - (P&)(4 = f  (4 - P(X) + P(x) - (P&J(x)9 SEH. 

A polynomic operator p is said to be of jbite rank if there exists a linear 
projection S of finite rank such that p = $3. The last lemma evidently implies 
that f  is approximatable on K by a finite rank polynomic operator. (This 
result was also noted by Prenter [4].) 
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LEMMA 3. Let W be a symmetric, n-linear function which generates a finite 
rank, n-power function. Then there exists two finite orthonormal sets {ei}y, (f$, 
such that 

W[x, y,..., x] = i f  (x, ei) (y, ej) ... (z, ek> (fi , W[e. z, ej ,..., ek.lifi Z=l i,j...k=l 

Proof. The n-power case is a transparent extension of the bipower case 
which we cover here. Since W is of finite rank there exists by Lemma 2 a 
finite rank projection S such that W = WS. Let {ei}y be an orthonormal 
basis for range (S). Then for x = C aiei and y = x /3,ej 

WX, Yl = 2 %Bj W[ei ,ed. 
iA=1 

The set {W[e, , ej]} is finite and hence there exists a finite orthonormal 
basis {fix for span({ W[ei , eJ}). The lemma follows by noting 

WPi ,91 = i fi(fi 9 W[ei , 4) 
I=1 

and that 

ai = (X, 4, 4 = 0, 0 

COROLLARY. If symmetric n linear W on L,(A) generates the finite rank 

n-power function W, then W has a representation 

where functions {e,};” (fr>;l CL&l) exist and scalars {P(i, j,..., k, 1)) exist such 
that 

Q(t, $1 ,..., s,) = 2 f  r(i, j,..., k, 4 e&J e&A *** e&,Jfi(t). 
Z=l i,j.....k=l 

Proof. It is necessary only to note in Lemma 3 that 

(x, 4 = JA 4s) W dm(s) 

and that P(i,j ,..., k, 1) = (ft , W[e< , ej ,..., e& are scalars. 
We draw these results together in a summarizing theorem. 
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THEOREM 2. If  f  is continuous on H and K C H is compact then there exists 
a finite rank polynomic operator p such that \jf(x) - p(x)\1 < E, x E K. More- 
over, there exist two finite orthonorma2 sets {ei}y, {f }F such that 

N 

P(X) = c R(x), XEK 

where each mn(x) = WJx,..., x] is of the form of Lemma 3. If  H = L,(A) then 

each @n is an integral operator with a kernel described in the corollary to 
Lemma 3. 

4. THE APPROXIMATION OF STRICTLY CAUSAL FUNCTIONS 

In this section H is always real and separable, We shall need also partitions 
of v  namely Jinite sets Q, = {ti E v; tjel < tj and t, = a, t, = 6). We shall 
adopt the conventions Pi = Ptj and Aj = Pj - Pj--1. 

DEFINITION 1. A function f  on H is said to be prestrictly causal if there 
exists a partition D, such that 

f = ; A,fPi-l. 
1 

It is helpful to use the notation PSC to denote the set of all prestrictly 
causal functions. To avoid confusion P will denote the jkite order polynomic 
operators and as before C(K) denotes the continuous functions restricted to a 
compact set K. 

LEMMA 4. The set P n PSC is dense in the set C(K) n PSC. 

Proof. Suppose f  E C(K) n PSC and choose AifF1 which suggests the 
real separable Hilbert space Pi(H) in which Pi(H) n K is compact. By 
Theorem 1 there exists qi E P such that qi: Pi(H) + Pi(H) and 

X~~;i(Hjll(AifPi-l - qi) x II < 4Nl”. 

Now qi = Pi-lqi + A,qi and from 

jj(AifPi-l - q”) x /I2 = jj(AifPi-l - Aiqi) x II2 + I/ Pi-lqix II2 

it is immediate that 

sup ij(AifPi-l - A,qi) x 11 < c/Nli2. 
xcKnP”(H) 
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Moreover, since Pi(H) r) Pi-l(H) it follows that 

x~~~~~H~l(Aifpi-l - A,$) Pi-lx 11 < c/N112. 

Now we define 8” = AiqiPi-1, a polynomic operator on H and construct 
q = C @. Noting that AjqPj-l = $i we see that q E IFD n PSC. The identity 

z; Ii C (A,fPi-l - B”) x //’ = su; c Il(A,fPi-l - @) x II2 < g r2/N = 2 
1 

thus establishes the asserted density. 

DEFINITION 2. A function f is strictly causal if it is the limit1 of a sequence 
of prestrictly causal operators. 

We shall use the notation SC to denote the set of all strictly causal operators 
on 2%. Lemma 4 sets the stage for the following. 

THEOREM 3. The set P n SC is dense in C(K) n SC. 

Proof. If f E C(K) n SC then there exists a sequence f d E C(K) n PSC 
such that 

sup ll(f -f”) * II < 42. 
SEK 

For each f n E C(K) n PSC we have by Lemma 1 a polynomic operator 
gn E P n PSC such that 

sup ll(f” - g”) 2 il < 42. 
SEK 

From the identity f - gn = (f - f”) + (f n - g”) and the obvious norm 
inequality it follows that 

SUPIlf-gg"/I <E 
XEK 

for every E > 0, thus P n PSC is dense in C(K) n SC. 
Now since C(R), SC, and P are closed under addition and composition, 

Theorem 3 may be paraphrased in the form that the algebra P n SC is 
dense in the algebra C(K) n SC. The detail of this result can be sharpened 
somewhat. 

1 If f is linear convergence in the usual operator norm, if f is multipower the multi- 
power operator norm suffices (see [2]) in the immediate sequel the uniform limit on 
all compact subsets is intended. 
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First note that if f = g + h where g, h E C(K) n SC. If p, Q E P n SC 
are e/2 approximates, respectively, off, g, then p f 4 is an E approximate off. 
In short, a function can be approximated by approximating its (additive) 
parts. It is slightly less obvious that approximations are preserved under 
composition. This is a consequence of the following lemma. 

LEMMA 5. Let L E C(K), FE C(J) where K, J are compact and F( J) C K. 
Let W, G E P such that 

sup ll(L - W) x II < El , sup ll(F - G) x II < ~2. 
XEK =J 

Then there exists a scalar 6 such that 

sup ll(L o F - W o G) x 11 < <I + 8~~ . 
xd 

We shall need here the expansion result for poIynomic operators cited in 
the proof of Lemma 2. If Q E I!? then x - y is a factor of Q(X) - Q(y) in the 
sense that there exists a bounded linear operator valued function T dependent 
on X, y (in a polynomic way) such that 

Moreover, 11 Q(x) - Q(y)/1 < 11 T(x, y)ll . jl x - y 11 where for any bounded 
set D there exists a finite scalar S(D) such that 

sup II T(x,rIl G W3. 
X,YED 

Turning now to the proof of Lemma 5, let A = L 0 F and B = W 0 G. 

Then 

(A - B) (x) = L(Fx) - W(Gx) = LF(x) - W(Fx) + W(Fx) - W(Gx) 

= (L - W>F(x) + W(x), GM (F(x) - G(x)), 
hence 

lItA - B) x II < I@ - WWII + 8 II F(x) - Wll 

Since F(J) C K we have (here 8 = 6(J)) 

yy II@ - B) x II d sup IW - W)y II + 8 ~~7 II44 - +>ll 
YEK 

= 61 + 8%) 

the asserted result. 
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5. THE APPROXIMATION OF CAUSAL FUNCTIONS 

As before K is a compact set in the real separable Hilbert resolution space 
H. For fe C(K) we let f(K) denote the image of K under f.  Of course 
continuous images of compact sets are themselves compact. Consider a 
sequence {QJ of bounded linear operators on H. 

DEFINITION 3. If  each Q, is strictly causal and if {Qn} + I uniformly on 
every compact set KC H, then {QZnj is a strictly causaZ Sleklov sequence. 

LEMMA 6. If a strictly causal Steklov sequence exists in {H, P”} then 
P n SC are dense in C(K) n C. 

Proof. Forf E C(K) let {Qn} be strictZy causal Steklov. For arbitrary E > 0 
an N exists such that (using the uniform convergence Qn -+ I on f(K)) 

my IIf - Qn.f(4 < 42, all n 2 N 

holds. Since Qn is linear and strictly causal and f  is causal, the composition 
Qnf is strictly causal (see [14, Proposition 4.51). 

Now by Lemma 4, there exists a strictly causal polynomial Q such that 

Hence 

~g lI(Qn.0 (4 - dx)ll < 4. 

yg Iif - q(x>ll < ‘j;,; IIf - (Qnf) (x)11 + T$ Il(Qnf) (4 - dx)ll = 6, 

which completes the proof. 
We turn now to the existence question of strictly causal Steklov functions. 

EXAMPLE 2. Here H = L,(O, 1) and we recognize in the functions 

pm (P”4 (P) = (0, 
P<t 
B>t 

a resolution of the identity. In this setting consider the functions Qn defined 

by 

(Qnx) (t) = n JtL,,, x(s) ds, n = 1, 2 ,.... (2) 

It is clear that each Qn is bounded, linear, and causal, moreover in view of 
Example I, each Qn is strictly causal. These functions are in fact obvious 
variations on the classical Steklov functions. 
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Using existing proofs (see [13, Section 1.101) with only minor changes it 
follows that 

IIQnll < 1, IQ2 -+I, 

where the convergence is uniform on every compact K. Thus Eq. (2) provides 
a strictly causal Steklov sequence. 

Extending the definition of Qn to finite products of L,(O, T) in the natural 
way we arrive at the following. 

THEOREM 4. If {H, P”) is a jinite product of real separable L, equipped with 
the truncation projections then [FD n PSC, P n SC, and P n C are dense in 
C(K) n C on every compact KC H. 

The theorem follows from Lemma 6 and the knowledge that PSC is dense 
inSCwhile[IPnSCCPnC. 

It is helpful to recognize at this point a distinction between L, and I, spaces. 

(COUNTER) EXAMPLE 3. Consider real Es with 

v = (0, 1, 2 ,... }, x = (Xl ) x.2 )..., x, ,...) E I2 

and the functions {Pj: j = I,...) defined by 

It is easily verified that {I, , Pi} is a Hilbert resolution space. Suppose now 
that 52, is any mesh which includes the points 0, 1. Let Q be linear and pre- 
strictly causal, that is 

However A, = Pl and Pi-1 = 0 for i = 1, and hence Qx is a sequence of 
the form (0, QPlx, QP2x,...). Obviously 

x - Qx = (xl , x2 - QPlx, x3 - QP2x ,... ), 

hence 
llx-Qxll3 1x11, x = (Xl , x2 ,...). 

If x1 = 0 then Plx = 0 and the problem passes to the second component 
namely 

II x - Qx II > I xz I 3 x = (0, x2 ,...). 

Since the single point set K = {( 1 , 0, 0,. . .)} is compact it follows easily that 
there are no strictly causal Steklov functions on Z2 . 
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Examples 2 and 3 point out that Theorem 4 cannot be lifted up to abstract 

if& P”> without additional structure assumptions on the underlying order 
set V. At this writing we are not prepared to venture in this direction. 

6. CLOSURE 

In our development we have focused attention on the concept of causality 
and in particular strict causality. The literature on causality structure has 

several additional concepts of equal importance. In closing we take note of two. 
Strict and prestrict anticausality are the duals of strict and prestrict 

causality, respectively, in that Pt is replaced by I - Pt in all defining equa- 
tions. If  one does this systematically, in Sections 2, 3, and 4 the proofs still 
hold for the dualized versions of the lemmas and theorems contained therein. 
In short if AC, SAC, and PSAC denote anticausal, strict anticausal, and 
prestrict anticausal sets then the subalgebra PSAC r\ P is dense in the 

subalgebra PSAC n C(K) on K, while the subalgebra SAC n P is dense 
in the subalgebra SAC n C(K) on K, and finally Theorem 4 dualizes. 

An operator on {W, P’} is said to be memoryless if it is both causal and 
anticausal. It is known (see [lo]) that in some cases (including linear Hilbert- 
Schmidt operators) an operator can be decomposed into a unique sum of a 
strictly anticausal, a strictly causal, and a memoryless part. Suppose a theorem 
to the effect that 1U n P’ was dense in M n C(K) on K was available where M 

denotes the set of all bounded memoryless functions. Suppose also that 
f  E C(K) is of the form f  = fsc + fsa + Jn where fs, E SC n C(K), 
fYa E S4C n C(K), and fill EM n C(K), respectively. One could then con- 
struct a polynomic approximation p to f  of the form p = pe + p,, + p,,, 
where p,, E SC n P, p, E SAC n P, and p,, E M n P. In this way polynomic 
approximations which preserve the subalgebras M, C, SC, AC, and SAC 

would result. 
Movement in this direction, however, is blocked by a result which is 

proved in [15] namely: In L,(O, 1) there exists compact sets K such that no 
memoryless multipower operators exist on K of order n > 2. For contrast in 
1, memoryless multipower operators of al1 orders exist define on all of I, 
in abundance. 

In a related direction note that if f  E C n C(K) in the 1, setting has the 
form f  =fsc + fin then Theorem 3 provides a p,, E SC n P and (it can be 
shown [15]) that a p, E M n P exist such that p = p,, + p, is a polynomic 
fit to f. In short, the loss of the strictly causal Steklov functions is replaced 
by the existence of memoryless multipower functions. One might then 
conjecture that the abstraction of Theorem 4 will reflect this tradeoff. 
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