
Macrosonics in industry 
4. Chemical processing 

P. K. CHENDKE and H. S. FOGLER 

Acoustic irradiation can result in increased inter-phase mass and heat transfer rates. The 
second-order acoustic effects of cavitation, interfacial instability, radiation pressure and 
acoustic streaming are responsible for the enhancement in these rate processes. The 
application of sonic and ultrasonic energy in industrial processing is reviewed. A number 
of units using acoustic energy to enhance rates of conventional unit processes, for 
example, drying, solid-liquid extraction, etc, are described. In addition, new applications 
in waste water treatment and oil-water emulsion fuels are described. The development 
of newer, more efficient generators should lead to a greater use of acoustic energy for 
large-scale industrial processing. 

Introduction 

The growing importance of industnal macrosomcs is 
evidenced from the number of review papers.1-4 The 
application of sonic and ultrasonic energy in the chemical 
processmg industry can be classified into two categories: 
(a) applications in which acoustic methods yield a product 
superior to that obtained by conventional means (eg, an 
emulsion with smaller and more uniform particle size dis- 
tribution) and (b) applications where acoustic energy is 
used to enhance the rates of conventional unit operations 
(eg, solid-liquid extractions). 

A vast amount of exploratory research has been carried out 
in the laboratory to study the effects of acoustic energy on 
different processes. While the feasibility of using acoustic 
energy has been demonstrated in a number of applications, 
the ‘scale-up’ from laboratory experiments to pilot plant 
operation and then to large-scale industrial units has been 
slow in developing. With the advent of newer, higher inten- 
sity generators it should be possible to make the transitions 
from batch studies to continuous processing units more 
easily. 

The mechanisms producing the observed increased rates in 
transport and unit operations processes can be divided into 
two categories: first-order effects (fluid particle displace- 
ment, velocity, and acceleration) and second-order effects 
(radiation pressure, cavitation, acoustic streaming, and 
interfacial mstabilities). The radiation pressure is a second- 
ary pressure which can bring about levitation of certain 
objects. Cavitation can result when high-intensity acoustic 
waves are passed through liquids producing small bubbles 
m the liquid. On collapse, the contents of the bubbles are 
compressed to very high temperatures and are capable of 
producing shock waves. In addition to cavitation and the 
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oscillatory particle motion produced by the acoustic waves, 
one can also induce secondary flows commonly known as 
acoustic streaming. At fluid-fluid phase boundaries one is 
also able to induce interfacial instabilities as a result of the 
to-and-fro motion of the fluid particles. The phenomena of 
cavitation, acoustic streaming, and surface instabtltties have 
produced increased rates of heat and mass transfer, chemical 
reactions, defoaming, and emulsification in a wide variety 
of chemical and physical systems. Usually, it is one or more 
of the second-order effects which are responsible for the 
enhancements in the transport process. 

In the review that follows we shall deal with the current 
applications of sonic and ultrasonic energy m chemical pro- 
cessing. We shall also outline potential areas which hold 
promise of commercial exploitation. 

Food industry 

The food and beverage industry has the potential of util- 
izing sonic energy for treating heat sensitive materials with- 
out loss of flavour, taste or other damage. 

Beverages 

An improvement m colour, cloud, viscosity and yield of 
orange juice by ultrasonic treatment is claimed in a recent 
Spanish patent.5 A process for the extraction of apple 
juice by the treatment of a tine apple pulp with ultrasonic 
energy of frequency 20-300 kHz and intensity 2.8 W cm-* 
is described by Coltart and Paton. In wine manufacture, 
the 800 kHz ultrasonic treatment of grape ‘must’ for S- 10 
mmutes before fermentation is claimed to increase the 
quantity of esters (ethyl lactate and ethyl caproate), iso- 
butanol, isopentanol, optically active pentanol and hexanol 
in the wines and also improve their flavour.7 In addition, 
the use of ultrasonics to clarify wines by precipitating potas- 
sium bi-tartrate without any deleterious effect on the chem- 
ical compositton of the wines is reported.8 Here an ultra- 
sonic treatment of 1.5-2 hours (compared with 4-10 days 
for the conventional process) is required for complete pre- 
ciprtatton and the resulting wine is stable for one year. The 
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authors claim the ultrasonic settling process can be readily 
used. 

The use of ultrasonics in the dairy industry 1s outlined by 
Mann 9 and Tobler.‘O 

Food 

Tudorie and Alexandru 1 1 descnbe a process for the de- 
colouratron of soybean or1 using active earths with ultra- 
sonics at 800 kHz, 80°C and lo-30 minutes irradiation 
time. Savings in the amount of earth used and the time 
needed are clarmed. A review of the use of ultrasonics m 
the food industry is given by Saroun.12 

Solid-liquid extractions 

In the area of inter-phase mass transfer, solid-liquid extrac- 
tron appears to be most greatly enhanced by the apphcatron 
of ultrasonic waves. Studies m our laboratory on the ultra- 
sonic extraction of sugar from sugar beets show that while 
acoustic streaming enhances the extraction rate somewhat 
by reducing the external boundary layer, the mechanism 
believed to be primarily responsible for the larger Increases 
is the cell disruption brought about by cavitation Cavi- 
tation induced cell disruption and drsperston of suspended 
solids coupled with enhanced mass-transfer rates due to 
acoustic streaming are believed responsible for the increased 

mass-transfer rates. The solid-liquid extractron processes m 
which the application of acoustrc waves results m mcreased 
extraction rates are’ 

1. Extraction of soluble matter from cellular solids (eg, 
sugar from sugar beets). 

2. Solvent extraction (011s from or1 seeds). 

3. Extraction of alkalords from herbaceous and plant-hke 
materials. 

4. Leaching of ores. 

Table 1 summarrzes some of the important extractrons en- 
hanced by ultrasound. 

From the extensive amount of empnical data on extraction 
rt can be concluded that both high and low-frequency 
acoustic waves enhance extraction rates. However, the m- 
tensrty needed at lower frequencies to achieve the same 
degree of enhancement IS smaller than that needed at 
hrgher frequencies. This suggests that cavrtatron (whose 
threshold is lower at low frequencies) with the accom- 
panying cell destruction and mixing IS the effective mech- 
anism whrch promotes interphase mass transfer rather than 
mrcrostreaming alone. It 1s apparent from Table 1 that 
ultrasomcally-augmented extraction IS partrcularly surte. 
to the small-scale, batch type extractrons needed in extr,rc- 
tron of drugs from plants where mmutes of ultrasomc ex- 

Table 1. Summary of the important extractions enhanced by ultrasound 

System Frequency intensity Comments 

Extractron of sugar from 

sugar beets I3 

19.3 kHz 

Extractron of sugar from 

sugar beets l4 

100 kHz 

Extraction of sugar beets 

and sunflower seeds l5 

800 kHz, 

1 9 MHz, 

3.465 MHz 

Extraction of beer hops l6 800 kHz 

Extraction of beer hops l7 400 kHz 

Extraction of beer hops ‘* IO-30 kHz 

Solvent extraction of coal 

with qurnolrne lg 

Alcoholrc extractron of 011 

seeds *O 

Extraction of peanut 011 by 

hexane 

30-90 kHz 

26 kHz 

400 kHz 

Extraction of cassra 

acutifolra ** 

20 kHz 

800 W 

0 05 to 

0.5 W cm-* 

0.93 W cm-* 

2kWh 

500 w 

0 5 W cm-* 

O-20 W cm-* 

6 5-62.3 W cm-* 

For the same yield the treatment with 

ultrasound reduces processing time 

from 60 to 45 mrnutes at 60-70°C and 

from 60 to 30 minutes at 50°C 

Maximum Increase tn extraction (78%) 

was obtained by 45 minutes rrradratron 

at 50°C 

An Increase In yield of 12-14% for 

sugar beets and 27-28% for sunflower 

seeds was obtained. Some chemical 

change In materials was observed 

At 13-18”C, an irradiation time of 

3-4 hours resulted in a 62% saving In 

beer hops 

A saving of 30--40% In hops was 

achieved 

This IS an example of an rndustrral unit 

treating 420 gal he1 of lrqurd wrth over 

50% savings In beer hops 

The percentage made soluable IS 
Increased 

830% Increase In 011 extraction rate 

with ultrasound 

Extraction yield with ultrasound was 

Increased by 2.76. Ultrasonic extrac- 

tion is equivalent to using a mechanrcal 

stirrer at 1 200 rpm 

With 3 minutes of extractron with ultra- 

sound the same amount of alkalord 

was extracted as In 10 minutes of con- 

ventional extraction 
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traction can replace the SoxhIet process needing hours. trial unit treats 25 gal min-1 of emulsion at a pressure of 
However, Skauen 3o states that unless careful precautions 250-300 psla with the ultrasonic energy being produced 
are taken, over-irradiation by acoustic waves may lead to by a 15 hp motor to produce a well homogenized cocktail. 
degredation of some of the extracted alkaloids. Mullard 31 In addition, ultrasonic homogenization is used routinely for 
and Brown 32 have reported that extraction equipment is industrial production of worcestershire sauce, cream type 
being used in the perfume industry with an estimated pay- soups and peanut butter. Fig.1 shows a typical on-line 
off time of less than a year. homogemzmg unit. 

Emulsification 

Acoustic emulaficatlon offers the following improvements 
over conventional methods (eg, rotating impellers, colloid 
mills and homogemzers): 

1. The emulsion produced has particles in the subnucro- 
metre range with an extremely narrow particle size dlstri- 
bution. In our laboratory the mean particle size of an 
acoustrc emulsion was found to be between 0.18-0.37 pm. 

2. The emulsions are more stable. 

3. Addition of a surfactant to produce and stabihze the 
emulsion is not necessary. 

4. The energy needed to produce an emulsion by acoustic 
waves is less than that needed in conventional methods. 

Schall 34 reports that a 10 hp motor can produce up to 
1 000 gal h-l of emulsion paint with better flocculation 
resistance, without foam production and with superior 
application and flow characteristics. Acoustic emulsifi- 
cation has also recently been used m mixing of test paper 
coatings, 35 in the continuous manufacture of wax sizing 
emulsions 36 and pigment &spersions.37 

Gopal 38 states that a acoustic Jet generator may require a 
5-7 hp drive wtile working at 150-200 lb ins2 to process 
1 000 gal h-l of hquld giving 1 pm size particles, whereas 
a high-pressure homogenizer with similar performance will 
work at 1 000-5 000 lb inm2 with a 40-50 hp drive. Sonic 
homogenization therefore appears to be much more efficient 
than conventional techniques. 

Industrially, acoustic emulsification has been used to pro- 
duce a vegetable cocktail which IS more stable than that 
produced with high-speed propeller mlxers.33 Thrs mdus- 

Recently there has been an interest in the use of oil-water 
emulsions to replace oil in order to produce a cleaner and 
more efficient fuel. Use of such fuel-water emulsions has 
been reported 39-41 in furnaces, cars and some postal 

Jaborandi leaves 26 20 kHz 

Extractlon of morphine 

from poppy plants 27 

500 kHz 

Leaching of copper ores 27 19.2 kHz 

Leaching of copper ores *8 

Leaching of zinc calclne 29 

18.8 kHz 

22 kHz 

0.5 W cme2 

2.8 W cm-2 

4 W cm-* 

System Frequency Intensity Comments 

Extraction of alkaloid from 

datura stramonlum 23 

Extraction of ravolfla 

serpentina roots 24 

Ipecac root 25 

20 kHz, 40 kHz 

25 kHz 

20 kHz 

For 30 minutes maceration time yield 

was 9% higher with ultrasound. For 

longer periods the effect of ultrasound 

became less signlflcant 

UltrasonIc extraction reduced con- 

ventlonal extraction time from 8 hours 

to 15 minutes 

l/2 minute extraction with ultrasonlc 

horn produced extract greater than 5 

hours of extraction with Soxlet 

extraction 

A 15 second Irradiation extracts more 

alkaloid than 5 hours of Soxlet extrac- 

traction. After 15 seconds there is a 

raprd degradation of extract 

15-17 minutes of ultrasonlc extraction 

was equivalent to 24 hours of con- 

ventional extraction 

Leaching at 25-45°C with ultrasound 

reduced the time necessary for mixing 

Using a rotary mixer at 175-500 rpm 

from 20-60 minutes to 5-10 minutes 

with a 5-l 5% higher yield 

Ultrasound Increased leaching of 

copper 2-3 times 

The leaching of Zn, Fe and Cu with 

H2SO4 solutions at 60°C was increased 

0.1 to 102.7% with the Improvement 

becoming smaller as the volume of 

slurry treated was mcreased 
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Fig.1 TypIcal on-line homogenlzlng umt (Sonic Englneermg Carp) 

service trucks with fuel economies of the order of 20% 
along with a reduction in air pollution. Other examples of 
acoustic homogenization on an industrial scale are m the 
cosmetic industry 42 and the pharmaceutical mdustry.43 

A new and unusual example of the use of acoustic energy 
is in a recent application of ultrasonic emulsification in- 
volving the preparation of a stable polyster resin using 
90 kHz ultrasound at an intensity of 40 kW gal-l. Upon 
addition of a catalyst and a promoter this resin can be 
solidified to form a mrcroporous obJect or sprayed as a 
coating.44 

An excellent discussion of the fundamental principles of 
emulsion formation has been grven recently by Gopa1.38 
A discussion of the various mechanisms mvolved in acoustic 
emulsification is given by Fogler.4 

Defoaming 

The necessity of breaking foams arises often m many 
industrial operations as well as in sewage treatment 
plants.45-50 The ultrasonic techniques used m breakmg 
foams are mechanical and have the advantage that one does 
not have to add a chemical contaminant to break the foam. 
Most liquids with viscosities up to 500 cp can be acoustically 
defoamed. Although the exact mechanism of acoustic foam 
disintegration IS not entirely understood, the followmg 
acoustic effects have been postulated by various authors to 
contribute to the disintegration process. (a) the partial 
vacuum on the foam bubble surface produced by the first- 
order acoustic pressure,(b) the impingement of the second- 
order radiation pressure on the bubble surface, and (c) the 
response of the foam bubbles to certain natural resonant 
frequencies which create mterstrtial friction causing bubble 
coalescence. 

In addition to the mechanisms listed above, we have 
observed other phenomena which may prove considerably 
more important m foam breakage. (d) the instability of 
varicose waves m the foam film induced by acoustic waves 

(prehminary studies on single hquid films m our laboratory 
have clearly demonstrated the presence of this type of 
wave);(e) cavrtatlon; (t) atomizatron was observed to OCCUI 
from the film surface; and (g) the acoustically induced 
convective streaming currents we observed may produce 
hrgh shear stresses which result in foam rupture 

In suppressmg the foaming of a Jet an-craft fuel JP3 during 
rapid climb, a Hartmann type of an siren operating at 
27.5 kHz and 145 dB was employed to break up 0.551 cm 
of very light fuel foam.51 Dorsey 52 could control a foam- 
ing rate of O-O.25 m3 mmM1 during fermentation operatrons 
using sirens working at 26,29 and 34 kHz at about 145 dB. 
A device for defoammg corrosrve hqurds formed durmg 
preparation of photographic emulsions (for photographic 
gelatin srlver halide emulsions) operating at a frequency of 
lo-100 kHz is reported m recent llterature.53 An apparatus 
for defoammg coating colour IS described by Adanls.54 
The use of an whistles m defoammg operations requires a 
minimum energy of 145-150 dB. They appear to be 
most efficient at frequencies below 15 kHz 55 (however, at 
these frequencies noise pollution would have to be con- 
trolled) and require an at a rate of 0.28 m3 mm-’ to break 
a foam at the rate of 0.028-0.56 m3 mm-r. However, 
steam Jet whistles have been reported to break foams 56 at 
rates of up to 0.3 1 m3 mm-‘. 

Recently, the Sontrifuge defoamer has been developed by 
Rrch 57-60 which incorporates centrifuging actron to keep 
the foam concentrated m the centre of the basket to 
directly face the sonic beam (Flg.2). This sontrrfuge has a 
liquid handling capacity of lo-500 gal mm-’ at 260% 
440 revs mm-l. In summary, acoustic defoammg IS a 
partrcularly viable alternative when the addition of a chem- 
ical defoaming agent will contaminate the hqurd to be 
defoamed. 

Flg.2 Large defoamlng unit combtnlng the effects of centrifugal 
force with ultrasound (Teknlka Inc) 
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Waste treatment 

Ultrasonic energy also finds applicattons in the field of 
industrial effluent and municipal sewage treatment plants. 
The acoustic energy acts primarily in two ways to aid the 
waste water treatment: 

1. Clumps of bacteria and viruses are broken up along with 
suspended particles to form an emulsion. 

2. When ozone 1s bubbled through the treatment chamber, 
ultrasonic waves keep the bubbles from coalescing and 
hence expose the maximum surface area to oxidation attack. 

These two steps combme to give an improved water quality 
after the treatment.61-63 

A pilot plant is in operation which processes 20 000 gal of 
sewage daily and in which 60 seconds of ultrasonic and 
ozone treatment has proved capable of destroying 100% of 
the fecal bacteria and viruses, 93% of the phosphates and 
72% of nitrogen compounds.64 A larger plant to treat 
600 000 gal of sewage per day is scheduled to start m 
Indiantown, Florida. The ultrasonic ozone treatment may 
well replace the conventronal chlorine treatment of waste 
waters. 

Chemical reactions 

Application of ultrasound to mass transfer hmited chemical 
reactions can enhance the overall reaction rate. This is 
particularly evident in gas-liquid reactions or heterogeneously 
catalysed reactions. For example, the use of acoustic energy 
in a continuous stirred tank reactor in which methyl- 
methacrylate was being polymerized resulted in a rapid 
increase in conversion and a smaller increase in degree of 
polymerization. 65 Another example of increased reaction 
rates due to facilitated interphase mass transfer is gas-liquid 
polymerizatron. Kokorev et al 66 described a gas-liquid 
reactor havmg an intense acoustic field for the continuous 
production of polycarbonates by interphase polyconden- 
sation of an aromatic dihydroxy compound with phosgene 
in the presence of CH2 Cl,. In the presence of ultrasound, 
the di-hodroxy compound solution formed a highly- 
drspersed emulsion with CH, Cl*. When phosgene was 
bubbled through the emulsion a 94% yield of polycarbonate 
was obtained in 25 seconds for the acoustically-formed 
emulsion. This compares with 3 600 seconds required for a 
stirred reactor working at 4 200 rpm. 

The exposure of cotton seed delmt to ultrasound of 1 MHz 
during hydrolysis in 36-41 % HCl resulted in a 1.2-2 fold 
increase m the hydrolyses rate.67 Application of ultrasound 
to heterogeneous catalytic systems can also result, m some 
cases, in greatly Increased reaction rates. Applicatron of 
ultrasound m the hydrogenation of olive oil with Raney 
nickel catalyst, for instance, resulted m a noticeable 
acceleration of the reaction rates but wrth reduced selec- 
trvrty.68 Thus, when 1 MHz ultrasound was applied at 
intensities of 0.6, 1.8, 2.4, and 3.0 W cmm2 the rodme num- 
ber of the hydrogenated sample after 3 hours was 77 wrth- 
out ultrasound, 70 at 0.6 W cme2, 56.4 at 1.8 W cm-a, 
34.2 at 2.4 W crnm2 and 50.0 at 3.0 W cme2. Other examples 
of the facilitation of heterogeneous reaction rates wrth 
acoustic energy are the sonochemrcal oxidation of phenol 
in acqueous solutron 69 and the manufacture of supported 
catalysts. 70,71 A review of the effect of ultrasonic waves 
on heterogeneous catalysts 1s given by Parypczak.72 
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Heat transfer 

Microstreaming and cavitation which lead to increased mass 
transfer rates, will also facilitate heat transfer processes. The 
effect of acoustrc energy on three different heat transfer 
mechanisms will be considered, viz: (a) acoustic drying of 
fine particles and cellular material, (b) crystalhzation and 
(c) borlmg heat transfer. 

Drying 

Acoustic drying 1s of great potential importance in the treat- 
ment of thermolabile materrals such as those in the food and 
drug industries. This method of drying increases the rate of 
moisture removal, decreases the final moisture content and 
has the advantage over high velocity gas drying that the 
material is not blown away or damaged. Soloff used a 
rotary drier with a sonic source of 169 dB at 10.9 kHz on a 
pilot plant scale to study the enhancement of drying rates 
of different substances.73 Table 2 summarizes hrs results. In 
addition to the considerable enhancement of drying rates, 
the heat sensitive substances (eg, ascorbic acid) were not 
degraded in any form. Farrbanks 74 reports a similar 
lo-40% increase in drying rate of 100 mesh coal in a 
rotary drier with sound of 150 dB at 12-20 kHz compared 
to the no sound case. Sugar crystals exposed to 
50-30 000 Hz sound at 130 dB are dried to a moisture 
content which is l/4-1/2 of that obtained in equivalent 
time for drying without acoustic assrstance.7s 

Crystallization 

In crystalhzatron operations the heat transfer rate drops 
because of incrustation on the coolmg ~011. Sonic vibrations 
can be effectively used to prevent scale formations on the 
heat transfer surface. Fedotken et al 76 reports that the 
installation of four ultrasonic generators of 2 1 kHz, 
1-5 kW at the bottom of a sugar Juice concentrator reduced 
sugar accumulation at the bottom by 80%. It has recently 
been demonstrated that application of 20 kHz ultrasonic 
vibration to a stainless steel coil (Fig.3) results in a marked 
improvement in preventing scale deposition and hence faster 
rate of crystallization. 77 A British patent describes the 
application of sonic vibration at 13 kHz to prevent the 
icing of the coolmg coil and claims a maximum heat flux of 
450 kcal ft2 h-’ was possible with sonic vibrations, whereas 

Fug.3 Crystalhzatlon of potassium nutrate from a 28% aqueous 
solution left - crystalhzatton has ceased because of crusting on the 
coil, right - crystalllzatlon is proceeding with Incrustation prevented 
by ultrasonlc vlbratlon of the stainless steel co11 
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Table 2. Summary of Soloff’s results using a rotary drier with a sonic source of 169 dB at 10.9 kHz on a pilot scale to study 

the enhancement of drying rates of different substances 73 

Des1 red Increase 
lnitlal final Retention Sonlcs No sonlcs In throughput 
moisture moisture time read feed rate feed rate due to sonlcs 

Material [%I WI [mlnl [lb h-’ I [lb h-’ 1 [%I 

Wood flour 5.5 1 53 3.0 90 37 143 2 

Orange crystals 3.5 1.8 15.0 38 8 375.0 

Grated cheese 16.8 5.9 16.2 35 25 40 0 

Powdered coal 19.2 2.0 5.0 110 48 129.2 

Antacid powder 15.1 6.0 15.0 27 15 80.0 

Gelatin beads 12.9 3.7 20.0 22 12 83.3 

Enzyme crystals 9.8 6.4 120.0 5 2 150.0 

Rubber crumb 44.0 6.0 90.0 7 4 75.0 

Carbon black 48.7 10 25.0 18 12 50.0 
pellets 

Polystyrene 0.5 0.1 30.0 14 6 1333 
powder 

Aluminium oxide 0 5 0.2 5.0 56 32 750 

Metallic of soap 27.0 0.4 60.0 10 4 150.0 

fatty acid 

Rice grains 27.6 14.5 11.0 40 18 1222 

in the absence of sonic 78 vibrations the maximum heat flux Table 3. Estimated sales volume of ultrasonic equipment 
possible was 90 kcal ftm2 h-l. (millions of US dollars) 

The application of ultrasound in the crystallization process 
IS a most effective method for the preparation of a fine 
crystallization product that IS homogeneous with respect to 
gram size.79-81 Crystal clevage resulting from cavitation 
and the suspension of fine particles due to the stlrring 
action of ultrasonic waves results m a uniform crystal growth 
rate and a product whose size distribution is uniform. 

Boiling heat transfer 

Ultrasonic cavitation resulting in bubble turbulence increases 
the heat transfer rates m nucleate boillng.82l 83 A possible 
apphcatlon IS m the operation of distillation columns. 

Miscellaneous applications 

Sonic and ultrasonic devices are also being used for treat- 
ment of fibre filaments,s4 in pulp refining and pigment 
dlsperslon,85 for air pollution control, control of lmpreg- 
nation of paper and boards,86 m preparation of emulsions, 
sizing dispersions and acceleration of dyeing m the textile 
mdustry,87 sterilization of heat sensitive materials like 
plastic syrmges,s8 in sonic distlllatlon,s9 hquid atomlzatlon 9o 
and aerosol coagulation.91 

Use 1968 1973 

Cleaning 180 30.0 

Instrumentation 15.0 30.0 

Medical 70 30.0 

Miscellaneous processes 7.0 22.0 

Assembly 50 20.0 

Electronics 5.0 10.0 

Consumer products 0.1 10.0 

Packaging 02 5.0 

Textiles 0.1 5.0 

Total 74 162 

2 

3 

Steinberg, E. B. Ultrasomcs m Industry, Proceedmgs of the 
IEEE 53 (1965) 1292 
Jacke, S. E. Ultrasomcs m mdustry today, Proceedmgs of the 
First InternatIonal Symposmm on High-Power Ultrasomcs, 
17-19 September 1970, IPC Science and Technology Press 
(1972) 141 

4 

5 

Conclusion 

The areas of industrial application of acoustic energy m new 
processes or to speed up existing ones are many and varied. 
Table 3 gives an estimated sales volume for ultrasonic equlp- 
ment.92 With the development of higher intensity units, 
contmuous flow units and focusing devices, ultrasound will 
continue to be used even more extensively. A large body of 
literature exists on promising results on the laboratory scale. 
Design and development work needs to be done to use these 
results to process the large turnover needed in the chemical 
processing industry 
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