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The consequences of the simplifying assumption of independence of symptoms are 
examined by considering a data base of cardiovascular disease patients. A mathematical 
model based on Bahadur’s expansion (16) is used for quantification of nonindependence. 
It is shown that small symptom dependencies are sufficient to cause a substantial increase 
over the minimum misclassification rate. Incorporation of symptom interactions by use 
of Fisher’s linear discriminant function. optimum tree dependence models (21). and 
Bahadur’s expansion is also discussed. 

lNT’RODUCTlON 

The assumption underlying the most frequently used mathematical models for 
diagnosis is that of independence of symptoms. Bayes’ theorem. with the joint 
probability distribution estimated by the product of the marginal probabilities of 
the symptoms, has been applied to the differential diagnosis of numerous diseases 
(I-2). The inappropriateness of the independence assumption has been widely 
recognized, but small data samples, as well as confidence in the robustness of Bayes’ 
theorem, has lessened the severity of most objections. 

The consequences of the independence assumption in the presence of varying 
degrees of symptom dependence have not been considered. The apparently satis- 
factory results reported with use of independence have fostered a security which 
may not be warranted. Although independence may lead to “good” discrimination. 
are even better results possible? What of the situations in which poor results are 
obtained? May we attribute some of them to lack of independence? 

Of the statistical problems outstanding in diagnosis, that of symptom interactions 
is one of the most serious (3). Some of the most useful results may come from 
investigations of problems related to the conditional dependence of attributes. 
Although clinicians are forced to incorporate symptom interdependencies into theit 
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TABLE 1 

JOINT DISTRIBUTION OF Two SYMPTOMS (S,, SJ 

Disease 1 Disease 2 
Sl St 

r r 
Present Absent Present Absent 

~--~__ 
s ’ 1 Present 0.5 0 ( Present 0 0.5 

1 Absent 0 0.5 
” 

\ Absent 0.5 0 

diagnostic thought processes, most mathematical models disregard, or utilize only 
to a very limited extent, the information present in correlated observations. Often 
this information is not even recognized. Table 1 presents a simple example of the 
importance of the joint distribution of two variables (4). Although both of the symp- 
toms have equal marginal probabilities in each of the two disease states, considering 
them jointly permits perfect discrimination. The usual methods of analysis, based 
only on marginals, would have excluded these variables as unimportant. Elashoff 
et al. (5) studied the selection of 2 out of p dichotomous items in a classification 
problem. They found that discrimination could be increased by choosing positively 
correlated items and decreased by choosing negatively correlated ones. These 
results were not predicted from the analysis of the same problem with normally 
distributed variables. These two studies indicate that attempts to choose only 
uncorrelated symptoms may be detrimental to the overall effectiveness of a classi- 
fication system. 

Though most authors conscientiously draw attention to the lack of independence 
in their data, few have considered alternate approaches. Warner, Toronto, and 
Veasy (6) grouped mutually exclusive symptoms so that not more than one symptom 
in any set may be presented. Nugent (7), in the diagnosis of Cushing’s syndrome, 
examined the frequency of simultaneous occurrences of signs and symptoms by 
calculating x2 for all possible pairs. The two symptoms which were significantly 
correlated with the others were then removed from the analysis. The drawbacks to 
eliminating correlated symptoms have already been considered. Brunk and Lehr 
(I) presented a method, based on Gram-Schmidt orthogonalization, which substi- 
tutes the weaker assumption of linear relationships for that of complete indepen- 
dence. An alternate procedure considered by Hills (8) focuses on the reduction of the 
number of attributes to be used in a diagnostic system. By selecting in a stepwise 
algorithm a small subset of symptoms, their joint probability can be estimated 
directly from the data, without using the independence assumption. 

A somewhat different strategy is to apply Bayes’ theorem as if independence was 
present, and then to adjust the posterior probabilities for the dependencies present. 
Such an approach was considered by Mosteller and Wallace (9) in their analysis of 
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the disputed authorship of the Federalist Papers. By assuming that the frequencies 
of words are approximately normally distributed, the mean difference between the 
logarithm of the odds factor under dependence and independence was obtained. 
For the Federalist data only moderate adjustments to the log odds were needed. 
These results are, however, of limited applicability since they require bivariate 
normality and hence consider only pairwise interactions. Lincoln and Parker (/(I) 
attempted to circumvent the problem of nonindependence in another way. Let 
S = S1 17 SZ f? . . . 1’7 S,,, where Si is the ith attribute and D, is the X-th disease, then 

P(SIDi)=P(S,jDi)P(S,IS, n Di) ... P(S,,IS, n Sz n I.I n S,,.., (1 L)i). (1) 
In the Lincoln-Parker approach (1) is approximated by 

P(SI / Di)P(S2 IS, n Di) . . . P(S,-, n Di), 
Having made a rather arbitrary assumption, which depends, among other things, 
on the arbitrary ordering of the symptoms, this procedure was applied to a data 
base of forty patients and ten diseases. Results from such an investigation are 
necessarily inconclusive. Monte Carlo comparisons of several discrimination 
procedures for binary variables have been presented by Gilbert (I/), Smith (12). 
and Moore (13). 

THE PRESENT INVESTIGATION 

We have approached the problem of attribute nonindependence from several 
directions. The common emphasis underlying all of our strategies was examination 
of the problem in as realistic a milieu as possible. Whenever tenable oversimplifying 
models and assumptions have been avoided. The objective of our study was threefold : 
(1) to establish the consequences of the independence assumption when the joint- 
probability distribution is assumed known, (2) to evaluate several established models 
for joint-probability estimation which incorporate variable interactions, and (3) 
to propose and investigate a new model for diagnosis based on the formation of 
attribute clusters. The results of (3) and extensions of (I) and (2) to the case where 
the data is viewed as a sample from an underlying population are presented in (f4). 

The Quant$cation of’Nonindependence 

Normal theory multivariate analysis owes much of its relative theoretical sim- 
plicity to the fact that the n-variate normal distribution is completely specified by 

n(n + 3)/2 parameters (n means, n variances, and 
I1 

( 1 2, 
covariances). To characterize 

an n-variate binary distribution 2” - I parameters are necessary. Thus, to allow 
examination of the conditions under which the independence model may result in 
an increased misclassification rate, it is necessary to describe the data bases in terms 
of 2” - 1 parameters. (For simplicity we have chosen to restrict ourselves to binary 
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distributions.) It is, of course, highly desirable to work with parameters which are 
easily interpretable. Though various models (15) are available for parametrization 
of multivariate binary distributions, with meaningfulness in mind, we have selected 
the framework of Bahadur’s (16) expansion for quantification of nonindependence. 

Bahadur’s Expansion 

Consider a set of n dichotomous variables, and let an observation pattern be 
represented by x = (x1, x2, . . . , x,) where each xi = 0 or xi = 1, and X is the set of all 
points x. Let p(x) be the joint probability distribution on X. A description of p(x) 
can be obtained in terms of 2” - 1 independent parameters. 

Foreachi= 1, . . . . n, let @Ii =p(xi = l), or equivalently, 

@i = Ep(xi)7 O<cCi<l, 

where E, denotes the expected value when p(x) is the joint probability distribution. 
Let 

and 

Zi = (Xi - Ui)/(Ui(l - cl))l”, 

rij = ~AZiZ.J, 
ri jk = Ep(zizjzk), 

. . . 
. . . 

r12 n = E,(Z,Z, + * * Z,). 

In the sequel the parameters rij will be termed second order correlations, the 
parameters rijk third order correlations, and so on. 

Define p’(x, , . . ., x,J as the joint probability distribution of the xi’s when (1) 
the xi’s are independently distributed and (2) they have the same marginal distribu- 
tion as p(x,, . . . , x,J, that is, 

P’(X 1, -.*, x,) 3 fi @ (I - cq-xf. 
i=l 

Then Bahadur has shown that: 
Theorem. For every x in X, 

where 
P(X) = p’(x)f(x) (2) 

Among the advantages of Bahadur’s expansion are the presence of the rij which 
are Pearson correlation coefficients, a familiar measure of association, as well as 
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the simplification of (2) to independence when correlation parameters of all orders 
are zero. 

In order to ascertain the relative importance of different order correlation terms,, 
an index suggested by Bahadur can be considered. Let St,, be the squared norm of 
the nonconstant part of,f(x) in (3). That is, S& = ,f’(x) -- 11’. Then 

The ratios Gj’/Scv, provide a measure of the relative magnitude ofJth order terms. 
If for some m the ratio 

is close to 1, an approximation to p(x) including only terms of order less than or 
equal to m, is likely to be good. 

The Dafa Base 

In order to assess the effect of the independence assumption on the misclassifica- 
tion probabilities in a realistic setting, we have examined nine disease pairs with 
varying symptom combinations. Data were obtained from the Veterans Administra- 
tion Cooperative Study of Automatic Cardiovascular Data Processing (27). Tnfor- 
mation was available on 498 items obtained from each of 1308 patients seen at five 
V.A. hospitals. Cases were accepted into the study only when objective evidence 

TABLE 2 

DISEASE CATEGORIES INCLUDED IN THE V.A. STUDY 

Disease entity 
Number 
of cases Criteria used for selection 

1. Acute myocardial infarct 
2. Old myocardial infarct with 

coronary insufficiency 
3. Angina pectoris 

4. Pneumonia (with or without 
pleural involvement) 

5. Other diseases” 
6. Multiple diagnoses 

373 
143 

207 

190 
271 
124 

Diagnostic ECG, enzyme elevation 
Documented history 

Substernal pain, precipitated or aggravated by 
exertion. relieved by nitroglycerine 

Pulmonary consolidation on X-ray 
X-ray, paracentesis, etc. 
Presence of more than one disease from 

categories l-5 

a This includes small (less than 55) numbers of patients in the following disease categories: 
hypertensive CV, arteriosclerotic CV, rheumatic valvular heart disease, pericarditis, pleurisy. 
pulmonary embolism, spontaneous pneumothorax, trauma to the chest. hiatus hernia, upper GI. 
gall bladder, pancreatitis, unusual types of heart disease, chest pain due to unusual causes. 
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for a diagnosis existed, or when the total findings allowed a definitive diagnosis. 
Table 2 presents the various disease groups and the criteria for selection. The 
patient characteristics and disease combinations included in our analyses are pre- 

TABLE 3 

ATTRIBUTES USED IN THE ANALYSIS 

1. Retrosternal pain-present 
2. Retrosternal pain-past 
3. Right anterior chest pain-present 
4. Constriction tightness-past 
5. Stabbing, knife-like pain-present 
6. Duration: few minutes-present 
7. Duration: few minutes-past 
8. Duration: several hours-present 
9. Duration: several hours-past 

10. Duration : days-present 
11. Radiation: left arm-past 
12. Numerous seizures daily-present 
13. Precipitated by physical exertion-present 
14. Precipitated by physical exertion-past 
15. Precipitated by respiration-present 
16. Dyspnea on exertion 
17. Cough and expectoration 
18. Hemoptysis 
19. Fatigue 
20. Lagging of either hemithorax 
21. Absence of breath sounds 
22. Moist basilar rales 

23. Signs of consolidation 
24. Temperature elevation-present 
25. Temperature elevation for more than 2 days 
26. White blood count > IO 000 
27. Pain, lateral chest-present 
28. Constriction, tightness-present 
29. Precipitated by emotional factors-present 
30. Peripheral edema-present 

sented in Tables 3 and 4. Variables were selected not because of a priori knowledge 
of correlations, but based on the magnitude of the chi-squared values. Since the 
primary interest was methodological, that is, what is the impact of the independence 
assumption for a fixed set of attributes, the optimality of the subsets chosen was not 
a major consideration. 

The Model 

The model chosen for our investigation corresponds to the Type 1 (Data Base 
as the Universe) situation considered by Jacquez (18). That is, the assumption is 
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TABLE 4 

DISEASE COMRINATIONS AND ATTRIBUTES CJSFD FOR ANAI.YSES 
--I_---_ 

Diseases Attributes” 

I. Old MI YS acute MI 
2. Angina vs acute Ml 
3. Old MI and angina vs acute MI 
4. Angina vs pneumonia 
5. Acute MI vs pneumonia 
6. Old MI vs pneumonia 
7. CADh vs pneumonia 
8. Other’ vs pneumonia 
9. CAD vs Other 

(2),4, 8. 9% I I. 13. 14, I(1 
(2), 6. 7. 13. 13, 16, 19, 26 
2.4, 6, 13. (141, 16. 19, 26 
I, 5, 10. 13, 15. 17.23.24 
1.5,10.1?,15,17.22.‘4 
1.2.5. IO, 13. 14. 17, 23 
3,5, 15. 17. ‘I. 13 
I, 10, 13. 15. 1X, 12.23.25 
2.5, IO, 15.20.21.27. ‘8 

‘Attribute numbers refer to Table 3. Parentheses indicate that 
analyses were done with and without the attributes in parentheses. 

b Coronary artery disease refers to the combined category of acute 
MI, old MI, and angina. 

c Category 5 in Table 2. 

made that there exists a fixed population for which disease incidences and conditional 
probabilities are known and are identical with those of the data base. Though such 
a situation is unlikely to exist for most applications, the results obtained from a 
model of this nature are valuable. By viewing the data as a population, we have been 
able to examine a wide variety of probability and correlation structures with a 
relative degree of simplicity. Type 1 models should also approximate quite well 
situations in which the data base is large when compared to the possible number of 
symptom configurations and diseases. Discrimination procedures which perform 
poorly when parameter values are known are also unlikely to be suitable when 
parameters must be estimated. 

In a Type 1 model the complete actuarial (full multinomial) procedure is always 
optimum. That is, classification should be based on the relative frequency of occur- 
rence of the different symptom vectors. When the data base is treated as a sample 
from an underlying population, the actuarial model need not be the best tactic. Use 
of actuarial estimates obtained from a sample would tend to give poorer results 
than those indicated here. Misclassification probabilities would be higher for all 
procedures if cases from outside the sample were to be classified. This situation is 
considered in (14). 

Discrimination Models 

Multivariate binary distributions can be approximated by a variety of statistical 
models intermediate to the n parameter independence model and the 2” - I para- 
meter actuarial model. The basic aim of such models is to obtain good probability 
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estimates without requiring estimation of many parameters. In diagnostic applica- 
tions this is of particular importance, since data bases are usually quite small. 
Estimation of many parameters from few observations usually results in poor 
probability estimates. Procedures which incorporate all observations for estimation 
of each probability are also desirable since the number of observations available 
for each estimate increases. 

Besides the independence and actuarial models we also considered the following 
models which incorporate symptom dependencies in differing ways. 

(1) Fisher’s linear discriminantfunction (19). This model incorporates second-order 
correlations in a multivariate normal framework. The assumption of equal variance- 
covariance matrices within the populations is also required. Although binary data 
do not meet these requirements, the robustness of the linear discriminant function 
(LDF) to deviations from both normality and equality of covariance matrices, as 
well as its frequent application to classification problems, makes it a plausible model. 
(The quadratic discriminant function which does not assume equal covariance 
matrices can also be considered.) 

Frequently it is not enough to just classify an individual; an estimate of risk, or 
the probability of belonging to a disease state, is required as well. Suppose for n 
variables x1, . . . , x, and two populations with prior probabilities p, and 1 -p, the 
multivariate distributions are given by fi(x) and .fi(x). The probability that an 
individual with symptom vector x falls in disease category D1, by Bayes’ rule is 

= 1 + ((1 - P)/P)uMf2(xN - 

Iffi andf, are multivariate normal with equal covariance matrices, 

(1 -P>flW = e- a+ 

Pf2W 
( 

: BiXi) 
i=l 

and 

where the /Ji are the coefficients of the linear discriminant function. Equation (4) is 
the multivariate logistic function. Though multivariate normality is a sufficient 
condition for the multivariate logistic function to hold, Truett, Cornfield, and 
Kannel (20) point out that a much weaker condition, namely, that the linear com- 
pound 

i=l 
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be univariate normal, is also sufficient. Thus, Fisher’s LDF can be used with Bayes’ 
theorem to obtain estimates of posterior probabilities for belonging to different 
populations. 

(2) Optimum tree dependence models. This procedure (.?I) is concerned with best 
approximating an n-variate distribution P by a product of II .~~ 1 two-variate com- 
ponents. The “best” approximation P’ is defined to be that which minimizes the 
closeness measure 

ipp. = 2 Pi IogP, - 1 Pi log/-‘, 

= I,> --- (I,, + I, + . . -t I,,). 

where P’ = P;P,, ... P,,, and I, is the information ofthe ath component distributron. 
Thus, it is necessary to maximiLe the information in each of the component distribu- 
tions. 

Consider a probability distribution 

where (wz,, . , nz,) is an unknown permutation of the integers l-11, and P(x,/.Y,,) 15 
defined to be P(xi). Define the mutual information of two variables xi and .vj by 

/(x,, “,j) = \’ 2: P(Xi, Xj) log 
i 

p(Xi, xj) 

xi, l, I P(Xi)P(Xi), . 

This will be the weight assigned to the “branch” connecting variables .yi and .k,. 
The problem then becomes that of constructing an approximating distribution 
(tree) which has maximum branch weight. Since branch weights are additive, the 
maximum weight branch tree can be constructed branch by branch. By calculating 

f(~ui,xj) for all ,;1 
i 1 

pairs, and then ranking each branch, the tree is formed by tirst 

choosing the largest branch and then adding in order successive branches which 
contain at least one new variable. 

The optimum tree dependence model provides an alternate approach for including 
pairwise variable interactions in probability estimation. No assumption on the 
distribution of the xi are needed. The appeal of this procedure is in its ability to 
utilize many large symptom dependencies. The major drawbacks arc the inclusion 
of only pairwise interrelationships as well as the selective inclusion of only the largest. 

(3) Models basedon Balladuv’s expansion. Besides providing a model for the exam- 
ination of attribute nonindependence, Bahadur’s expansion easily lends itself to 
approximation of joint probability distributions. By considering only correlations 
up to some order m, where m is less than the number of symptoms, various approxi- 
mations to the probability distribution can be calculated. The disadvantages of this 
procedure are its limitations to binary data, as well as the possibility of negative 
probability estimates. Its major advantage is the inclusion of interactions of order 
greater than two in a noniterative algorithm. 
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Evaluation Criteria and Procedures 

For evaluation and comparison of the approaches, three criteria were used. 
1. Mean absolute deviation, 

MD m  = z Ipm(SiIDk)-P7(SiIDr), 
k 

i=l 2” 

where P”‘(Si 1 D,) is the probability estimate of symptom vector Si given Dk, based on 
model m, and PT(S, 1 Ok) is the true probability of the configuration Si. 

2. Weighted absolute deviation, 

3. Misclassification rate, 

MR” = i$l P’( Dm) PT(Si ID&. 

where the subscript 5r refers to the disease having the lower posterior probability 
for Si based on model m, and PT(D,) is the prior probability for D,. 

Since the problem under consideration involves both estimation and classification, 
the evaluation measures were also of two types. It is not necessarily true that a 
method which provides better probability estimates will also be better in classifica- 
tion. Indices one and two measure the deviations of the estimated probabilities 
from the actuarial probabilities, which in the present model are assumed true. Both 
weighted and unweighted deviations were included, since it is desirable that pro- 
cedures give good probability estimates not only for the frequently occurring vectors 
but also for the less likely combinations. 

For classification purposes the following procedure was followed. First probability 
estimates for P(Si 1 Dk) were obtained from the previously described models. Then, 
using Bayes’ rule and assuming equal priors, posterior probabilities for belonging 
to each of the two disease categories were calculated. Assignment was made to the 
population with the higher posterior. At times small negative probability estimates 
may be obtained with truncated Bahadur models. Two strategies were considered: 
(1) negative probability estimates were replaced by zero while the non-negative ones 
were unaltered, (2) negative probability estimates were again replaced by zero, but 
the rest of the probabilities were restandardized to add to one. Both approaches led 
to very similar results. All values presented here are based on the first approach. 

RESULTS 

In order to characterize our data base, Tables 5 and 6, respectively, contain the 
distributions of the second-order correlation coefficients and the Bahadur index 
for the relative magnitude of various order correlations. Examination of Table 5 
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TABLE 5 

DISTRIBUTION OF SECOND ORDER COEFFICIENTS 

Disease 

Proportion of jr,,1 

s” co.33 0.3330.67 >0.67 

Proportion of lrii! 
:-_- 

Disease s” <0.33 0.33-0.67 >0.67 

Acute MI 
Old MI 
Acute MI 
Old MI 
Old MI and angina 
Acute MI 
Old MI and angina 
Acute MI 
Angina 
Acute MI 
Angina 
Acute MI 

1 0.71 0.25 0.04 Angina 4 0.96 0.04 0.00 
1.00 0.00 0.00 Pneumonia 1.00 0.00 0.00 

Ih 0.81 0.19 0.00 Acute MI 5 0.96 0.04 0.00 
1.00 0.00 0.00 Pneumonia I .oo 0.00 0.00 

3 0.86 0.14 0.00 CAD 9 I .oo 0.00 0.00 
0.86 0.11 0.04 Other 0.79 0.2 I 0.00 

3h 0.90 0.10 0.00 Old Ml 6 0.89 0.11 0.00 
0.90 0.10 0.00 Pneumonia 0.96 0.04 0.00 

2 0.79 0.2 1 0.00 Other 8 0.96 0.04 0.00 
0.86 0.11 0.04 Pneumonia I .oo 0.00 0.00 

P 0.81 0.19 0.00 CAD 7 I .oo 0.00 0.00 
0.90 0.10 0.00 Pneumonia 1 .oo 0.00 0.00 

’ Refers to attribute combinations in Table 4. 
* Table 4 attributes without parenthesized attribute. 

TABLE 6 

GOODNESS OF FIT RATIOS FOR SELECTED DISEASES 

Disease 

Order of the Bahadur approximation 
, 

S” m=l m=2 m=3 m=4 m=5 m=6 m=7 nr=8 

Acute MI 
Old MI 
CAD 
Pneumonia 
Old MI 
Pneumonia 
CAD 
Other 
Pneumonia 
Other 

0.0432 0.1465 0.2422 0.4491 0.6642 0.8862 0.9881 
0.2195 0.4072 0.5932 0.7604 0.9204 0.9782 0.9995 
0.1682 0.2045 0.4241 0.9786 0.9998 1.000 -ph 
0.7072 0.8271 0.9133 0.9471 0.9913 1.000 -- 
0.0015 0.0031 0.0117 0.0621 0.2309 0.5501 0.8698 
0.1062 0.1886 0.3228 0.4664 0.7037 0.9193 0.9957 
0.0024 0.0042 0.0136 0.0658 0.2987 0.7573 0.9981 
0.1182 0.3707 0.4836 0.7689 0.8941 0.9661 0.9943 
0.2540 0.3800 0.5225 0.7382 0.9455 0.9969 0.9998 
0.2073 0.3947 0.5224 0.7138 0.9009 0.9763 0.9983 

I.000 
1.000 

1.000 
1.000 
1.000 
1.000 
I .ooo 
l.ooo 

a Number refers to the disease category attributes in Table 4. 
* Indicates that fewer than eight attributes were used. 
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indicates that most of the symptom pairs are moderately correlated. Few correlations 
exceed 0.33. Based on the Bahadur indices of Table 6, it can be seen that the contri- 
butions of correlation coefficients of order greater than two are not negligible and 
should probably be included for probability estimation. 

Misclassification rates based on probability estimates obtained from indepen- 
dence, Bahadur, actuarial, and linear discriminant function models are presented in 
Table 7. It should be noted that the Bahadur model of order one corresponds to 
independence while the nth order model, where n is the number of symptoms, corre- 

TABLE 7 

MISCLASSIFICATION PROBABILITIES 

Diseases 
/ 

1 

‘A Increase 
Order of the Bahadur approximation Discrim- indepen- 

. inant dence to 
2 3 4 5 6 7 8 function actuarial 

Old MI vs acute MI 0.192 0.169 0.154 0.124 0.105 0.098 0.098 0.098 0.156 9.5 
Old MI vs acute MI 

(without 2)” 0.194 0.155 0.138 0.132 0.117 0.117 0.117 -h 0.150 65 
Old MI and angina vs 

acute MI 0.210 0.218 0.210 0.175 0.158 0.157 0.157 0.157 0.204 34 
Old MI and angina vs 

acute MI (without 
14) 0.212 0.206 0.195 0.181 0.177 0.176 0.175 -r~ 0.216 21 

Angina vs acute MI 0.198 0.194 0.179 0.158 0.146 0.145 0.145 0.145 0.174 31 
Angina vs acute MI 

(without 2) 0.182 0.184 0.174 0.157 0.154 0.154 0.154 -* 0.173 18 
Angina vs pneumonia 0.040 0.040 0.040 0.022 0.022 0.021 0.021 0.021 0.051 86 
AcuteMIvspneumonia0.057 0.071 0.060 0.038 0.024 0.021 0.021 0.021 0.063 175 
CAD vs other 0.258 0.272 0.265 0.247 0.242 0.242 0.242 0.242 0.263 7 
OldMIvspneumonia 0.046 0.036 0.025 0.034 0.025 0.024 0.022 0.022 0.045 116 
Other vs pneumonia 0.188 0.167 0.146 0.126 0.123 0.123 0.123 0.123 0.167 53 
CAD vs pneumonia 0.055 0.053 0.047 0.047 0.046 0.046 -mb - 0.061 20 

’ Refers to attributes in Table 3. These were found to be highly correlated with other symptoms. 
* Fewer than eight attributes were used. 

sponds to the complete actuarial (full multinomial) model. Comparison of mis- 
classification rates from Table 7 suggests that the independence assumption can 
seriously degrade results obtained from Bayes’ rule. The largest percent increase in 
misclassification rates when independence was substituted for the actuarial model 
occurred for the acute MI vs pneumonia categories. The raterosefrom0.021 to0.057, 
an increase of 175 %. However, since these misclassification rates are quite small, 
the difference might not be as important as that found for old MI vs acute MI, a 
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shift from 0.098 to 0.192, or for Other vs pneumonia, an increase from 0. I23 to 0.188. 
The smallest increase was 7 ):i for CAD vs other, a combination which was poorly 
distinguishable at outset. For the categories considered in Table 7, there was roughly 
an average increase of 60 I’d, It is important to recall that the symptom combination\ 
chosen were not highly intercorrelated. Deliberate attempts to violate the indepen- 
dence assumption could, presumably, uncover even more striking illustrations. 

When only pairwise interactions are included in probability estimation, results 
are not uniformly better than independence. In three of the twelve disease combina- 
tions, use of a second-order Bahadur approximation led to results worse than 
independence, although only in one category, acute Ml vs pneumonia. is this diffcr- 
ence large. When optimum dependence trees were constructed, little gain over Inde- 
pendence was noted. Table 8 presents misclassification rates and the measure of‘ 

TABLF, X 

MlSCLASSIFlCATION RATES FOR TREF E&PI-NXN(.F Moot I s 

Acute MI vs old MI and angina 

Old MI vs pneumonia 

Old MI vs acute MI 

Acute MI vs pneumonia 

0.276 
0.404 
0.416 
0.356 
0.393 
0.883 
0.240 
0.631 

Angina vs pneumonia 

Pneumonic vs Other 

0.113 
0.480 
0.583 
0.403 

Diseases Tree 

I,>- ,’ hlisclassification rale 

Independenr Tree lndependent 

0.706 0.205 O.ZlO 
0.775 
0.673 0.057 0.046 
0.533 
0.9’3 0. I81 0. I93 
I.065 
0.430 0.050 0.057 
0.729 
0.181 0.036 0.040 
0.595 
0.710 0.185 0.188 
0.593 

closeness, I,-,,, for tree models as well as independence. Although the former 
approximated the probability distributions better than independence, a correspond- 
ing decrease in misclassification rates was not obtained. The proportion misclassified 
was almost identical for both models. For the discriminant function there was an 
average increase of 58% over actuarial. There was no discernible pattern for its 
performance. In one-third of the cases it was somewhat preferable to independence, 
in the remaining it was about equal or somewhat worse. 

In eleven of the twelve combinations when Bahadur approximations of order 
greater than two were considered, monotonically decreasing misclassification rates 
were noted. In old MI vs pneumonia the rate rose for the fourth order, although it 



SYMPTOM NONINDEPENDENCE IN DIAGNOSTIC MODELS 169 

was still better than independence. By fourth order, the results based on the expan- 
sion were definitely superior to independence and close to actuarial values. 

Table 9 contains weighted absolute deviations for the n - 1 orders of the Bahadur 
model. It can be observed that the deviations decrease almost monotonically with 
increasing order of the model. By the fourth order approximation the deviations 
have been markedly reduced. Similar patterns were found for the unweighted 
deviations. 

TABLE 9 

WEIGHTED DEVIATIONS FOR SELECTED DISEASES 

Order of the Bahadur approximation 

r 

. Disease P I 2 3 4 5 6 7 

Acute MI 1 0.0438 0.0178 0.0172 0.0077 0.0033 0.0008 0.0002 
Old MI 1 0.0168 0.0146 0.0091 0.0061 0.0025 0.0009 0.0001 
Acute MI 2 0.0405 0.0065 0.0102 0.0022 0.0009 0.0002 0.0000 
Angina 2 0.0170 0.0099 0.0082 0.0041 0.0016 0.0005 o.ooo1 
Acute MI 3 0.0400 0.0075 0.0121 0.0022 0.0012 0.0003 0.0001 
Old MI and angina 3 0.0096 0.0050 0.0038 0.0021 0.0011 0.0004 0.0001 
Angina 4 0.0288 0.0052 0.0018 0.0006 0.0000 0.0 0.0 
Pneumonia 4 0.0156 0.0072 0.0061 0.0022 0.0016 0.0002 0.0001 
Old MI 6 0.0397 0.0129 0.0223 0.0187 0.0129 0.0068 0.0014 
Pneumonia 6 0.0276 0.0106 0.0033 0.0024 0.0020 0.0005 0.0000 

’ Number refers to the disease category attributes in Table 4. 

DISCUSSION 

The results from the first phase of our investigation support the conjecture that 
the independence assumption can substantially decrease the effectiveness of a Bay- 
esian classification system. Usually this is not recognized, for true misclassification 
probabilities are not known and a basis for comparison is unavailable. A probability 
of correct classification in the range of 80 % is often acceptable to many investigators. 
The gain which may still be realized with use of other models is obscured by the 
relatively satisfactory results obtained with independence. 

Examination of models which include only pairwise dependencies (LDF, second- 
,order Bahadur, and optimum dependence trees) suggested that higher-order inter- 
actions should be incorporated into estimation procedures for all three second-order 
models led to unpredictable results when compared to independence. When the 
order of the Bahadur approximation was equal to or greater than half the number 

7* 
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of attributes, results were definitely superior to independence and usually quite 
close to optimum actuarial rates. 

It is of interest to note that the effect of the independence assumption was not 
constant over the disease categories, and it did not reflect the differences in correla- 
tion. We would like to postulate a mechanism which might aid in explaining these 
results. The basic requirement for discrimination to be possible is that corresponding 
symptom vectors in the populations to be differentiated have unequal probabilities. 
When diseases have similar joint probability distributions, discrimination is neces- 
sarily poor. Easily separable diseases are often characterized by (high, low) or (low. 
high) probability pairs. That is, a vector which occurs with high probability in one 
of the diseases, occurs with low probability in the other. For example, let us consider 
the data of Collen et al. (22) who examined the response of 230 patients with a 
clinical diagnosis of bronchial asthma, and 517 asthma-free patients, to six dichoto- 
mous questions. Of the nonasthmatics, 68 y0 reported having none of the six syml’- 
toms, while only 6.9 % of the asthmatics evidenced no symptoms. Fourteen percent 
of the asthmatics had all the symptoms, while none of the nonasthmatics had all of 
the symptoms. Assuming that the only information available for classification is 
whether an individual has none, all, or between one and five of the symptoms, the 
symptom-disease matrix in Table 10 could be constructed. Assuming equal priors 

TABLE 10 

ABRIDGED SYMPTOM DISEASE MATRIX FOR DA-IA OI 

COLLEN ET AL. (22) 

Number of 
symptoms 

0 
1-s 
6 

Asthma Nonasthma 

0.07 0.68 
0.79 0.32 
0.14 0.0 

for both populations, the optimum misclassification probability is 0.195. Thus, 
over 80 % of all patients could be correctly classified on the basis of only one decision 
rule: classify as nonasthmatic unless one or more symptoms are present. 

Let us briefly consider the effect of attribute nonindependence in such a situation. 
In order for the classification rules to be altered an extremely large change in the joint 
probability distribution is needed. Under independence the P (no symptoms/non- 
asthma) is estimated as 0.576, while the probability estimate for no symptoms given 
asthma is 0.0055. Thus, the (high, low) ranking for nonasthmas and asthma is 
maintained. Preservation of this ordering is the only prerequisite for the classifica- 
tion rule to remtiin unchanged. Grossly inaccurate probability estimates may leave 
the misclassification rate unchanged. In diseases which have most of the probability 
“concentrated” in a few symptom vectors, the range in which probabilityestimates 
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may fall without altering misclassification rates is quite broad. Thus in easily differ- 
entiable diseases we would expect departures from independence to result in a rather 
small absolute increase in misclassification rate. 

Our data confirm this hypothesis. All four of the easily discriminable disease 
categories (numbers 4-7 in Table 7) had an absolute increase of only l-3 % when 
independence and actuarial misclassification rates were compared. Examination 
of the corresponding correlation matrices indicated that these diseases were not 
characterized by a better fit to the independence model than the other combinations 
considered. Inspection of the joint probability distribution supported the conjecture 
that there would be several very discriminating vectors. For example, when CAD 
and pneumonia were considered, it was found that 72 % of all CAD patients exhibited 
none of the symptoms, while this was true for only one percent of the pneumonia 
patients. Similar symptom vector pairs with large differences in probability were 
also found for the other easily differentiable categories. 

For moderately differentiable diseases (misclassification rates in the range of lo- 
2O”/d), the large differences between vector probabilities which characterize easily 
distinguishable diseases are diminished. Thus moderate perturbations of probability 
estimates may result in changes of the classification rule, which leads to increases 
in the misclassification rate. Again, Table 7 indicates that fairly large absolute 
increases in misclassification rate have been noted for the moderately separable 
categories. When diseases are poorly differentiable at outset, the problem is not as 
interesting, for it is only selection of different attributes that can improve discrimin- 
ability. If the differences between the probabilities for a given vector are slight, 
reversal of the classification rule would not be expected to have much effect on the 
overall misclassification rate. 

It is important to realize that good discrimination does not require that large 
differences in the joint probability distributions be present. Theoretically, it is possible 
to obtain good discrimination even when the absolute differences in the joint proba- 
bility distributions are small. For example one disease may have one-half of all 
possible symptom vectors nonzero, while the other has these vectors with zero 
probability. Thus no large probability vectors need be present in either. However, 
whether this is a situation which is often encountered in realistic settings remains to 
be seen. 

In summary, we have found that the independence assumption, even when 
symptom correlations are small, can lead to an increase in misclassification rates 
when compared to the optimum rates. In the present case where parameter values 
are assumed known, the actuarial model is optimum. For easily differentiable dis- 
eases the impact of the independence assumption may be less severe than for moder- 
ately separable diseases. Results reported in the literature usually focus on diseases 
for which good classification results have been obtained, and thus could not recognize 
how deleterious the independence assumption can be for the more challenging 
situations. 
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