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In the dynamic analysis of the deformation of bodies and structures it is often found that the duration of signifl- 
cant loads and high stresses is such that stress waves traverse the body and reflect from the surfaces many times in the 
period of interest for stress and deformation analysis. This circumstance can even apply in impact problems such as 
those arising in automobile collisions and hammer forging. In many problems, particularly when plastic flow occurs, 
numerical methods of solution must be utilized. The equations governing the dynamic deformation of a continuous 
medium are of wave type, but if dynamic elastic-plastic computer codes, such as those developed for ballistics pro- 
blems which analyse wave propagation, are used for problems of the type considered here, excessive computing effort 
and round-off errors can be expected. Finite difference schemes for the wave equation are examined to select a 
scheme which is stable for long time steps and which adequately encompasses both wave analysis and long time solu- 
tion, avoiding in the latter the complexity of the wave interactions. Economical computation is then achieved. This 
approach is applied to the study of dynamic deformation of a porous metal using the finite element method. 

1. Introduction 

The speed of propagation of stress waves in metals is so high (for example 15,000 ft/sec for 
waves of simple tension in steel) that in many dynamic loading and impact problems many wave 
reflections occur while significant deformation is continuing. This is the case, for example, for 
structural components of an automobile during a collision in which large impact forces may last 
for the order of 100 milliseconds, or for a billet being forged by a steam-hammer. The equations’ 
of motion for the analysis of such situations are of wave type, and if their form and the associat- 
ed boundary and initial conditions necessitate numerical integration, which is commonly the case 
if plastic flow occurs, then standard numerical procedures demand time steps less than the wave 
travel time across space elements (the Courant condition). Such time increments are so short com- 
pared with the time of interest that waves traverse the whole body many times and calculations for 
a huge number of time steps would be required. This implies excessively long and expensive com- 
puter runs in addition to the danger of building up unacceptable round-off errors. 

* This research was sponsored by the U.S. Department of Transportation under Contract DOT-OS-30091 with Stanford University. 
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In such cases, stress waves reflect back and forth through the structure, evening out the stress 
distribution, and individual waves are likely to play an insignificant role in determining the stress 
and strain distributioIls_ This suggests that it may not be necessary to analyze the wave motion in 
detail in order to evaluate the stress and strain distribution, and hence that much longer time steps 
can be used in the calculation with correspondingly reduced computing effort. In this paper we 
seek means of achieving this goal. 

As a vehicle for a feasibility study for the elucidation of such circumstances, we consider the 
one-dimensional wave equation for a linearly elastic rod in the expectation that suggestions for 
unite-difference schemes which avoid the restriction to small time steps will indicate approaches 
valid for elastic-plastic analysis in more dimensions. 

2. Finite difference methods for the simple wave equation 

Consider the simple wave equation 

%t -chl,,=o, (2.1) 

where subscripts t and x denote partial differentiation with respect to the time t and the position 
coordinate X, respectively. The coilstant c is the speed of wave propagation, which is given by c* = 
E/p in the case of elastic waves in a rod, where E is Young’s modulus and p the density. The depen- 
dent variable u could be displacement, stress, strain or velocity. 

We consider an approximate solution of (2.1) by finite differences, and hence define u only at 
the mesh points of a rectangular grid in the (x, t) plane. The dimensions of mesh elements are Ax 
and At, and we shall use the following notation for approximate values of the dependent variable 
at mesh nodes: 

ui” = u(jAx, nAt) , (2.2) 

wherej and M are integers. We shall consider finite difference representations of (2.1) about the 
point (j, n) in’terms of the values of u there and at the eight surrounding points as illustrated in 
fig. 1. Equation (2.1) can be represented by introducing 

L(U) = s’u;_+” + L$“=l) + pU1?+t + n(L$?_r + U/!+r) + cXU*F -t 

the difference operator 

1 
9 (2.3) 
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Fig. 1. Mesh points and coefficients in the finite difference operator. 
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where S,& . . . , -y are constant coefficients. Note that the coefficients have been chosen symmetri- 
cally about column j but not about row yt since the formulation is symmetric in x but unsymmetric 
in t (because the past is known and the future is to be determined~. 

The various values of the dependent variable in (2.3) are expressed in Taylor series about the 
point (j, n), and (2.3) then takes the form 

L(U) = (26 + 2e + 2~ + /3 + 7 + (II) ur”+ (26 - 2~ + /3 - y)At ut 

+ (6 + e f q) (Ax)~u,, + (6 + E + p/2 + r/2) (At)%+ 

+ (S - E) (Ax)2 At u,,~ + (26 - 2~ + /3 - 7) (AQ3 urrt/6 (2.4) 

+ (6 + E + n) (Ax)~ uXxXX f 12 + (6 + E) (Ax A t)2 u&2 

+(6+~+/3/2+~/2)(A~\)~u,,,,/12+..., 

where the derivative terms are to be evaluated at the point (j, tz). The condition that the first four 
terms reduce to (2.1) permits four of the coefficients to be determined in terms of the two remain- 
ing, 6 and e, but it turns out to be more convenient to replace 6 and e by the dimensionless param- 
eters 8 and u according to 

8 = (6 - E) (Ax/c)~ , f2.5) 

u = - e(Ax/c)2 , 

and (2.3) then takes the form 

(2.6) 

L(u) = 6,,U; - c2 [(u - 6)s,,UI!+1 + (1 - 20 + 8)6,,L$! + us,, 2$-l ] ) 

where 6,, and a,, are the second derivative finite difference operators defined by 

(2.7) 

a,, ui” = (up 1 - 2~; + u;,)/(Ax)2 , 

w3) 

(2.9) 

“ttu; = ,uy - 25” + ~;-l)/(At)~ . 

Equation (2.4) then becomes 

L(U) = utt - c~u,, + c20uXXtAt - u,,,,(cAx)2/12 

t (O- 2~)u,,(cAt)~/2 + ~~~~~(Af)~/12 + . . . . 

Thus, if 8 # 0, the finite difference representation (2.7) expresses (2.1) as long as terms of order 
At are neglected, but if B = 0, (2.7) is accurate to order (At)2. For B = 0, (2.7) reduces to the form 

L(u) = 6,, ui” - CQXX [uu;+l + (1 - 20)Ul” + .uJ?-l ] ) (2.10) 

We use the Von Neumann method to analyse the stability of the numerical procedure 11 I by 
considering solutions of (2.10) of the form 

un = eikfiAx)(y 
J , (2.11) 

where i2 = - 1, and k and $ are parameters, k being an arbitrary real number. The range of k im- 
plies a range of wavelengths 2r/k so that (2.11) includes a broad spectrum of solutions. A necessary 
condition for stability is that I g I < 1 for all k, for then the solution (2.11) remains bounded as y1 
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increases whatever the wave length. Substitution of (2.11) into (2.10) yields, after some algebraic 
manipulation 

(1+ao>+ [2{1+~~)-~~~~(1+~~)=0, (2.12) 

where 

a = 2(cAt/Ax)2 [ 1 - cos (k Ax)] > 0 , (2.13) 

For stability we require that each of the two roots t1 and E2 of the quadratic equation (2.12) 
satisfies I &Y I G 1, but since (2.12) requires that g1 E2 = 1, stability requires that the roots be com- 
plex conjugates (or equal). This condition with a positive reduces to 

4-a(l-4a)>O. (2.14) 

By (2.13) this is automatically satisfied for o > l/4 with no limitation on cAtfAx. For G < l/4, 
(2.14) reduces to a < 4/( 1 - 4o), but from (2.13) 

0 < a < 4(c Ah/Ax)2 . 

Thus if 

(cArlAx) G l/( 1 - 40) , (2.15) 

(2.14), and hence the condition for stability, is satisfied. 
In order to examine possible simplification in programming, we study finite difference operators 

involving function values at five node points, One possibility, illustrated in fig. 2(a), is to choose 
6 = E = 0 so that 0 and u are zero. The finite difference operator (2.7) then takes the form 

L(u) = 6,,uy - c2tixx 24; ) (2.16) 

and the necessary condition for stability (2.15) becomes 

cAtlAx< 1, (2.17) 

which is the Courant condition. Since only one function value at the forward time (n + 1)At occurs 
in (2.16), namely u”+f, the operator is explicit for this function value. 

Another possibil&y, illustrated in fig. 2(b), is obtained by setting n = e = 0, which leads to 8 = 
- 1 and u = 0 and gives the operator 

L(u) = 6,,lq - c2s,,u~+l , 

x x 

Fig. 2. Five point meshes: (a) explicit operator, (b) implicit operator, for ujH1. 

(2.18) 
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For the forward integration in time, this is implicit for the determination of LL]?:, u]!‘+’ and u,!$’ . 
Substitution of the test solutions (2.11) to find a necessary condition for stability yields the qua- 
dratic equation for t: 

(l+a)+2t+1=0, (2.19) 

where a is defined in (2.13). For a > 0 the roots are complex conjugates, so that 

I& 12 = l&P = gr.$2 = l/(l+a) G 1 > (2.20) 

Thus the finite difference operator (2.18) is unconditionally stable as regards the magnitude of 
cat/Ax. We shall examine the significance of this stability condition in the following section. 

3. Analytical solution of the finite difference representation 

In order to assess the effect of the time step magnitude At on the solution of the finte-difference 
operator relation (2.18) equated to zero (so that it represents the wave equation (2. l)), we solve 
a specific problem analytically. We consider a uniform elastic rod of length 1, the longitudinal dis- 
placement of which is U(X, t), where 0 < x < 1. The rod is initially undeformed and at rest, so that 

U(X, 0) = 0 ) u,(x,O) = 0. (3.1) 

At time t = 0 the left-hand end is set in motion with constant velocity Ve while the right-hand end 
is held at rest: 

u(O,t)=Vgt, u (I, t) = 0 ) t>O, 

We select the finite difference space mesh such that 

Ax = l/J, 

the mesh points being labeled as indicated in fig. 3. 

(3.2) 

(3.3) 

The finite difference representation of the wave equation based on (2.18>, written in full, takes 
the form 

U;;;-(2+x)U;+r+$+; =x(-2U;+U;-l), 

where 

X = (Ax/c At)i. . 

(3.4) 

(3.5) 

” 

t=nAt 
--__-________ 

Fig. 3. Finite difference mesh for the specific problem satisfying conditions (3.1)-(3.2). 
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It is assumed that the solution is known up to time t = n A t, and that the values of u at time t = 

(n + l)A t are unknown. 
In our assessment of the effect of time-step size, we need to solve (3.4) for only one time step, 

to the time t = At. The initial conditions (3.1) will be expressed inthe form 

u; = 0 ) 

-1 =o 
“i (3.6) 

where the time derivative in (3.1) has been expressed in finite difference form by introducing fic- 
titious displacements u .- ’ at time t = -At. To maintain consistent accuracy, the point midway be- 

tween t = -At and t = b should actually be regarded as the initial instant, but, for simplicity of pre- 
sentation, this shift in the time axis will not be made. Substitution of (3.6) into (3.4) yields the 
homogeneous difference equation 

$1 -(2+x)u’+Ll;_l Z(3) f i 
(3.7) 

By direct substitution, this has solutions of the form 

ui = e?mi 

where M satisfies 

(3.8) 

em - (2+ h) + e-m = 0 > (3.9) 

which can be written 

cash m = 1 + h/2 . 

By the linearity of (3.7) the solutions (3.8) can be combined to give 

(3.10) 

Ui = Alcosh (jm) + B sinh ( ~WZ) , (3.11) 

where A and B are arbitrary constants, which can be chosen to satisfy the boundary conditions 

(3.2) 

sinh[(J-j)ml 

‘i= ‘eat [sinh(Jm)] (3.12) 

The exact solution of the wave equation (2.1) with initial conditions (3. I) and boundary condi- 
tions (3.2) can be determined in many ways, for example by use of the Laplace transform, giving 

VO 

(3.13) 
+ [cat- (2Z+ x)]H[cAt -(21+x)] - . ..} , 

where H is the Heaviside step function. For the space mesh given by J = 20, fig. 4 shows plots of 
the variation of the displacement u(x, At) along the rod at various times At computed from the 
finite difference approximation (3.12) and the exact solution (3.13). It is seen that (3.12) provides 
a useful approximation both for At < l/c when the wave front caused by the suddenly imposed 
velocity V. has not yet traversed the rod, and for At 9 Z/c when many wave reflections have oc- 
curred. For At % l/c and hence At Z+ Ax/c, (3.5) implies that X @ 1. Thus taking the first two 
terms of the expansion for cash WI in (3.10) gives 
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u (x,At) u(x,At, 

Fig. 4. Displacement profiles for the exact solution (3.13) and finite difference approximation (3.12) for various At. 

m2 = h = (Ax/cat)2 , 

and hence 

m = AxJcAt <<< 1, Jm<< 1. 

(3.14) 

(3.15) 

Equation (3.12) then yields 

ui = F/oAt(l -j/J.> = V,,At(l -x/l). (3.16) 

This corresponds to uniform compression of the rod with no wave influences causing a variation 
of strain. Thus the unconditionally stable finite difference scheme (2.18) corresponding to the 
mesh in fig. 2b yields the uniform static solution if time steps are used that are long oompared 
with wave travel time along the rod. It is to be noted that with constant applied boundary velocity 
no over-all acceleration and hence no averaged inertia forces are introduced. 

The strain and hence the stress can be evaluated from-the displacement profile (3.12) by diffe- 
rentiation, giving 

o(jAx, At) = E gx = -EV,At 
cash [(J-j)m] m 

sinh (Jm) G’ 
(3.17) 

Introducing the long time-step approximation (3.15) with m small, and noting that JAx = I, one 
obtains 

o(jAx,At) _” -E&At/l, (3.18) 

the stress associated with uniform compression. For comparison with the exact value, we consider 
the stress at the end x = 0 where the velocity is applied 

~(0, At) = -PcV, [H(O) + 2H(cAt - 21) + 2H(cAt - 41) + . ..I , (3.19) 

where p is the density. The stress, according to (3.19), increases in steps as shown in fig. 5, the 
broken line corresponding to the finite-difference approximation (3.18). The average gradient of 
the step solution is 

PC VfJ 
--= -EV&, 

IIC 
(3.20) 
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since pc2 = E. This agrees with the approximate relation (3.18). Thus again we see, as illustrated in 
fig. 5, that the relative error associated with the long time-step solution is small for time-steps long 
compared with the wave travel time along the rod. 

While the example examined above does illustrate that the long time-step finite-difference solu- 
tion does provide a satisfactory approximation to the exact solution for time steps that are long 
compared with wave traverse time for the rod, the solution does not involve steady inertia forces, 
and the long time approximation is a static problem. To see the effect of inertia forces, we can 
consider a closely related problem in which a compressive stress (TV is applied at x = 0, t = 0 and 
maintained, with the end x = 1 free. These are equivalent to the boundary conditions for velocity 
in the previous example and, since the stress satisfies the wave equation (2. l), the solution can be 
immediately written down on the basis of the form of (3.12) 

o(jAx,At) = -a0 
sinh[(J-j)ml 

sinh(Jm) ’ 
(3.21) 

Again, for At < l/c, (3.2 1) gives an approximation to the wave generated by the instantaneously 
applied stress, and for At 9 i/c if the approximation (3.15) is used, (3.2 1) reduces to 

a(]Ax,At) = --uo(l -i/J> = -uo(l -x/Z). (3.22) 

This represents the stress distribution required to balance the inertia forces associated with the 
acceleration of the rod under the applied longitudinal force. 

The exact solution of the wave equation in this case is illustrated in fig. 6. We see that the elastic 
waves persist and that (3.22) provides only the average stress at each section. Thus the finite diffe- 

rence operator (2.18) has introduced damping of the stress variation, but has maintained the cor- 
rect long time average stress required to balance the inertia forces. The damping property of this 
operator has already been pointed out by Zajac [ 21. We claim that such behavior is in general what 
is wanted in the type of problems we have discussed in section 1, for we are concerned with pro- 
blems of plastic flow in which dissipation is present to damp out wave fronts. Moreover, the sharp 
variation of stress shown in fig. 6 arises because of the instantaneous application of the stress -uo, 
and for more gradual load applications that are common in problems of “slowly” imposed impacts 
(slow compared with the wave travel time across a component of the structure as described in sec- 
tion 1) such dominant stress discontinuities will never be generated, and the finite-difference long 
time-step solution will provide a close approximation to the exact solution of the wave equation. 

Fig. 5. Stress variation at the end of the rod x = 0. Fig. 6. Stress distribution for applied stress problem. 



4. A heuristic approach 

The discussion of the significance of the long time-step analysis for the unconditionally stable 
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finite-difference operator (2.18) given in the last two sections was motivated by a simple idea for 
avoiding the need to analyze wave front behavior in detail. This was first to solve the problem 
quasi-statically, i.e. by assuming the density to be zero, then to consider the inertia forces associa- 

ted with this motion to be prescribed body forces, and to re-evaluate the displacement field for 
the modified problem. Would iteration of this approach give the required smoothed long time so- 
lution without detailed inclusion of wave front propagation? On the face of it, convergence should 
bring us back to an exact solution of the wave equation and hence detailed representation of 
wave fronts. However, the sequence of quasi-static problems solved will tend to yield smooth distri- 

butions. The explanation of this seeming paradox is that solution of the first quasi-static problem 

does not permit the satisfaction of initial conditions; they are simply generated by the solution, 
and simple examples show that the deduced initial conditions are selected by the procedure so that 
the exact wave solution does not contain sharp wave fronts. Thus for the first example discussed in 

the previous section (compression of a rod with prescribed velocity V, at x = 0 and the end x = 1 

being held at rest) the initial quasi-static solution gives the velocity distribution 

u(x, 0) = v, (1 -x)/l . (4.1) 

This distribution maintained for all time satisfies the wave equation (2.1) and no wave propagation 
phenomena are exhibited. In spite of the restriction of not being able to prescribe initial conditions, 
this approach could still be useful for problems dn which the potential and kinetic energy associated 
with the initial conditions are minor compared with that to be generated subsequently by bounda- 
ry forces. The problem under discussion is of this type since the power of the end force required 
to maintain the velocity V, increases with time as the stress increases (fig. 5). However, the finite 
difference approach based on (2.18) permits arbitrary initial conditions to be prescribed, although, 
as mentioned already and stressed in [ 21, the damping property of the operator tends to attenuate 
their effect. 

A simple finite difference procedure for calculation of the inertia forces which are to be included 
as body forces in a quasi-static problem is to obtain the acceleration by a finite difference expres- 
sion involving u]!’ , u ? - ’ and u ? - 2 and to introduce the corresponding inertia forces in the equa- 
tion at time t = (n +‘l)At. Foithe wave equation (2.1) this leads to the operator equation 

L(u) = (Ui” - 22$-l + 25!-2) cQ$l - 22$+1+ $3 

(A02 (Ax)2 =’ ’ 
(4.2) 

Substitution of (2.11) to check for stability leads to a cubic equation for t the roots of which 
imply instability for some values of k whatever restrictions are placed on cAtlAx. This circumg 
stance can be alleviated by considering the whole system of equations for j = 1 to J - 1 with boun- 
dary conditions for j = 0 and J; the stability of the resulting matrix operator can be analyzed in terms 
of its spectral radius. For the case of fixed boundaries, stability was obtained for cAt > 2Z/7r. 

However, direct stability of the operator (2.18), which employs two rather than three backward 
time points, suggests that the approach developed in the previous sections is preferable. 
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5. Application to elastic-plastic deformation in two dimensions 

It was mentioned at the end of section 1 that finite difference operators for the wave equation 
(2.1) were to be studied in order to indicate a promising approach for elastic-plastic problems in 
more than one dimension. We analyzed the problem of the dynamic deformation of a porous me- 
dium containing parallel circular cylindrical cavities [ 31. The extrapolation of the operator (2. IS) 

to this situation comprised application of the finite element method for the space variables, with 
a backward operator in time for the acceleration. This leads to an implicit analysis for yT+l with 
inertia forces expressed in terms of $- 1 , q? and qy+l. Here 

(5.1) 

where the qj are deformation variables prescribed by the finite element grid. Such a formulation is 
effectively the Houbolt approach [4] to the dynamics of structures. The discussion in this paper 
indicates that it is reasonable to expect that for a continuous body this approach would yield wave 
solutions for small time steps, but would determine the longtime behavior with acceptable accuracy 
if time-steps large compared with wave transit time are adopted. 

A method of studying the response of the porous medium is developed in [3], and from the 
standpoint of the present discussion reduces to solving the problem illustrated in fig. 7 of the mo- 
tion in two dimensions of a square cell with a cylindrical cavity subjected to boundary velocities 
which prescribe, on the average over the cell, one-dimensional compression at constant rate in the 
x1 direction with no lateral strain, again on the average over the cell. Motion involving finite strains 

is considered with plastic flow and collapse of the cavity. As plastic flow develops, reducing the 
area of the cavity and its perimeter (elastic-plastic theory with incompressibility of plastic flow is 
considered), for constant boundary velocity, the surface speed of collapse of the cavity must in- 

crease since effectively area must be swept out by the perimeter at the same rate as the boundaries, 
and the perimeter is decreasing monotonically in length. The material acceleration will be greater, 

Fig. 7. Typical cell of porous media model. 
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Fig. 8. Finite element network. 

at approximately the same collapse state, for larger values of the constant velocity V, , and this 
can introduce an apparent strain-rate effect for the porous medium, due to inertia forces, even if 
the stress-strain law for the metal itself is rate-independent. Thus to evaluate this effect, it is neces- 
sary to carry out a dynamic analysis. 

Fig. 9. Deformed finite element network. 
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Applied strain 

Fig. 10. Dependence of stress vs. strain on applied strain rate. Vo = rate of applied strain (seC’). Radius of pore = 0.555 

For application in vehicle structures, porous media have cell sizes of the order 10-l to 10 -3 in, 
and loading times of interest will be long compared with wave transit time across the cell. Thus 
wave interaction solutions will not be appropriate, and problems of the type discussed in this paper 
arise. It can also be the case that for such small cells the inertia forces are insignificant, in which 
case quasi-static analysis is adequate. In order to evaluate the effective strain rate intlucnce due to 
the inertia of the micro-motion of the collapse of pores described above, a finite element, dynamic 
elastic-plastic code was developed [3] according to the principles developed in this paper. Fig. 8 
shows an undeformed finite element grid and fig. 9 the new geometry after partial collapse of a 
cavity in a porous aluminum. Fig. 10 shows the overall stress-strain relations for different straining 
velocities V,. The compressive stress is averaged over the width of the cell so that these stress-strain 
relations correspond to one-dimensional strain of the bulk porous medium. Formally the cell di- 
mension is 2 in, and I’, is given in units of in/set. However, dimensional analysis [ 3 1 permits these 
results to be interpreted for any cell size. Fig. 10 indicates that there is a negligible influence of 
micro-inertia of collapse of the pores until V, exceeds 10, when an appreciable effective strain-rate 
influence occurs. 

Smooth numerical operation of the program indicates that the finite element scheme, effectively 

implicit in the space variables and backward in time, was stable for long time-steps compared with 

wave transit time, and does express inertia influences in this regime. 

6. Discussion and conclusions 

The need to avoid the detailed analysis of wave interactions in the study of the deformation of 
continuous media over times long compared with wave transit time has often been faced in the li- 
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terature of dynamic stress analysis. Because of the difficulty of more general analysis, much of 
this work has been concerned with problems involving only one space dimension. For the stkldy 
of the deformation of rods in tension or compression, a common way of avoiding the detail of 
elastic wave propagation is to use rigid-plastic theory. References [ 51 and [61 comprise analyses 
concerned with the interpretation of high speed testing carried out through impact on rods. Rigid- 
plastic analysis gives the structure of the more slowly propagating plastic waves without the detail 
of the interaction with elastic waves. By comparison between a rigid-plastic and an elastic-plastic 
solution, [51 demonstrates the adequacy of this approach, and [6] discusses the limit when the in- 
fluence of even the slowly moving plastic waves is smoothed out for sufficiently long deformation 
times. 

The change to two or more dimensions introduces new difficulties since rigid-plastic analysis is 
extremely difficult to carry out. This arises since stresses cannot be determined in the rigid re- 
gions because, for example, in two dimensions, the three stress components ull, u12 and u22 are 
only required to satisfy two equations of motion, and commonly deformability and the compati- 
bility equation are needed to provide a unique solution. Not being able to obtain the stresses in 
the rigid region prevents the determination of the elastic-plastic boundary and hence of the solu- 
tion in the plastic region. Thus one must stay with elastic-plastic theory, and the approach deve- 
loped in this paper avoids the problem of elastic wave interactions without making the plastic- 
rigid assumption. A dynamic metal-forming problem solved on the basis of elastic-plastic theory 
without the present approach [ 71, [ 81 yielded detailed wave structure which had little influence 
on the final plastic deformation, and the extensive computational effort required may have dictated 
the choice of an overly coarse finite element mesh. 

For simple tensile or compressive waves in the plastic region the characteristics are determined 
by the slowly moving plastic waves, so that in plastic regions the complexity of high speed elastic 
waves does not arise. However, for waves of combined stress, characteristics can propagate with 
elastic-wave speeds [ 91, and an approach of the type discussed in this paper is needed, as also in 
the two space dimension problem. Of course, very short time response is likely to be dominated 
by fast wave interactions, but then only limited propagation of elastic waves can occur, and a stan- 
dard wave analysis is appropriate ~ for example that developed by Wilkins [ lo] and utilized in bal- 
listics problems. The approach presented here achieves the long time approximation by mathema- 
tical means, and hence encompasses both elastic and plastic wave effects in a unified manner so 
that for larger times when even plastic wave reflections are numerous, the computational advan- 
tage of the resulting smoothing effect can be gained. 
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