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A new discrimination procedure based on the formation of clusters of dependent 
attributes, and estimation of the joint probability distribution as the product of the 
probabilities of the disjoint clusters is proposed and investigated. The major advantages 
of this method are a substantial reduction of the number of probability estimates that must 
be made, the ability to include symptom dependencies, and the ease and flexibility of its 
implementation. 

Comparisons with other discrimination procedures are obtained using Monte Carlo 
techniques. Results indicate that the proposed model is robust and may lead to gains over 
the independence and actuarial models, especially for small sample sizes. 

INTRODUCTION 

Although a variety of mathematical models for use in medical diagnosis have 
been proposed, few comparative evaluations have been presented. A recent investi- 
gation (I) considered several procedures for the estimation of the probabilities used 
in Bayes’ theorem. When the independence, complete actuarial, optimum tree 
dependence, linear discriminant, and various order Bahadur models were compared 
in situations where parameter values were assumed known, it was found that the 
independence model can lead to substantial increases in misclassification rates 
when compared to the optimum values. Moderate symptom intercorrelations were 
sufficient to cause this increase. 

Since Bayes’ theorem, with the assumption of independence of symptoms, is 
frequently used in situations which violate the independence condition, alternate 
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approaches should be considered. It would seem desirable, instead of omitting 
correlated variables as had been suggested (2), to utilize this available information 
in the estimation procedure. The complete actuarial model, in which each joint 
probability is estimated as the relative frequency of occurrence of each symptom 
vector, includes all symptom interdependencies. However, the need to obtain Y’ 
probability estimates, where n is the number of binary symptoms, requires fairly 
large data bases. Another disadvantage of the actuarial model is that each observa- 
tion is used only for the estimation of one joint probability. Incorporation of all 
observations for estimation of each probability might lead to more stable estimates. 
Although the independence model does reduce the number of parameter estimates 
to n, and utilizes all observations for each estimate. the assumption of complete 
independence of symptoms is unduly restrictive and seldom met. It appears then 
that models intermediate to the actuarial and independence are needed. 

The purpose of this paper is twofold : (1) to examine a new procedure for proba- 
bility estimation based on the formation of clusters of symptoms, and (2) to present 
comparisons of this procedure with several others in situations where parameter 
values are assumed known, as well as in those where they must be estimated. Com- 
parisons of the models when the data base is viewed as a sample from an underlying 
population allows assessment of the effect of sample size in estimation, as well as 
proper evaluation of the actuarial estimates since they are no longer necessarily 
optimum. Thus, this investigation provides extensions to the Data Base as a Universe 
Model considered in (I). 

ATTRIBUTECLUSTER MODELS 

Background 

In many situations it is reasonable to postulate the existence of differing inter- 
relationships between variables. For example, it would be anticipated that the 
association between height and weight would be quite different from that between 
height and eye color. In a diagnostic setting it seems natural that distinct groups of 
interdependent attributes may exist and that different groups occur in different 
diseases. Findings from the same organ system might be more closely associated 
with each other than with results from other systems. Thus certain observations 
based on renal function might be independent of those obtained from the respiratory 
system. Of course, numerous complex physiological interdependencies exist and 
must be recognized. 

Meerten et al. (3) present correlations for symptoms which might be used in the 
differential diagnosis of four respiratory diseases. Their data support the hypothesis 
of symptom clusters, for correlations are not constant within a disease category, 
The substantial magnitude of the correlations indicates that independence is not 
a viable assumption. Prewitt (4) considered correlations for serum immunoglobulins. 
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Again, several of the correlations are quite large, with magnitudes differing between 
variables. 

Estimation Procedure 

If we allow the existence of attribute clusters, a simple method for joint probability 
estimation can be formulated as follows. For a given disease D let there be m mutu- 
ally exclusive clusters Ci chosen so that symptoms are independent between the 
clusters and dependent within a cluster. The joint probability of the symptom 
vector x is then 

(1) 

where P(C,) is the probability of the subset of symptoms of x found in cluster i. If 
all symptoms are independent, or in the present context, if each symptom forms a 
cluster, Eq. (1) reduces to the customary independence estimator with m = n. 

To illustrate this procedure let us consider the simple case of 4 binary symptoms, 
divided equally between two clusters. Assume that symptoms 1 and 3 are in C1, and 
symptoms 2 and 4 in C,. The probability of a symptom vector x = (lOlO), where 
1 denotes the presence of a symptom, is then 

P(lO1O)=P(S1=landS,=l)xP(&=Oand&=O). 

The p(C,) estimates can be obtained directly from the data base, using 

P(Ci) = no. of persons with cluster C/total no. ofpersons. 

The proposed algorithm is then a combination of independence and actuarial 
procedures. The probabilities of each cluster configuration are actuarial estimates, 
the joint probability is the product of the probabilities of independent clusters. 

The major advantage of the cluster procedure lies in the reduction of the number 
of joint probability estimates which need be obtained from a data base. For example, 
when the variables are dichotomous, it = 10, and two clusters of five symptoms each 
are formed, 64 (25 + 25) instead of 1024 (21°) probabilities must be estimated. This 
is a substantial decrease. The actual number of estimates to be made is a function of 
the number and size of the clusters. However, being able to partition out even one 
independent attribute halves the necessary number of estimates. This reduction is 
of particular importance for small samples. Among the other advantages of the 
cluster algorithm are : 

(1) inclusion of higher order symptom interactions without complex compu- 
tations or estimation of many parameters; 

(2) flexible implementation since different clusters can be chosen for each of 
the diseases under consideration; 
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(3) application to polychotomous as well as dichotomous data; and 
(4) inclusion of observations with missing values in the estimation, as long as 

some of the clusters are complete. 

The proposed cluster models can be derived as a special case of Bahadur’s model 
(5). Instead of assuming that higher-order correlation parameters are zero, the 
assumption is made that higher-order terms factor into products of lower-order 
ones. Thus, higher-order correlations are included but the estimation algorithm 
does not entail their direct calculation. 

Cluster Formation 

The delineation of symptom clusters poses an interesting problem. Severai 
alternate strategies can be considered. If there is a priori knowledge of underlying 
biological relationships that imply certain natural groupings these can be used. 
Otherwise, based on the collected data, clusters may be established by mathematical 
clustering procedures. Another possibility, one that we have explored, is to simply 
group the symptoms based on the magnitude of the Pearson correlation coefficients. 
Of course, the resulting clusters will necessarily be approximate. 

Gustafson et al. (6) investigated the effectiveness of four techniques for classifying 
data into conditionally dependent clusters. Their research focused on subjective 
aggregation by humans in contrast to mathematical clustering routines. One of the 
salient advantages of “human clusterers” is that massive amounts of data are not 
needed, for groups can be formed on the basis of prior experience and knowledge. 
Gustafson and his associates gathered a list of 125 symptoms, physical signs. 
laboratory tests, and items from the history, used for thyroid diagnosis. This number 
was then pruned by physicians to exclude those rarely used in diagnosis. The remain- 
ing 70 attributes were given to medical students and residents who individually 
clustered them. Although no external criteria were available for evaluation of the 
accuracy of these clusters, previous studies using nonmedical data indicated that 
up to 91% of the variables could be identified as belonging to a cluster when the 
correlation was above 0.48. 

Theoretical MisclassiJication Rates 

In order to investigate the possible usefulness of the cluster algorithm, two tactics 
were considered. The first consisted of the examination of the theoretical (parameter 
values assumed known) misclassification rate, while the second required parameter 
estimation from samples of varying sizes. In the first situation the actuarial model 
is always optimum. If the clusters chosen are exact, that is, the underlying model is 
indeed one of groups of symptoms which are dependent within clusters and inde- 
pendent between clusters, the probability estimates obtained from the proposed 
model would be identical to those obtained from the complete actuarial procedure. 
Thus the resulting theoretical misclassification rates would necessarily also be 
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equal and optimum for both models. However, the examples we have chosen to 
examine are not based on the existence of perfect clusters, but instead are directed 
at examining the performance of our procedure in realistic situations which require 
its robustness. Discrimination procedures which perform poorly when parameter 
values are assumed known, are also unlikely to be suitable when their estimation 
is required. By first considering theoretical rates, it is possible to establish the best 
results which can be realized with use of a particular model. 

The concept of partitioning attributes into independent clusters hinges on the 
hope that such groups do exist and can be identified. We have formed clusters based 
only on the magnitude of the Pearson correlation coefficients. Highly intercorrelated 
attributes were defined to be a cluster. Thus although higher-order correlations were 
present in the data only second-order correlations were used to define the clusters. 
Figures 1-3 illustrate the correlation patterns found in several of the disease groups. 

Acute MI Old MI 
FIG. 1. Symptom correlations for acute MI and 

those defined in Table 3 of Ref. (I). 
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old MI. The attribute numbers correspond with 

Pneumonia Other 
FIG. 2. Symptom correlations for pneumonia and Other. For Other, the attributes shown, 

except for 18, are all highly intercorrelated so not all correlations are shown. 
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Old MI Pneumonia 
FIG. 3. Symptom correlations for old MI and pneumonia 

Only the correlations largest in magnitude have been included. (Description of the 
disease categories and symptoms, as well as definitions of the evaluation criteria, were 
reported in (I).) 

Tables l-3 present corresponding misclassification rates and deviations from the 
true, in this case actuarial, probability distribution for a variety of cluster choices. 
Bracketted symptom numbers indicate clusters. It should be noted that quite sub- 
stantial gains over independence can be achieved with the clustering procedures. 
In acute MI vs old MI, the misclassification rate using the best groupings decreased 
from 0.192 for independence to 0.134. For pneumonia vs Other the rate went from 
0.188 for independence to 0.138 for clustering and 0.123 for actuarial. When old 

TABLE 1 

CLUSTERING RESULTS FOR ACUTE Ml vs OLD MI” 

Disease Clusters 

Deviations 
, Misclassification 

unweighted weighted rate 

AcuteMI {2,4,9,11,14),{8,13,161 
Old MI {2,4,9,11,14],{8,13,161 
AcuteMI {2,4,9,11,14},{8,13,16~ 
Old MI {2,4,11,14},{8,9,13,16; 
AcuteMI (2,14~,{4,9,11~,~8:,~13~,{16~ 
Old MI (2 4 9 11 141, {S;, (13:, :161 
AcuteMl {2:4:9:lli,{8,13,14,16~ 
Old MI (2,4,8,11},{9,13,14,16; 
AcuteMI :2,4,9,1Ij,{8,13,14,16~ 
Old MI {2,4,11,14},{8,9,13,161 

0.0017 0.0160 0.134 
0.003 I 0.0106 (0.098”, 0.197’ ) 
0.0017 0.0160 0.136 
0.0034 0.01’6 
0.0022 0.0280 0.147 
0.0033 0.0133 
0.0025 0.0194 0.151 
0.0037 0.0151 
0.0025 0.0194 0.164 
0.0034 0.0126 

-^_--.- 
a Symptom numbers correspond to those defined in Table 3 of(/). 
b Misclassification rate for actuarial model. 
” Misclassification rate for independence model. 
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TABLE 2 

CLUSTERING RESULTS FOR PNEUMONIA vs OTHER’ 

Disease Clusters 

Deviations 
, Misclassification 

unweighted weighted rate 

Pneumonia (1 10,15,18,22,23), f13), {25} , 0.0020 0.0079 0.138 
Other {1,10,13,15,22,23,25},{18} 0.0008 0.0040 (0.123: 0.188c) 
Pneumonia {l, 10,15,18,22,23},{13},{25} 0.0020 0.0079 0.141 
Other u, 10,13,151, wh (221, {231, (251 0.0020 0.0169 
Pneumonia {10,22,23), {1}, {13}, {15}, {18}, {25} 0.0028 0.0121 0.153 
Other {1,10,13,15,22,23,25),0 0.0008 0.0040 

’ Symptom numbers correspond to those defined in Table 3 of (I). 
b Misclassification rate for actuarial model. 
c Misclassification rate for independence model. 

TABLE 3 

CLUSTERING RESULTS FOR OLD MI vs PNEUMONIA” 

Disease Clusters 

Deviations 
. Misclassification 

unweighted weighted rate 

Old MI {l,2,13,14},{5,10,17,23} 
Pneumonia {1,2,13,14}, {5,10,17,23} 
Old MI {1,2,13,14,17},{5,10,23} 
Pneumonia {1,2,13,14}, {5,10,17,23j 
Old MI /1,2,13,14,17), {S, 10,23) 
Pneumonia {l}, {5}, {2,13,14), {lo, 17,23} 

0.0016 0.01p 0.027 
0.0014 0.0112 (0.022: 0.046’) 
0.0012 0.0052 0.024 
0.0014 0.0112 
0.0012 0.0052 0.029 
0.0018 0.0156 

a Symptom numbers correspond to those defined in Table 3 of (I). 
b Misclassification rate for actuarial model. 
c Misclassification rate for independence model. 

MI was compared to pneumonia, the rates were 0.022,0.024, and 0.046 for actuarial, 
clustering, and independence, respectively. As the tables and figures indicate, 
“perfect” clusters are not a prerequisite for use of the cluster model. Fairly reasonable 
groupings including only the largest correlations give considerable improvement 
over independence. It is particularly interesting that use of only pairwise correlations 
in the grouping procedure, as well as a variety of other cluster choices led to such 
gains. Since the number of probability estimates to be obtained depends on the 
clusters chosen, it appears that cluster selection should take into consideration 
available sample size. 
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COMPARISONSWITHOTHERALGORITHMS 

Introduction 

Comparison of the results of the preceding section to those presented in (I), 
indicates that attribute cluster models have theoretical misclassification rates which 
compare quite favorably with those obtained from the independence, discriminant 
function, optimum tree dependence, and various order Bahadur models. The next 
question is then, how well can these rates be achieved in the usual setting which 
requires estimation from small samples. Although several procedures may have 
similar theoretical misclassification rates, they need not be comparable when esti- 
mation is required, for the number and complexity of the required parameter esti- 
mates may differ. For example, although the actuarial model is always theoretically 
optimum, the need to estimate 2”-1 parameters from small samples seriously 
degrades its performance. Thus examination of a model which views the data base 
as a sample from an underlying population allows us to assess the effect of sample 
size in discrimination, as well as to include the actuarial model in all comparisons. 
since it is no longer necessarily optimum. 

One of the outstanding difficulties inherent in any simulation is the determination 
of reasonable parameters. We have avoided choosing oversimplified models, such 
as equal marginal probabilities in a disease, absence of higher order symptom depen- 
dencies, etc. Instead we based our models on the actual data bases described in (I). 
Necessarily some clear cut results have been sacrificed. There is little doubt that it 
we sampled from populations which completely met the assumptions of our 
discrimination models, our procedures would do well. Confirmation of this result 
appeared less interesting than an investigation of the hazy regions into which most 
data presumably fall. 

The disease combinations (Table 4 of (I)) which formed the basis for our models 
were (I) coronary artery disease and pneumonia (six symptoms), (2) old MI and 
acute MI (eight symptoms), and (3) Other and pneumonia (eight symptoms). 
Since all of these had substantial numbers of attribute combinations with zero 
probability, an undesirable characteristic for a “true” probability distribution. 
arbitrarily small values were substituted for zeroes. The distributions were then 
standardized to sum to one. This adjustment preserved almost completely the 
underlying correlations and probabilities. 

Once a modified probabihty distribution was calculated. it served as the popula- 
tion from which data bases of varying sizes were generated. Equal prior probabilities 
for the two disease categories were assumed. The procedure for obtaining sample 
data bases was as follows : 

(1) Assign a unique decimal code from one to 2”, where n is the number of 
binary symptoms, to each symptom vector; 

(2) store these codes in proportion to their corresponding probabilities in 20 000 
memory locations, IO 000 for each disease; 
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(3) generate a random uniform number, multiply it by 10 000 to establish the 
memory location, and then select the symptom combination attached to the stored 
value for inclusion, and 

(4) repeat (3) until the desired sample sizes and number of replicates are 
attained. 

Simulation 1. Each of the three disease combinations previously described served 
as a model for one of the simulations. The objective of Simulation I, based on 
coronary artery disease and pneumonia, was to consider the effect of incorporating 
attribute dependence when the two diseases are fairly separable and correlations 
moderate. Simulations II and III were based on less easily differentiable populations. 
Table 4 presents a characterization of the three models. It will be noted that the opti- 
mum actuarial and independence misclassification rates, i.e., based on true popula- 
tion probabilities, for Simulation I differ little. 

Mean misclassification rates based on samples of size 28, 64, and 128 from each 
disease are displayed in Table 5. Misclassification rates were computed using 

MR" = j$ PT(Dm)PT(SiID,), 'E 

TABLE 4 

MODELSFORTHESIMULATION 

A. Bahadur Goodness of Fit Ratio” 

Order of model 

Simulation Disease 1 2 3 4 5 6 I 8 

I Coronary artery 0.059 0.085 0.206 0.528 0.929 1.000 - -- 
Pneumonia 0.720 0.842 0.921 0.952 0.992 1.000 - -- 

II Acute MI 0.104 0.321 0.422 0.616 0.778 0.926 0.992 1.000 
Old MI 0.252 0.436 0.616 0.779 0.923 0.978 0.999 1.000 

III Pneumonia 0.334 0.499 0.612 0.783 0.958 0.996 1.000 1.000 
Other 0.300 0.563 0.676 0.821 0.941 0.984 0.997 1.000 

B. Theoretical Misclassification Probabilities 

Simulation Independence Actuarial 

I 0.066 0.054 
II 0.205 0.119 
III 0.207 0.140 

U See (I) for description. 
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TABLE 5 

MISCLASSIFICATION OF PROBABILITIES FOR SIMULATION I” 

Bahadur models 
Sample size 
per disease Independence 2 3 4 5 Actuarial LDF 

28 0.072 0.120 0.125 0.156 0.162 0.136 0.078 
64 0.066 0.107 0.088 0.098 0.104 0.093 0.078 

128 0.063 0.073 0.074 0.077 0.074 0.070 0.074 

a Means based on eight replicates. 

where the subscript n? refers to the disease having the lower posterior probability 
for the symptom vector Si based on discrimination procedure m, and PT(Si(Dk) is 
the population probability of the configuration Si, given Dk. Means are based on 
eight replications of each experiment. That is, eight data bases with the number of 
cases in each disease equal to the sample size were generated. The discrimination 
procedures included were all six orders of the Bahadur expansion, where the first 
corresponds to independence and the sixth to the actuarial (using sample estimated 
probabilities) as well as the linear discriminant function (LDF). Besides the sample 
sizes of 28, 64, and 128, three additional samples of size 45, 100, and 200 were in- 
cluded for the actuarial versus independence comparisons. The effect of sample 
size is brought out more clearly in Fig. 4 in which the misclassification rates for 
independence, sample actuarial, and LDF models are graphed as functions of sample 
size. 

Results indicate that for all the sample sizes best discrimination was achieved with 
the independence model. The difference between actuarial and independence rapidly 

c 
0.15 - 

- theoretic01 optimum 
- independence 
0-O actuarial 
MLDF 

20 60 100 140 I30 

SAMPLE SIZE IN EACH DISEASE 

FIG. 4. Misclassification probabilities for Simulation I. Each point is the mean ofeight replications 
of each simulation. 



184 NORUSIS AND JACQUEZ 

diminished with increasing sample size. The independence misclassification rate 
remained fairly constant for all sample sizes, as did the linear discriminant function 
rate. It is of particular interest that, for the LDF, a fourfold increase in sample size 
resulted in an almost negligible reduction in misclassification. The rate changed from 
0.078 to 0.074. For the smallest sample size (28) the second- and third-order Bahadur 
models performed better than actuarial, but not better than independence. Increasing 
sample size improved results for models 2-5, but not enough tosurpass independence. 
In summary, Simulation I suggests that for diseases which are easily separable and 
recognized from moderately intercorrelated attributes, independence is a tenable 
assumption. When the number of observations is substantially less than the number 
of possible symptom vectors, independence performs much better than the 
actuarial model. This difference decreases with increasing sample size, and for verk 
large samples the actuarial model is always optimum. 

Simulation II. The model for Simulation II, acute MI and old MI, is based 011 
moderately separable diseases. The population misclassification rates are 0.20 and 
0.12 for independence and actuarial, respectively (Table 4). The symptom correla- 
tions in acute Ml range from -0.05 to 0.68, and in old MT from -0.25 to 0.27. For 
the simulations, sampIes of size 100 and 300 were considered. Besides the eight 
orders of the Bahadur model, two procedures based on attribute clusters were also 
included. 

As in Simulation I, tripling of the sample size did not afTect the LDF and indepen- 
dence methods (Table 6). The independence rate decreased from 0.219 to 0.218. 
the LDF increased from 0.188 to 0.189. The actuarial rate decreased from 0.197 fat 
sample size 100 to 0.154 for sample size 300. All models were preferable to indepen- 
dence. For the smaller sample size the misclassification probabilities for the second 
cluster and the LDF models were smaller than for the actuarial model but the differ- 
ence was only in the third decimal place. For 300 observations the actuarial model 
discriminated best. Incorporation of symptom dependencies using Bahadur’s model 
led to better results than independence, but not better than actuarial. When IO0 
observations: were available in each disease, the second cluster model was preferable 
to the first since it required fewer probability estimates. This was reversed for the 
larger sample size. The cluster models appeared promising, though this example did 
not have a broad enough range of small sample sizes to allow their adequate investi- 
gation. Overall, Simulation II indicates that the independence assumption may bc 
detrimental in diseases which are moderately differentiable and characterized by 
symptom dependencies. It was of interest in comparison with Simulations I and Ill 
because the sample actuarial model did so well for a sample size of only 100. 

Simulation III The purpose of Simulation TIT was to provide comparisons ol‘ 
independence, actuarial, clustering, and LDF procedures over a wide range of sample 
sizes. The model for this simulation was pneumonia and Other, again moderately 
differentiable diseases as indicated by Table 4. The correlations were quite small. 
a range of 0.31- -0.24 for pneumonia, and 0.33- -0.24 for the category Other. Six 



DIAGNOSTIC MODELS BASED ON ATTRIBUTE CLUSTERS 185 



186 NORUSIS AND JACQUEZ 

sample sizes were considered: 50, 100, 150, 200, 300, and 500. Not all procedures 
were run with each sample size since, once fairly clear trends were discerned, little 
would be gained by more extensive computations. 

Results from this simulation (Fig. 5) are in agreement with those obtained in 
Simulation II. The independence model led to misclassification probabilities which 
were almost constant over a tenfold increase in sample size. The misclassification 
rate for the LDF also varied little, but a slight improvement was demonstrated from 
sample size 50 to sample size 500. Error rates for the actuarial model decreased very 
rapidly with increasing sample size. As indicated in Fig. 5, for sample size 50, 

1 I I I I 1 

100 200 300 400 500 

SAMPLE SIZE IN EACH DISEASE 

FIG. 5. Misclassification probabilities for Simulation 111. The clusters used were j?,h,71, :I :. 13;, 
{4), {5), {S] for pneumonia and {1,2,3,4:, {S), :6}, (71, {S}, for other. 

actuarial rates were much worse than those for independence. Best results were 
achieved with the cluster model, although the LDF rate was very close. When a 
sample of size 100 was taken, the difference between actuarial and independence 
was slight. Best discrimination was achieved with the cluster model. By sample 
size 150, actuarial surpassed both independence and the LDF model, but not the 
clustering algorithm. This is of particular note since the clusters in this example are 
certainly not well delineated. For samples of size greater than 150, the actuarial 
model is best. However, even by size 500, the theoretical misclassification rate is not 
quite reached. For the clustering procedure large sample sizes did not lead to much 
improvement. In the present example this is to be expected, since the clusters formed 
were approximate. If the clusters were indeed independent, increases in sample 
size should yield gains even more marked than those found for the actuarial model. 

Table 7 presents standard errors for the misclassification rates of Simulation III. 
These are sufficiently small to support the use of only eight replicates. Similar results 
were obtained for the other two simulations. 
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TABLE 1 

STANDARD ERRORS FOR MISCLASSIFICATION PROBABILITIES FOR SIMULATION III” 

Sample size 

Model 50 100 150 200 300 500 

Independence 0.0036 0.0036 0.0038 0.0050 0.0030 0.0031 
Actuarial 0.0126 0.0064 0.0049 0.0048 0.0037 0.0021 
Cluster 0.0054 0.0030 0.0020 0.0020 - 0.0031 
LDF 0.0074 - 0.0051 - - 0.0029 

’ Based on eight replicates. 

CONCLUSIONS AND DISCUSSION 

The major findings for the data bases considered are: 

(1) When diseases are easily differentiable, and correlations not extremely 
large, the independence assumption may be acceptable. Attempts to incorporate 
interdependence structures in such a situation may be detrimental. 

(2) The independence and LDF models are affected very little by sample size. 
Large increases in the number of observations do not improve discrimination. 

(3) The actuarial model rapidly improves with increasing sample size, and by 
the time the number of observations in each disease is roughly equal to one half the 
number of possible symptom vectors, it performs as well as independence. When 

the diseases are moderately differentiable and symptom dependencies are present, 
the actuarial model is strongly preferable to independence for sample sizes in each 
disease greater than 2”-l, where n is the number of binary symptoms. 

(4) For very small sample sizes, the discriminant function may lead to slight 
gains over independence. 

(5) Procedures based on clustering algorithms are very robust and may serve 
as suitable models for discrimination, especially when sample sizes are small. 

In summary, we wish to suggest that the indiscriminate use of the independence 

assumption in diagnostic algorithms should be reconsidered. Both of our investiga- 
tions indicate that, even in the presence of small symptom dependencies, discrimina- 
tion may be hindered by inappropriate model selection. It should be emphasized, 
however, that for extremely small samples, even in the presence of symptom depen- 
dencies, the independence model may be a practical solution. With increasing sample 
size the cluster algorithm appears to be a convenient, robust strategy, especially 
when the sample size is large enough to allow improvements over independence, but 
too small to allow use of the actuarial model. Again, it should be remembered that 
the cluster procedure was tested in situations which did not meet the assumptions 
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of independent clusters. Nevertheless, gains over the other models were noted. II 
appears that the attribute cluster model fulfills a definite need for discrimination 
procedures for small samples. 
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