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Abstract: We derive an expression for Regge cuts and the associated enhancement of Regge 
poles, following Gribov' s derivation of the reggeon calculus, but refraining from making an 
approximation made by Gribov. We show that Gribov's loop integrand should be multiplied 
by 

A(t_ tl, t2))/'+1-~1 --a2 F(-~)l~(/'+2--Ctl--a2) 

Stht rq+~-al -~2) 

This factor is identically unity for the Regge cut discontinuity, but is different from unity 
for enhanced singularities. 

I. Introduction 

Regge cuts are calculated from Feynman diagram models [ 1, 2], from S-matrix 
principles [3, 4] (involving t-channel unitarity), and from absorption models [5]. 
All these techniques, when handled properly, give identical expressions for the cut 
discontinuity, although phenomenological applications of the common expression 
have differed widely. A pictorial representation of a cut is shown in fig. 1. 

Accompanying the cut, there necessarily exists a phenomenon known as enhance- 
ment [3] of other singularities, which causes, for example, pole trajectories to be sin- 
gular when they cross branch point trajectories. An example of such an enhancement 
is shown in fig. 2. The cut also enhances itself, which causes the discontinuity to be- 
have as 1/ln2(f-t~c)near the branch point rather than the naively calculated constant. 
In ref. [3], the enhancement condition was solved by a K-matrix technique. 

A more interesting technique for calculating cuts and solving the enhancement 
condition is the perturbation theory approach embodied in Gribov's reggeon calcu- 
lus [2]. This theory has the structure of a field theory in which there are two space 
dimensions and the angular momentum plays the role of energy. This feature allows 
powerful field theory techniques to be applied, notably renormalization group tech- 
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Fig. 1. The general diagram for calculating ~egge cuts, and associated enhancements. The kine- 
matic variables are shown. In general, the two "vertices" have high energy j-plane singularities, 
for which this diagram is an enhancement. 

niques [6]. When such techniques are applied, it might be very important that the 
theory be exactly correct. In this paper, we demonstrate that Gribov's expression is 
not exactly correct, and we derive the correct expression. 

The difficulty with the reggeon calculus was first noticed by Hayot and Sukhatme 
[7] in a phenomenological application of  the reggeon calculus. (In particular, Gribov's 
technique does not give the correct threshold factor for the two-pion cut.) 

The source of  the difficulty is a standard high-energy approximation that Gribov 
made in his derivation. It can be verified that this approximation is valid for the cal- 
culation of  the cut discontinuity. (Most easily by comparing the results of  refs. [2, 
3]). It turns out, however, that the approximation is invalid for the enhancement. 
The approximation need not be made, and the derivation can still be completed by 
use of  techniques now available. In the appendix we carry out the derivation, using 
a technique taken from a paper (on the diagonalization of  Bethe-Salpeter equations) 
by Abarbanel and Saunders [8]. 

The result found differs from Gribov's result simply by a factor in the integrand. 
In the following sections we present the result and discuss the implications. 

2. The improved reggeon calculus 

We assume that the reader is familiar with Gribov' rules [2] as we present the im- 
provement. We are interested in calculating a loop shown in fig. 1. Details are given 
in the appendix. In eq. (A.1), because of  the presence of  uncalculated daughter tra- 

Fig. 2. A reggeon calculus diagram exhibiting an enhancement. Gribov's approximation is invalid 
for the enhancement, that is, for the Regge pole residue of this diagram. 
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jectories, a choice must be made for the continuation of the reggeon exchange to 
large values of the external masses. We choose the form ( s / M ~ M 2 ) %  assigning terms 
proportional to ( 1 / t ) ( s / M 2 M 2 )  a - l ,  etc., to be included with the daughter trajecto- 
ries. 

In what follows, we use the t-channel orbital angular momentum variable [3] 

l =j  - etl(tl) - et2(t2), (1) 

where/is the t-channel angular momentum and etl(tl) and et2(t2) are the exchanged 
Regge poles. The Gribov vertices are given in terms of the 2-particle - 2-reggeon am- 
plitude by 

d s  t S I --O~1--~2 NL,RQ" , t ; t l ,  t2) = f ( ) 

X (PL 'RPI ) - I -1  r ( l  + 3)z 
x/r~r(l + 1) Ql(y ') Im ML,R(S' , t; tl, t2),  (2) 

where the variablesy', PL,R, PI are defined in the appendix. The variable of impor- 
tance is 

= (A(t, tl, t2) f 
P~ ~ 47 ' (3) 

and where A is the usual triangle function given in eq. (7). 
The exact choice of the factors in eq. (2) makes N have the same residues of/- 

plane singularities as Gribov's expression 

~o 
N '  = I ds' S ' - l - 1  ImM.  

Sth 
(4) 

The/-plane amplitude is then given by the expression 

dtl dtl i s th l+lp(e t l ( t l ) )P(e t2 ( t2 ) )  
M(/, t) = a<0  f (-A(t ,  tl, t2))~ 

I 
X/~]  NLO', t; t t, t2) NR(/, t; t 1, t2) F(j, t; t 1, t2) ,  

where P is the reggeon propagator usually expressed as 

1 
P(a) = sin net × signature factor, 

(5) 

(6) 

A(t, tl,  t2) = t 2 + t 2 + t 2 -- 2 t t  1 -- 2 t t  2 -- 2tit2, (7) 
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and the only difference with Gribov is the presence of the factor: 

[A(t, tl ,  t2)) l+l  x/~ 1-'(l + 2) 
F(J', t; t 1, t2) = ~ F(I + ~) (8) 

Sth is the minimum value of s 1, s 2 , and s in Gribov's Mellin transform (see eq. (4)). 
The exact expression (eq. (5)) is independent of  Sth, although of course Gribov's ex- 
pression obtained by setting F = 1 is not. 

Finally, the high-energy behavior of  the diagram is given by 

c+ i~ 
1 M(s, t) = ~ f tiM(/, t)d1". (9) 

c - i ~  

The expressions presented here are derived in the appendix. 
In addition to the factor F, we differ from Gribov in requiring the Froissart- 

Gribov definition o f N  (eq. (2)) instead of  the Mellin transform definition (eq. (4)). 
In eq. (5), we have not retained factors of  2 and 7r properly, since these can be re- 
covered if desired by requiring that our results would agree with Gribov's if we were 
to set F = 1. Of course, both  Gribov and ourselves always assume s is large; we do 
not assume s 1 and s 2 are small. 

3. Implications 

In sect. 2, the main result presented is the presence of the factor F given by 
eq. (8). Gribov's approximation amounts to 

F ~  1 (Gribov) .  (10) 

Thus the sole modification of the reggeon calculus is to introduce an F factor for 
each loop. The leading Regge cut (and some other singularities) comes from a pinch 
involving the pole of  1/(l + 1) at l = - 1 .  From eq. (8), one immediately sees that 

(F)I= -1 = 1 , (11) 

which confirms that Gribov calculated the cut discontinuity correctly. Gribov's 
Mellin transform and our Froissart-Gribov transform also become equal at l = - 1 .  
Eq. (8) has other interesting properties. F is a function only of the variables/', t, t 1 
and t2, but is independent of, for example, the external masses. Therefore, this fac- 
tor can be associated completely with the loop, and our result immediately general- 
izes to multiloop diagrams such as that shown in fig. 3. 

Daughter cuts are explicit from the factor P( /+  2). (Unfortunately, however, the 
leading cuts from the uncalculable daughter poles are as important as the daughter 
cuts.) It is readily verified that the t-channel threshold behavior is correctly given by 
the inclusion of  the F factor; although incorrectly given without that factor. 
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Fig. 3. A two-loop diagram for which our result readily generalizes. The appropriate factor F is 
associated with each loop. 

The expression for F becomes singular at the t r iple-pomeron (3P) point  t = t 1 = 
= t 2 = O , a ( t ) =  1 + a ' t .  

At this point ,  we f ind 

( A  ] l+ l  (tl  + t 2 - - t - - ( t l - - t 2 ) 2 / t )  l+l 
F ~  - -  = 

\ tsth / s~ " 
(12) 

The t 1 - t 2 in tegrat ion causes no problem so 

t + t 2 - t f +1 
F ~  , (13) 

sth 

if  we approach the 3P point  along the cut  l = - 1  and F = 1. I f  on the other  hand  we 
approach along the pole j = a 

l + 1 = j  - ot 1 - o~ 2 + 1 = ot - o~ 1 - ot 2 + 1 = o~'(t - t 1 - t 2 ) .  (14) 

So 

I - -  t; 
which does, in fact, approach I,  bu t  with a singularity. The applications [6] assuming 
F = 1 are thus probably  reliable, bu t  should be checked. 

Near t = 0, the expression for F (eq. (8)) can be simplified. As t = 0 is approached,  

t 1 and t 2 become nearly the same. As a result, an integral over t 1 - t 2 can be explic- 

i t ly evaluated. We let o = t 1 + t 2 and  e = t 1 - t 2. 
Our integral is (eq. (5)) 

M= £~,sl+l NLNRP( t l )P( t2 )  do de 
l + 1  

( - t  2 + 2to - e2) ~ 

f N L N R P ( t l ) P ( t 2 )  X/~P(l + 2) dode (20 - t - e2/t) l+~ (16) 
% 7¥~ r(t + ~) ?, 

The e integral can be done because at t = 0 the N's, P's and l become independent 
ofe .  
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We find 

^ NLNRP1 P2 
m = zr j  1 ¥  1- do (20 -- t) l+1 (17) 

in place of Gribov's  

NLNRP1 P2 l+ 1 
M G = 7 r j  ] ¥ ]- do Sth (18) 

Therefore,  at t = 0, F can be replaced by 

F , = ( 2 o  ~l+l 
[ Sth ] (19) 

Notice that  the gamma funct ions  in F have been cancelled at t = 0 in doing the 

t 1 - t 2 integrat ion.  
As a simple example of  this improvement  of Gribov's  formula,  we can investigate 

the enhancement  of  an arbitrary (vacuum q u an tum  number )  trajectory by the two 

pomeron  cut. As an approximat ion ,  we consider the two pomeron  cut concent ra ted  
at its branch point ,  cr 1 -- a 2 = 1. Then  we find 

l = a 0 -- a 1 O~ 2 = a 0 -- 2 .  (20) 

Assuming that  Sth is 1 GeV 2 and  assuming, for definiteness 

l+1 NLNRPIP2 _ e5O (o negative) (21) 
Sth l +  1 

evaluat ion of  Gribov's  expression (eq. (18))  gives 

0 
/ , M c = 7r e 5a do = ~ l r ,  (22) 

while the improved expression (17) gives 

0 
M = rr f e 5° (2o) ~o-  1 do = 7r 2 ~o 1 i~(a0 ) 5-c~° (23) 

- - o o  

If  we consider the P' t rajectory with a 0 = l ,  we get 

M = n (~on) '~ , (24) 

which is a factor of  2.8 larger than Gribov's  expression gives. 
Of  course, the detailed numerical  assumptions  are no t  to be trusted, bu t  this little 

example shows that  the correct ion factor can be quant i ta t ively impor tant .  
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4. Conclusion 

We have demonstrated that Gribov's reggeon calculus is improved by multiplying 
each loop integral by an appropriate factor. This factor arises from treating the kine- 
matics completely rather than making an approximation which is not always valid. 
Our factor is identically unity for the cut discontinuity, but can be quantitatively 
and even qualitatively important in a number of places, for example in calculating 
the enhancement of Regge poles. 

We wish to thank H. Abarbanel for kindly informing us about the technique of 
ref. [8] which allowed us to do this calculation. We gratefully acknowledge many 
fruitful discussions and helpful suggestions from F. Hayot and G. Kane. 

Appendix 

Our starting expression for the two-reggeon cut is 

M(s, t) = f d4p'AL(Sl ,  t, al ,  OQ, m 2 m 2) a '  

where A L and A R correspond to the absorptive parts of the particle reggeon ampli- 
tudes, 0~1, 2 = O~l ( t l )  , Ot2(t2)  and the kinematic variables are defined in fig. 1. I fs  1 
and/or s 2 are large, A L and/or A N would contain Regge poles, etc., and an en- 
hanced graph would result. It could be argued that the factors s~i(i = 1, 2) appearing 
in eq. (A. 1) should actually b e  ecq(-zt i) ,  where Zti is linear in s. The two choices 
agree at s >> SlS  2 . However, good analyticity properties at t i = 0 necessarily require 
the presence of an infinite sequence of Regge daughters lying below the parent, lo- 
cated such that the full family is well behaved [9]. The expression for the reggeons 
in eq. (A. 1) is therefore necessarily somewhat ambiguous. Our choice has the correct 
leading asymptotic behavior and good analyticity properties. 

We consider the remainder of the Pc~ to be associated with the daughters, and its 
contributions to be included with the daughters. These contributions will, of course, 
also enhance the singularities o f A  L and A R. In order to correctly determine exactly 
the enhancement caused by a particular hybrid Feynman diagram, one would have 
to calculate the ladder exchange amplitude exactly, not only its high energy limit. 
Needless to say, this is beyond present day capabilities. However, in keeping with 
the spirit of the reggeon calculus, we may hope that the enhancement of high-lying 
singularities caused by daughters, etc., will be smaller than the contribution we cal- 
culate. 

Furthermore, in any case, we shall see that the factor F which we obtain as an 
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improvement of the reggeon calculus stems from a different origin. It basically 
comes from a careful treatment of the Jacobian in the transformation of variables 
d4p ' = J ds 1 ds2dt 1 dt2, which is discussed and used in an approximate way by 
Gribov [2]. Therefore our final result for the modifying factor F does not depend 
crucially on the precise form for the integrand chosen in eq. (A. 1). It is convenient 
to introduce the following quantities: 

¢'A(t, m~, m2c) |/A(t, m 2, m2d) |/A(t, tl, t2) 
PL -- 4t , PR =-}/ 4i  , PI --- I '  -47 (A.2) 

Defining the partial-wave amplitude M(d', t) by 

? [_[- (PLPR)-/-~ P(J" +1 r0"l ) + 3) ] , (A.3) M(j, t) =-- ds OPM(s, t) Qj(y), • = 
Sth 

where the factor qb is chosen such that M(j, t) is the usual Mellin transform for large 
s andy =y(s, t) is given below, we obtain 

MO.,t)=f d4p, f dsIALARP(tl)P(t2)I +a2 _ _ _ _  s ° e l  Qi(y) , 
Sth ( (S1S2) ~l+a2 ) 

r(PLPR)-f-1 P(j + 3)1 (A.4) 
× [  ~ - - - - ~  + 1) ' 

The next step in deriving the reggeon calculus rules consists of changing integration 
variables from the loop four-momentum P' to (tl, t2, Sl, s2). 

o ~  

M(j, t) = f X/-Z~ f ds[ALARP(tl)P(t2)IS~I ~2 
Sth ((SlX2) cq+a2 ) 

(PLPR) /-1 tO' + 3)1 
× x/~ P( /+ 1) Qi@)' (A.5) 

where 
f F r O(-D) a(P;,P1,P2,P3) 

m 

VrL---~ - 3(tl ' t2' Sl' s2 ) . (A.6) 

At this stage, Gribov approximated D by 

Dapprox = s 2 A(t, tl, t2) , (A.7) 
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and performed the s, s 1 and s 2 integrations. Such an approximation is not necessary 
and as pointed out in the text, it leads to difficulties. Here we show that the integra- 
tions over Sl, s2, s can in fact in accomplished without approximation by means of 
another change of variables, the group-theoretical motivation for which is discussed 
in detail by Abarbanel and Saunders [8]. The new integration variables ( t l ,  t2, Yl, 
Y2,Y) are given by 

s Sl s2 
y - 2 P L P  R o ,  Y l - 2 P i P  I °l  , Y2 2PiP R 02 ,  (A.8) 

where o, Ol, 02 are independent of  s, s l, s 2. (The interested reader can readily ob-_ 
rain explicit expressions for o, Ol, 02, which do not concern us in this paper, by 
studying ref. [8].) 

The expression for the cut now becomes 

M(j, t) = f PLPRPIdtl dt2dYl dY2dY QI(Y)O(y2 + y~ + y2 _ 1 - 2yy lY2) 

x / t ( y  2 + y l  2 +y2  2 - 1 - 2yylY2fi  

{ A LA R p(A1)p(../2)/SO~I + ~2 F(PLPR)-I"-I p(j. + 3)1 
(s,s2) ,~,+~2 J L ~-~-~+ D J" 

(A.9) 

For large values of  s, 

+ a2 [ ( P L P R ) - / -  1 PO + 3)]  Q/y) Seq 
L ~- -~  ¥-1i J 

= s-J-l+ Ot 1 + O~ 2 

F(eLe )- -I r(t + 

= QI(Y) L x/~ r(l  + 1) J ' (A.10) 

where we have defined the quantity l = j  - a 1 - o~2, which can be interpreted as 
"orbital"  angular momentum [3]. Let us make this change in the expression for 
MO', t) 

M(I', t) = f PLPRPIdtldt2dYldY2dY QI(Y)O(Y2 + y2 + y2 _ 1 - 2yylY2) 

qT(y2  + y2 + y2 _ 1 - 2yylY2) ½ 

I (SlS2Y',+'~ J L x/~r(l+l) 

T h e y  integration can be carried out by means of  the following result [8]." 

(A.11) 
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f O(y2 +y2+y2 1 -- 2yylY2) 
dy Ql(y) (y2 + y2 + y2 1 2yylY2) ~ = QI(Yl) QI(Y2) 

(A.12) 
1 - - 

T h i s  remarkable integral separates the Y l, Y2 dependence of the integrand into a 
factorized form. 

M0"t)U JL l) 

× QI(Y 1) QI(Y2)" (A. 13) 

The partial wave particle-Reggeon amplitudes are defined by 

NL'RQ"t)=fdYl'2 2PLa~P1ALy" Sl'2 - QlCVl'2) L v T r ( l +  1) ' 

(A.14) 

where the multiplicative factor has again been chosen such that one obtains a 
Mellin transform for large Sl, 2. The final result is 

= f V ~  P(I + 2) (PI)2l+ 2dtl dt 2 P(tl)P(t2)NLNR 
M(I', t) (A.15) J (l + 1) P(l + 3) 4Pi~¢/7 

The expression corresponding to eq. (A. 15) in Gribov's approach is obtained by 
taking eqs. (A.9) and (A. 10) and setting 

O, 01, 02-+ O, (y2 +y2 +y2 _ 1 -- eyylY2) ~ -+y. 

The limits of integration are Sth ~s1, s 2 ~s .  

=C PLPRPI s-l-1 [-ALARP{tI)P('t2) t (A. 16) 
MG(/"t) a V~- d t l d t 2 d Y l d Y 2 d Y ~ - ~  (SlS2)al+az J '  

with 

s Sl s2 
Y -  2PLP R , Y l -  2PLP I , Y2-2PRP I - 

Gribov's definition of partial wave amplitudes is 

A L,g =fNt,gql,2) sx,2 q ,2 d/.1, 2 . (A. 17) 

Substitution of eq. (A. 17) in e q. (A. 16) allows the y 1, Y2, Y integrations to be per- 
formed. At this stage the result is 
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dt I dt 2 NL(/1) NR(/2) MGO. t)=fSth l+ l+ l l+ l  2 d/1 d/2 
PIX/~(I 1 + 1)(/2 + 1) 

[ l , 1 + 1 7  
× l - I  l - I  2 -  1 l - l  1 l -  l 2 / + 1  " 

Gribov's final result is obtained by doing the l 1, l 2 integrals. 

_ f f  dr1 dr2 P( t l )P ( t2 )NLNR st h l+ 1 
MG(] , t )  O 4P I ~ ( l +  l) 

(A. IS) 

(A.19) 

A comparison of  the above expression with the correct result eq. (A. 15) shows that 
the additional factor F is given by 

X/~ 1"(1 + 2) (PI) 2l + 2 _ fA(t ,  t l ,  t2) l l+ 1 ~ r( l  + 2) (A.20) 

F =  V(l+ 3) Sthl+l L ~s-~ r(l+~) 

References 

[1] S. Mandelstam, Nuovo Cimento 30 (1963) 1113, 1127, 1143. 
[2] V.N. Gribov, JETP (Soy. Phys.) 26 (1968) 414. 
[3] V.N. Gribov, I. Ya Pomeranchuk and K.A. Ter-Martirosyan, Yad. Fiz. 2 (1965) 361; Soy. 

J. Nucl. Phys. 2 (1966) 258. 
[4] A.R. White, Nucl. Phys. B39 (1972) 432, 461. 
[5] F. Henyey, G.L. Kane, J. Pumplin and M.H. Ross, Phys. Rev. 182 (1969) 1579; 

M.H. Ross, F.S. Henyey, G.L. Kane, Nucl. Phys. B23 (1970) 269. 
[6] H.D.I. Abarbanel and J.B. Bronzan, NAL preprint (1973); 

A.A. Migdal, A.M. Polyakov and K.A. Ter-Martirosyan, Phys. Letters B48 (1974) 239; 
Preprint ITEP-102. 

[7] F. Hayot and U.P. Sukhatme, private communication. 
[8] H.D.I. Abarbanel and L.M. Saunders, Phys. Rev. D2 (1970) 711. 
[9] D.Z. Freedman and J.M. Wang, Phys. Rev. 153 (1967) 1596; 

M. Goldberger and C.E. Jones, Phys. Rev. 150 (1966) 1269. 


