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1. INTRODUCTION 

Let V be an open bounded set on a Hilbert Fredholm Riemannian 
manifold M, and let f be a real valued function defined on the closure V 
of V. Let cat v denote the Lusternik-Schnirelman category of B (with 
respect to itself) and let r denote the number of stationary point off in V. 
In an earlier paper [8] it was shown (among other things) that the Lusternik- 
Schnirelman inequality 

cat B < r (1.1) 

holds under assumptions specified in Theorem 4.1 of that paper. The 
proof was based on results of F. Browder in [l]. It was pointed out in the 
introduction to [8] that under additional assumptions a more constructive 
proof for (1.1) could be given in which r closed sets of category 1 covering V 
are exhibited. It is the purpose of the present paper to carry out such a proof 
based on a generalization of a method used by Seifert and Threlfall [9, p. 911 
in the case of a finite dimensional manifold without boundary. (For notations 
and concepts not explained in the present paper the reader is referred to [S]). 

Since (1.1) is trivial if Y = cc we assume that I is finite. Moreover the 
assumptions of Theorem 4.1 of [8] are supposed to be satisfied. In the present 
paper we make the following additional assumption: if xi , x2 ,..., X, are the 
stationary points off then X, is nondegenerate of some (finite) order p, > 2, 
i.e., all differentials off of order p, - 1 vanish at X, while the differential 
of order p, is a nondegenerate homogeneous form of order p, in the 
“increments.” (The exact definition of this kind of nondegeneracy is recalled 
in Section 3.) 

The proof of (1.1) . b is ase on the notion of a “cylindrical neighborhood” d 
of a critical point introduced by Seifert and Threlfall in the finite dimensional 
case in [9; Section 91. In Section 2 the definition for the Hilbert space case 
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(as given in [7, Section 5j) will be recalled and generalised for the case of a 
Hilbert manifold. 

The proof of (1.1) then consists in the following three steps: 

I. It is shown that the cylindrical neighborhood c, of the stationary 
point X, (if small enough) is contractible to X, (Section 3). Thus c, is of 
category 1. 

II. By the use of segments of “gradient lines”: (see (2.1)) each c, is 
extended to a certain set y,, (Section 4). r,,’ can be deformed into c, . Thus, 
by I, yr, and its closure jjp are of category 1 (Lemma 4.1). 

III. The y,, cover r (Lemma 4.2). 

It is clear from the definition of the category that II and III together 
imply (1.1). 

2. DEFINITION AND BASIC PROPERTIES OF CYLINDRICAL 

NEIGHBORHOODS OF A STATIONARY POINT 

Before treating the case of a Hilbert manifold we recall the relevant facts 
for the case of a Hilbert space E referring to [7, Section 51 for details and 
proofs. 

Let then h(u) be a real valued function whose domain lies in E. Without 
restriction of generality we assume the isolated stationary point of h considered 
to be the zero point 0 of E. Let R be such a positive number that 8 is the only 
stationary point in the ball B(B, 2R) of center 13 and radius 2R and that h is 
bounded in that ball. Let us be a point of B(B, 2R) - {e}. Throughout this 
paper the “gradient line through u,,” is meant to be the solution ~(7, ~a) of 
the problem 

where the parameter T is normalised by 

~0 = Wo), (2.2) 

and where y = grad h. (This terminology differs from the one used in [8]. 
See [8, Theorem 2.21.) Then 

T = h(+, uo)), (2.3) 

for all 7 for which the gradient line is defined. 

DEFINITION 2.1. Let 

ho = h(0). (2.4) 
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Then the gradient line ~(7, uO) is said to end at 0 if lim ~(7, u,,) = 0 as T 4 ho+, 
and it is said to start from 6 if lim ~(7, u,,) = 0 as T t A,-. If E is a positive 
number then C+(E) is the set of those u0 for which the gradient line through 1~,-, 
ends at B and for which E > h(u,) - h, > 0, and C-(E) is the set of those q, 
for which the gradient line through zq, starts from 0 and for which 
E > h, - h(u,) > 0. 

DEFINITION 2.2. Let E and R, be positive numbers with R, < R. Then 
the sets Z(RI) and Z(R, , e) are defined as follows: Z(R,) = (u 1 h(u) = h, 
and /I u /j < R,} while Z(R, , E) is the set of those u which lie on gradient lines 
through points of Z(R,) and for which /zO - E < /z(u) < h, + E. 

It is not hard to see that Z(R& and therefore Z(R, , E), is empty if and 
only if h(e) is a relative maximum or minimum. 

DEFINITION 2.3. The cylindrical (R, , E) neighborhood of the isolated 
stationary point 8 of h is the union of the sets C+(E), C-(E), Z(R, , c) and (Q. 

LEMMA 2.1. To a positive R, < R corresponds a positive E,, such that 
C(R, , c) C B(B, R) for 0 < E < q, . For such RI , E the set C(li, , c) is open 
(See [7, Lemmas 5.1 and 5.41). 

LEMMA 2.2. The boundary C(R, , l ) of C(R, , l ) is the union of the following 
three sets 

A: the set of those points uO on {h = h, + c} for which the segment 
h, < 7 < h, + E of the gradient line through u,, belongs to C(R, , e) 

pz: the set of those points u,, on {h = h, - e} for which the segment 
h, - E < 7 < h, of the gradient line through u,, belongs to C(R, , c) 

A: the points on the segment h, - E < r < h, + E of the gradient lines 
through points of the intersection (h = h,} n /I u jl = RI}. 

This lemma seems rather obvious. The proof however-at least the one 
this author is able to present-is complicated. It is given in the appendix. 

We now turn to the definition of a cylindrical neighborhood of an isolated 
stationary point x,, E v off where v and f are as in the introduction. We 
recall that we assume the assumptions of [8, Theorem 4.11 to be satisfied. 
Let then (4, U) be a chart at x,, with the Hilbert space E as target space. 
We assume that 

and set for u E+(U) 

%%) = e (2.5) 

h(u) = f WW. (2.6) 
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Since by [S, Assumption 2.41 the boundary P of I’ contains no stationary 
points off we may and will assume that UC V. In addition we assume that 
x0 is the only stationary point in U. By [8, Eq. (2.19)] (with u,, = 0) it then 
follows from (2.5) that 8 is an isolated stationary point of h. Therefore there 
exists a positive R such that not only B(B,2R) C #( U) but that also 0 is the 
only stationary point of h in B(B, 2R). Moreover, we require that h is bounded 
and satisfies a Lipschitz condition in that ball (see [8, Assumption 2.21). 
Let now R, be a positive number less than R. Then by Lemma 2.1 there 
exists a cylindrical neighborhood C(R, , c) of 0 (for h) which is contained in 
BP, R). 

DEFINITION 2.4. If C(R, , l ) is defined as above then the set 

44 , c) = P(C(R, > 4, (2.7) 

is called a cylindrical (R, , c) neighborhood of the stationary point x,, off, 
and every cylindrical neighborhood of x,, is obtained in the manner described. 

Remark. The boundary of c(R, , c) is obtained from lemma 2.2 by 
application of 4-l. 

3. THE CONTRACTIBILITY OF A CYLINDRICAL NEIGHBORHOOD 

We first recall the following definition of nondegeneracy of order p 
[7, Definitions 4.1 and 4.21. (cf. the related definition of “property Q(Y) in 
[3, p. 2001. 

DEFINITION 3.1. Let h be a real valued function defined in some neigh- 
borhood of the zero point 0 of the Hilbert space E and suppose that 
h C 0+1(e), i.e., that h possesses continuous (Frechet-) differentials up to 
and including order p + 1 at every point of some neighborhood of 8, where 
p is an integer > 2. Then 0 is called a stationary nondegenerate point of 
order p of h if 

dh(8; 7#?) = ... = d”-lh(8; 7) = 0 (3.1) 

while dph(O; 7) (as homogeneous form of degree p) is nondegenerate, i.e., 
if the norm of the gradient of this function of 17 divided by Ij 7 lip-1 is bounded 
away from zero. 

LEMMA 3. I. Let v = 4(u) be a (p + l)-diffeomorphism of a ntighborhood 



LUSTERNIK-SCHNIRELMAN CATEGORY INEQUALITY 247 

of 8 E E into E with $(O) = 0, and let h,(v) = h($-l(v)). It is asserted: (i) ;f 0 
is a stationary point of h for which (3.1) is true then 

@j&P; 71) = We; rl), (3.2) 
where 

71 = 4v; 7); (3.3) 

(ii) if 6’ is a nondegenerate stationary point of order p for h then 6’ has 
the same property for h, . 

Proof. (i) Inspection of the chain rule for differentials of higher order 
shows that (3.1) implies (3.2). (A statement of this chain rule may be found 
in [5; p. 1641). 

(ii) follows from (i) together with the fact that the right member of (3.3) 
is not singular. 

In what follows we use the definitions assumptions and notations of the 
preceding two sections. Lemma 3.1 allows us to state the following 

DEFINITION 3.2. Let x,, E V be a stationary point off, let (4, U) be a 
chart at x0 , with 4(x,,) = 8, and let h(u) = f(+‘(u). Then x,, is called a 
nondegenerate stationary point of order p off if 0 is a nondegenerate stationary 
point of order p of h. 

The object of the present section is to prove Theorem 3.1. 

THEOREM 3.1. A cylindrical (R, , l ) ne-zghborhood c(R, , c) of a non- 
degenerate stationary point x0 of order p off is contractible to x,, if R, is small 
enough. 

It follows from (2.7) that it will be sufficient to show that C(R, , c) is, 
for R, small enough, contractible to 0, and for the proof of this latter fact it 
will obviously be sufficient to establish the following two theorems 

THEOREM 3.2. C(R,, ) E can be deformed into Z(R,) u (6). 

THEOREM 3.3. Z(R,) u {f?} is contractible to 0. 

Proof of Theorem 3.2. Let 0 < (II < 1 and let u0 E C(R, , e). Let ~(7, uO) 
be the gradient line through u,, (cf. (2.1)-(2.3)). We set 

uo 9 for u. E Z(R,) u (e>, O<ol<l 

Go 7 4 = 
U(To(l - a), uo), for u. E Z(R, , E), 0 < a < 1 
U(To(l - g, uo), for u. E C+(E) U C-(c), 0 < a < 1 

(3*4) 

6 for u. E C+(E) U C-(E), a = 1. 
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Then a(~,, 0) = u0 , and a(~,,, 1) E Z(R,) u {e}, and Theorem 3.2 will be 
proved once the joint continuity of 6 in its two arguments is established. 
This was done by Seifert and Threlfall in the case of a finite dimensional 
space E. ([9, p. 961). Their proof however uses the local compactness of such 
a space. A continuity proof valid in case E is a Hilbert space is given in the 
appendix. 

Proof of Theorem 3.3. In order to construct a deformation 6(u, , a) for 
which 

eo ! 0) = u. , quo , 1) = 0, %J E Z(h) u 4 (3.5) 

we employ the solution u = u(t, uo) of the problem 

du -Z-X 
dt 

~(4 <u, Y(U)> - u II Y(YN” , 
II r(u)ll” 

u,, E Z(RJ, y = grad h. (3.6) 

(For the purpose of critical point theory this differential equation was 
used by A. B. Brown [2] in the finite dimensional case. For the Hilbert space 
case see [6; p. 4491). 

We will need some properties of u(t, uo). 

LEMMA 3.2. h is constant along the trajectories of (3.6) 

Proof. Direct computation shows that 

d&(t, uo) = du 
dt ( > 

x-&- =o 

(cf. [6; p. 4491). 

LEMMA 3.3. For RI small enough 11 u(t, uo)[l is monotone decreasing in t. 
Moreover 

11 u. II2 e-2t < 11 u(t)//” < II u. II2 ct, for 0 < t -=C a. (3.7) 

Proof. Scalar multiplication of (3.6) by 2u shows that 

d II u II2 -=2(.,~)=-211~l12]1-(~9f& (3.8) dt 

(cf. [6; (4.36)]). To estimate the right member of (3.8) we will show that 

I( Y(U) - - 
II ,” 1, ’ II ml >I 

u = u(t, 4 uo E Z(&), t 2 0, (3-9) 
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Since 6’ is a nondegenerate critical point of h of some order p >, 2 the 
differentials of h of order k<p - 1 vanish at 8. Thus Taylor’s theorem 
shows that 

h(u) - h(u,) = ; dPh(B; u) $- R,l, (3.10) 

where 

R,I = $ j-‘d”+lh(tu; u) (1 - t)” dt. 
* 0 

(3.11) 

But y = grad h and its differentials of order < p - 2 also vanish at 8 (see 
[7; (4.13)]). Therefore 

Y(U) = (p 2 l)! ~ d”-%(& u) + R;-, , 

where 

R;-, = ~ 
(p .! l)! s : 

dpy(tu; u) (1 - t)“-’ dt. (3.13) 

We also recall ([7; (4.191) that 

dp-4/(8; u) = p-l grad, dph(& U) (3.14) 

where the subscript 2 indicates that the gradient operation refers to the 
second argument of dph. 

Multiplying (3.12) scalar by u and using (3.14) we obtain 

(% YW = $q <u, grad, dph(e; u)> + <u, Rf,-,). (3.15) 

Now dph(8; U) is homogeneous of degree p in u. Therefore using Euler’s 
theorem on homogeneous functions we conclude from (3.15) that 

(UP Y(4) = $q d%(e; u) + (II, R;,). 

Here and in (3.10) we set u = u(t, uo) with u. E Z(Rl). Then by Lemma 3.2 
the left member of (3.10) q 1 e ua s zero. Thus we see from (3.16) and (3.10) 
that 

<us Y(U)) = -P% + (u, R2,-,), u = u(t, uo), u. E Z(R), t > 0. 
(3.17) 
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Now using Schwarz’ inequality we see from (3.8) that )I u /I = 11 u(t, us)11 
is not increasing in t, and therefore 

II ZJ II = II 4~ uo)ll d II uo II G 4 , t > 0. (3.18) 

But (3.17) and (3.18) together with the definitions (3.8) and (3.10) of R,l 
and REP, and together with the continuity of the differentials involved 
implies (for small enough R,) the existence of a constant C, such that 

<(u, Y(4) < c II u Ilp+l* (3.19) 

Now by [7, Lemma 4.31 the nondegeneracy of order p of the critical point 8 
implies for small enough I/ u 11 the existence of a constant k such that 
11 r(u)11 > k/I u lip--l. Combining this inequality with (3.19) we see that the 
left member of (3.9) is majorized by /I u II C/K. Because of (3.18) this proves 
(3.9) for small enough R, . 

The first assertion of Lemma 3.3 is now an immediate consequence of 
(3.8) and (3.9). Another immediate consequence of (3.8) and (3.9) are the 
inequalities 

w + 11 u (12 < 0 < q + 2 11 u 112, 

from which (3.7) follows routinely. 
With u(t, uo) defined as above (see (3.6)) we set 

1 
u --l,uo 

( 
l - a 

1 
) foru,E Z(R,), 0 <a < 1 

quo, a) = e 
for uoe Z(R,), (Y = 1 

(3.20) 

e: for u. = 0, O<ol<l. 

(3.5) (cf. Lemma 3.2) is obviously satisfied. Moreover 6(u,, a) E Z(R,) U 0 

if u0 E Z(Rl) u 0. We also note that on account of (3.7) 

l&y quo , a) = quo , l), for u,, E Z(R,). 

The proof that 6 is jointly continuous in u. and ar is given in the appendix. 

4. THE EXTENSIONAL OF THE CYLINDRICAL NEIGHBORHOOD cp 

Let x1 , x2 ,..., x, be the stationary points off in V. By Assumption 2.4 
of [8] there are no stationary points on the boundary v of V. Let c(R, , E, x,) 
be an (R, , <)-cylindrical neighborhood of X, with R, and E chosen, inde- 
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pendent of p, in such a way that the closure of c(R, , E, x0) are disjoint from 
each other and from the boundary of V (see Definition 2.4 and the paragraph 
preceding it). Moreover we may assume Ii, so small that the assertions of 
the theorems of Section 3 established with the proviso “for R, small enough” 
are true. For R, and E fixed in such a way we use the notation 

c, = 44 > ~7 4, f” := fW (4.1) 

DEFINITION 4.1 (cf. [9, p. 911). Th e roof of c, consists of those points 
of the boundary C, of c, which are at the levelf, + E. 

Let now q,p be a point of the roof of c, , and let ~(7, x,,~) be the gradient 
line through x00. It is then clear from our definitions and our choice of R, 
and E that 

x(7, x00) E I/ - (J cj for small enough positive 7 - T,,D. (4.2) 
1 

For fixed x00 let 7,~ denote the (finite or infinite) least upper bound of all 7i 
such that (4.2) holds for T,,P < ‘T < 7i . Then 7,~ > TOP. 

DEFINITION 4.2. The extension yI, of c, is the union of c, and the set of 
those points x E 7 which lie on a segment f, + E = TAO < 7 < ?OO of the 
gradient line ~(7, x00) through some point x,,~ on the roof of c, . 

THEOREM 4.1. Let the Assumptions 2.1-2.4 of [8] be satisfied. Moreover f 
is supposed to be bounded below. Finally it is assumed that each of the stationary 
points x1 , x2 ,..., x, is non-degenerate of some Jinite order p > 2. Then (1.1) 
holds. 

Proof. The theorem follows from the Lemmas 4.1 and 4.2 below. 

LEMMA 4.1. yp , and therefore jJI, , is of category 1. 

Proof. By Theorem 3.1 C, is of category 1. It is therefore sufficient to 
show that i;, is a deformation retract of yO . If x(7, x0) is the gradient line 
through the point x0 E y,, - E, then x(f, + E, x,,) is a point of the roof of c, 
and therefore E C, . We now define a retracting deformation by setting 

qxo ,a) = I 
X@(f) + G) + (1 - 4f c%>> -?I), for x0 E yp - CO 

x0 9 for x0 E i;, . 

LEMMA 4.2. VC (Ji y,, . 

For every x0 E v we have to prove 

for some positive integer p s< r. (4.3) 
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This assertion is trivial if x,, is contained in some E, . Therefore we have 
to consider the following cases (a) and @I). 

Case (a). We consider the gradient line ~(7, x0) through x0 for 
T < 7. =f(xo). Let Q, be the greatest lower bound of those u for which 

x(7, x0) E v - fi 2, , 
0=1 

(4.5) 

Since V - ut E,, is an open set and since f is bounded from below in V 

We now claim 

exists, and 

--co <bo<TO. (4.6) 

E = iii? x(7, x0) (4.7) 0 

x = X(To , x0) E y. for some p. (4.8) 

To prove that the limit (4.7) exists we note that by Lemma 2.1 the set 
V - ui c0 has a positive distance from the set (~3 (p = l,..., r) of stationary 
points off, and that therefore by the Palais-Smale condition ([8, Assumption 
2.31) there exists a constant m such that 11 g(x)]] > m > 0 for x E V - Ui C~ . 
By (4.5) this inequality holds in particular for x = x(7, x0) if Q, < 7 < To . 
From this and the differential equation (2.2) for the gradient line we obtain 
easily the estimate 

11 x(T1, xO> - x(7’, xO)ll < (7” - T’)/m, for?, < 7’ < 7” <To. 

The existence of the limit (4.7) follows now from Cauchy’s convergence 
criterion, and we turn to the proof of (4.8). The equality in (4.8) is an obvious 
consequence of (4.7). Th e inclusion in (4.8) is by definition of yp equivalent 
to the assertion 

(4.9) K = x(5 o , x0) is contained in the roof of some c, . 

To prove this assertion we note first that by (4.7) and (4.8), ~(t, :x0) 
is in the closure of V - Ui cD . On the other hand it follows from the 
definition of f. and the local existence theorem for differential equations 
that R = ~(7~ , x0) is not an element of the open set V - Ui c0 . Thus f 
must be on the boundary of this set, i.e., 

either K E C, for some p, or %E V. (4.10) 
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Now since 7 = ~(x(T, x,,)) d ecreases strictly as 7 varies from TV to T, it follows 
from Definition 4.1, Lemma 2.2 and Definition 2.4 that f lies on the roof 
of c, , and therefore x0 E y0 , if the first part of the alternative (4.10) takes 
place. 

Thus the assertion (4.3) will be proved in our present case (4.4) a) if we 
can show that the second alternative in (4.10) can not occur. To show that 
this is so we note that the substitution 

x(7, x0) = y(t, Yo), 70 i, y.7a-7, (4.11) 

transforms the problem (2.1) into the problem 

dY 
z= -dYh Y(O, x0) = x0 E K (4.12) 

and we have only to refer to Theorem 2.2 of [8] which states that y(t, x0) 
does not reach the boundary Y of V for t > 0. (This theorem is essentially 
based on the boundary Assumption 2.4 of [S]). 

This finishes the proof of Lemma 4.2 if (4.4~~) holds. For the proof in case 
of (4.4/I) we will need Lemma 4.3. 

LEMMA 4.3. Let E2 be a linear hypersubspace of the Hilbert space E and 
let e’ be an element of E which is of length 1 and which is orthogonal to E2. 
If for p > 0, B, denotes the ball with center 0 and radius p we set 

B,- = {x E B, / (e’, x) < O}. (4.13) 

Finally let the map y: B,- v {e} + E be Lipschitz and satisfy 

(e’, y(e)> > 0. (4.14) 

Then there exists a positive 01~ , such that the problem 

du/doL = -r(u), u(0) = 8, (4.15) 

has a unique solution u = u(a) for 0 < 01 < 01~ . Moreover 

u(m) E B,- for 0 < CY < 0~~ . (4.16) 

The proof consists in a suitable modification of the classical Picard proof 
for the local existence of solutions of ordinary differential equations and 
will be given in the appendix. 

We return to the proof of Lemma 4.2. Let (U, 4) be a chart at the point x0 

4=‘9/5Ob3 
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for which (4.413) holds. W e assume 4(x,,) = 0. Let E2 and e’ be as in Lemma 2.3 
of [8]. Then by that lemma there exists a positive p such that 

4-V,-) c K (4.17) 

with B,- as in (4.13). We may assume e’ to be orthogonal to E2. We claim 
that (4.14) holds if y = gradf4-l. Indeed then by [8, Lemma 2.6 and 
Definition 2.31 the left member of (4.14) equals the scalar product of g(x,,) 
with the exterior unit normal to v at x0 , and this product is positive by 
Assumption 2.4 of [8]. Th us we can apply Lemma 4.3 and we see that 
(4.16) holds. Therefore by (4.17) 

for 0 < 01 < 01~. - (4.18) 

But u(a) is the solution of (4.15). C onsequently (see [8, Lemma 2.71) 
y(a) = #-‘(~(a!)) satisfies (4.12), and the ~(7, x0) obtained from y(01) by the 
substitution (4.11) is the gradient line through x,, . We thus see from (4.18) 
that 

47, 4 fz v for 7s > 7 > 7r , (4.19) 

where 7s and or are the T-values corresponding by the substitution (4.11) 
to the a-values 0~0 and 01~ , respectively. Now the point x0 E Y has a positive 
distance from IJ c, . Therefore (4.19) implies that E = ~(7, x0) E V - lJ c, 
if d - ~a is positive and small enough. Thus K satisfies the assumption 
made in (4.40~) for x,, , and from the result proved for this case we know that 
the gradient line through f reaches the roof of some c, for some 7 > ?. 
This finishes the proof since the gradient line through f is the same as that 
through x,, (up to a parameter translation). 

5. APPENDIX 

The purpose of this section is to give proofs of Lemmas 2.2 and 4.3, 
and of the continuity of the deformations defined in (3.1) and (3.20). Basic 
for these proofs is the following lemma 

LEMMA 5.1. Let q(t) and us(t) be solutions of the dz,@rential equation 
du/dt = #(u), which for t, ,( t < tI lie in the subset S of the domain of $ 
the latter being open in the Hilbert space E. We assert 

(i) if z,b satisfies in S a Lipschitz condition with Lipschitz constant h then 

Ah--to) II u&) - Wll G II u&J - UJll e for t, < t < t, . 
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(ii) if there exists a constant % such that 

iI 404 G m for u E S then I/ z+(t,) - Us(t,)lj < H(t, - ta). 

Assertion (i) of this lemma is classical in a finite dimensional space. For a 
proof valid in Banach spaces see [4, p. 56, Proposition 21. Assertion (ii) 
follows trivially on writing the differential equation in integral form. 

In the application of this lemma to the differential Equation (2.1) for the 
gradient lines one has to observe that the assumptions of a uniform Lipschitz 
condition and of boundedness in S are satisfied only if u is bounded away 
from the set of stationary points. To cope with this complication we need 
three more lemmas. 

LEMMA 5.2. Let h, B and R be as described in the paragraph preceding (2.1), 
and let R, , E be as in Lemma 2.1. For simplicitys sake we assume that 
h, = h(B) = 0. We consider a set YC Z(R,) ( see De$nition 2.2) having the 
property that there exists a constant Q such that 

0 < rlo < II y II < 4, for y E Y. (5.1) 

Let U(T, y) be the gradient line through the point y of I’ such that 

40, Y) = y, h(y) = 0. (5.2) 

We assert the existence of a number 5 = (q. , RI) such that 

11 U(T, y)ll >, 5 for y E Y and --E < T < E. (5.3) 

Proof. Let 

Then the set 

p = min{T0/2; R/2}. (5.4) 

x = u WY, CL), (5.5) 
YEY 

has a positive distance from the set of stationary points of h, and by the 
Palais-Smale condition there exists a positive number 992 = m(p) such that 

II r(u)ll 3 m > 0, for u E X. (5.6) 

Because of h(0) = 0 there exists a 5 > 0 such that 

I h(x)l -=c minho/2, pm) for jl u j/ < 5. (5.7) 
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In addition we subject 5 to the condition 

With this choice of 5 we claim (5.3) to be true. 
Suppose that 

II 47, Y)ll < 5 (5.9) 

for somey E Y and some 7 in (-E, E). For such y and r we see from (5.7) that 
171 =lhMT,YNI < pm. This shows that (5.9) is not true for Q- 3 pm, 
in other words for such 7 our assertion (5.3) holds. 

It remains to prove the assertion for I 7 [ < pm. We see from (5.6) that 
in the ball B(y, p) the right member of the differential equation (2.2) is 
majorized by m-l. Consequently ~(7, y) stays in this ball for 1 7 I < pm, 
i.e., I/u(T, y) - y 11 < p for these 7. Consequently use of (5.1), (5.4) and (5.8) 
shows that 

II 47, YIII 3 II Y II - II 47, Y> - Y II 2 70 - P > 5 for 17 1 <pm. 

LEMMA 5.3. Let 0 < v. < R, , and let (yfl} be a sequence of points of 
the following properties: 

rloGIl~n/I <RI, WY,) = 09 & Yn = Yo * 

Then lim,,, u(T, yn) = U(T, yo) for --E < 7 < E where Us UsZ& U(T, y) denotes 
the gradient line through y. 

Proof. By Lemma 5.2 and by the choice of RI and E the set S of the 
segments -E < 7 < E of the gradient lines through y,, is bounded away 
from the stationary set of h. Consequently by the Palais-Smale condition 
the assumptions of Lemma 5.1 are satisfied in S with # = r/II y l12. Thus our 
assertion is a consequence of the (i)-part of that lemma. 

LEMMA 5.4. Let h, R, R, , be as in Lemma 5.2. Let u. E Z(R, , c) (Dejnition 
2.2) and let u(T, uo) denote thegradient line through u. . Then to agivenpositive a 
there corresponds a positive p such that 

11 U(T, n) - U(T, Uo)ll < U, for --E < 7 < E, (5.10) 

if 
II 24 - UOII -=c P* (5.11) 

Proof. From u. E Z(R, , G) it follows that U(T, uo) E C(R, , E) E B(R) (see 
Lemma 2.1) for --E < 7 < E. Thus for these values of 7 

11 ub, uo)li < R. (5.12) 
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On the other hand it follows from h(u(0, ~a) = 0 and from h(B) = 0 together 
with the fact that ~(u(T, u,,) is strictly increasing with r that ~(7, uO) # 0 for 
-•E < T < l . Since this segment of our gradient line is compact we infer the 
existence of a positive constant p < R/3 such that 

II 47, %)ll > 4P, for --E < 7 z.; E. 

It follows from (5.12) and (5.13) that the set S defined by 

(5.13) 

s = 0 B(47, %I), 3P), (5.14) 
Iri<c 

has a distance > p from the set of stationary points of h. Thus for some 
positive m the inequality (5.6) holds for u E S. This implies the existence 
of a Lipschitz constant h for the right member of the differential equation (2.1) 
in S. 

Let now p be a positive number such that 

I W - 44# -c pm if I&---U01 <p. 

In addition we require 

p < pe-AE. 

(5.15) 

(5.16) 

We show next that with such choice of p 

U(T, u) E s for --E<T<~ (5.17) 

if (5.11) is satisfied. To better compare ~(7, G) with $7, ~a) we introduce the 
solution b(a, 4) of (2.1) for which 

$(?I, 5) = 5. (5.18) 

Then 

47, w3) = $(T, 4 u(7, iz) = l$(T + T(, - 7, 21). (5.19) 

Now the assertion (5.17) is identical with the following one: if T = 
(T 1 $(T + TV - 5,~) C S, then 

TI [-cl + c]. (5.20) 

Now it is easily seen from (5.19), (5.11), (5.16) and (5.13) that T contains 
7 = ? and therefore some neighborhood of F. Suppose now (5.20) were not 
true. Then there exists either a 7r < ? such that $J(T + 70 - ?, U) E S 
for 7r < 7 5 7 while each neighborhood of 7r contains numbers 7 for which 
+(T + T,, - b, n) $ S, or there exists a or > 7 with the corresponding properties. 
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It will be sufficient to consider the first case. To arrive at a contradiction 
we observe that Lemma 5.1 can be applied to any closed T-interval contained 
in (TV , ~1. Taking account also of (5.15) and (5.1) we obtain the following 
inequality valid for all such 7 and for u satisfying (5.11) 

< 11 $(T + 70 - ?, g) - $(T, c)ll + 11 ‘$(T, @) - $(T, u,)ll 
< 1 To - ? l/m + 11 ii - u. 11 < eAE < 2p, (5.21) 

and it is easy to see that (5.21) holds also for T = r1 . But this shows that 
the ball with center $(T1 + To - 7, ti) and radius p is still contained in S, 
and so is#(T + To - 5, U) if 0 < 71 - 7 < pm. This contradicts the definition 
OfTI. 

This proves (5.20) and, therefore, (5.17). It follows that (5.21) holds for 
all 7 in [-E, e] with ii satisfying (5.11). 

We now recall that TV was defined as a positive number satisfying (5.13) 
and the inequality p < R. If then 0 is a given positive number we subject p 
to the additional restriction that 2~ < 0. Then (5.10) follows from (5.21). 

Proof of Lemma 2.2. Since by Lemma 2.1, C(R, , l ) is open, Lemma 2.2 
is equivalent to Lemma 5.5. 

LEMMA 5.5. Let /?I , /32 , /Is b e e ne as in the statement of Lemma 2.2, dfi d 
and let /3 = u /Ii . Then for R, and E small enough 

C(R, ,c> = C(R, , E) u /?. (5.22) 

Proof. We again assume h(0) = 0. As in Section 2 let R > 0 be such 
that 0 is the only critical point in B(2R). It is possible to choose positive 
numbers RI , or , E in such a way that 

C(R, 94 C V, 4 C WR), E < Q . (5.23) 

Indeed by Lemma 2.1 there exists a positive or such that C(R, EJ C B(2R), 
and a positive R, such that B(2RJ C C(R, pi). Moreover by the same lemma 
we can choose E such that C(R, , .z) C B(2R,), and in addition E < pi . 
With this choice of Ri, and E, (5.23) is satisfied. 

To prove (5.22) we will first show that 

i.e., that 

W, > ~1 C WG ,4 u 6, (5.24) 

uo E C(R, ,4 u 8, (5.25) 
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if 

(5.26) 

Now if (5.26) is satisfied there exists a sequence of points ui , u2 ,‘.., 
such that 

%I E C(R, , E), and lim u, = u. . n+oc (5.27) 

Then 

--F < h(u,) < En ) -•E < &)) < E, (5.28) 

and by (5.23) 

uo c C(R 61). (5.29) 

Therefore by definition of C(R, Q) 

either u. E: C+(Q) U C-(Q), or u. E Z(R, pi) (5.30) 

where we omitted the case u. = 0 in which our assertion (5.25) is trivially 
satisfied. 

In discussing the first of the two cases in (5.30) it will be sufficient to 
suppose that u. E C+(Q). Then u. is on the segment 0 < 7 < pi of a gradient 
line ending at 8. But from (5.28) we see that u. is actually on the smaller 
segment 0 < T < E of such gradient line. This proves (5.25). 

We turn to the second part of the alternative in (5.30). In that case 

0 < II 40, uo)ll < R. (5.31) 

From the second part of (5.27) in conjunction with Lemma 5.4 we see that 

;+2 u(O, %a> = @I u,), (5.32) 

and from the first part of (5.27) we conclude that I/ ~(0, u,)li < R, , an 
inequality which together with (5.31), (5.32) implies that 0 < !I ~(0, u,)l\ < R, . 
This together with the second part of (5.28) proves (5.25). 

We now want to prove the inclusion opposite to (5.24), i.e., we want to 
show that (5.25) implies (5.26). Since this is obvious if u. E C(R,, c) we 
assume 

uoG=&L (5.33) 
1 

and will establish the existence of a sequence u, satisfying (5.27). 
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Suppose first u0 E j+ . Then the segment 0 < r < c of the gradient line 
~(7, ua) through ua is in C(R, , E) and the points u, = U(T* , u,,) with 7, t E 
will satisfy (5.27). 

The corresponding argument holds if ua E /3a . 
It remains to consider the case that u,, E /3, . Then with the notation 

Yo = 40, uo) 

ll~oll = RI - (5.34) 

Let now y(t, yo) be the solution of the differential equation (3.6) with the 
initial condition ~(0, yo) = y. , and let y% = y(n-1, yo). It follows from 
Lemmas 3.2 and 3.3 that 

4Yn) = 0, limy, =yo, n-tm 0 < rlo < II yn II < II yo II = R, 9 (5.35) 

for some positive r], . Then by Lemma 5.3, lim,,, ~(7, yJ = ~(7, yo) 
which shows that u,, = ~(7, y,J satisfies both conditions (5.27) if -•E < 7. < E. 
But u. = U(E, yo) also satisfies (5.26) since U(E, yo) = lim,,, ~(7, yo). 

PROOF OF THE CONTINUITY OF THE DEFORMATION (3.4) 

We have to prove the continuity of S(u, a) at every point (u. ,oL~) where 
u. E C(R, , E) and 0 < a0 < 1. We assume again h(B) = 0 and consider 
different cases. 

Case A. u. E C+(E) U C-(e), cyo = 1. It will be sufficient to consider 
the case that u0 E C+(z). Then by (3.4) 

@Jo 9 1) = 8. (5.36) 

We have to prove 

w, , 4 -+ 4 (5.37) 
if 

%a -+ 110 and a,-+ 1. (5.38) 

We will first consider the special case that all LY, equal 1, i.e., we want to 
prove that 

S(u, , 1) + 8. (5.39) 

Now h(uo) > 0 by definition of C+(c). Therefore we may, on account of 
(5.38) assume @u,J > 0 for all n. Therefore for each 7t either (case i) u,, E C+(E) 
or (case ii) U, E Z(R, , 6). Now in case (i), S(u, , 1) = 0 by (3.4). This proves 
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(5.39) if case (ii) occurs only for a finite number of n. Let us assume now 
that case (ii) occurs infinitely often. From the argument given in case (i) 
it is clear that without loss of generality we may assume that case to occur 
for all n. Then by (3.4) and Definition 2.2 

w&l 7 1) = 4% %I) (all n) (5.40) 

where as usual ~(7, u,) denotes the gradient line through u, . Setting 
~(0, urn) = yn we have to prove 

lim ylz = 0. (5.41) 

Suppose (5.41) not to be true. Then there exists a positive 7” such that 

0 < ~0 G II yvz II -=I 4 > (5.42) 

for infinitely many n. Changing our notation we may assume (5.42) to be 
true for all n. Since the gradient line through U, coincides with the one through 
yn we conclude from Lemma 5.2 that the set S consisting of the segments 
0 < 7 < 7R of the gradient lines through u, has a positive distance from the 
stationary point of h, and (for suitable m and A) the inequality 

holds which is derived in the same way as the corresponding part of inequality 
(5.21). (Note that the two agree for E = u, , u. = u, .) Since 7, = h(u,) 
and since the u, converge (see (5.38)) it follows from (5.43) that yn =u(O, un) 
converge. Let y0 be the limit. Then h( yo) = 0 since h(y,) = 0; moreover 
Ri >, l/y0 I/ >, q. by (5.42). It follows that u(T~, yo) E Z(&‘, E) for any 
R,' > R, . We will now arrive at a contradiction by showing that U(T~ , yo) = u. 
which is in C+(E) by assumption: by Lemma 5.2, 

= lim ~(7~ , m) + lim(u(T, , m) - u(rn , m)>. 
Here the second limit is zero since T,, = h(u,) -+ To = h(u,). Moreover 
u(Tn , y,) = u, . Thus u(To , yo) = lim usl = u. (see (5.38)). This contra- 
diction proves (4.1). 

This finishes the proof of (5.39). W e now turn to the more general assertion 
that (5.38) implies (5.37). Let then (r be a given positive number. We have 
to exhibit a positive integer. n, such that 

II S(% 9 4ll < u9 for n > no. (5.44) 
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We choose n, in such a way that for R > no the inequalities (5.45), (5.46), 
(5.47) below are satisfied. 

qu, ) 1) < a/2. (5.45) 

This choice is possible because of the limit relation (5.39) just proved. 

II w4 - N%ll -=c 44w. (5.46) 

This choice is possible on account of (5.38) and on account of the fact 
(already mentioned in the line below (5.39)) that h(u,) > 0. 

1 > OL, > 1 - 26a/3r0 (70 = WlJh (5.47) 

where es is a positive number such that 

w2, 4 c w. (5.48) 

(Such us exists by Lemma 2.1). 
In addition we require that for 71 > ns 

%z E C(& 9 E). (5.49) 

This is possible since ua is contained in the set C(R, , l ) which is open 
(Lemma 2.1). 

To show that with the above choice of rr,, the inequality (5.44) holds for 
71 > n, we note first that by (5.46) 

0 < Jz(u,)/2 < h(u,) < 3h(u,)/2. (5.50) 

From (5.49) and (5.50) we see that 

either (i) u, E C+(E), or (ii) u, E Z(R, , c). (5.51) 

In both case by (3.4) 

%a , 4 = 4Tn(l - 4, %> (7% = Wn)). (5.52) 

Now by (5.47) and (5.50) 

~,,(l - IX%) < r, 2~~/37~ < us . 

It follows that (5.44) will be proved once it is shown that 

II 479 %)ll < UY for 0 < 7 < e2. (5.53) 

Now in case i of (5.51): U(T, u,) E C+(Q) C C(42, Q) for 0 < 7 < cp. By 
(5.48) this proves (5.53). 
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In case ii of (5.51) we see from (5.45) that ~(0, u,) = (un, 1) E B(o/2) 
i.e., I/ ~(0, u,)ii < u/2. But this implies that ~(7, u,) E C(u/2, ~a) for 0 < 7 < Ed, 
and (5.53) follows now from (5.48). 

Case B. us E C+(c) u C-(E), 0 < 01s < 1. Again it will be sufficient to 
consider the case that u,, E C+(E). It is clear from definition (3.4) of our 
deformation that we have to deal with gradient lines through ua and 
“neighboring points.” Let k be a number for which 

010 < k < 1. (5.54) 

We consider the segment of the gradient line ~(7, uO) through u,, determined 
by the interval 

To@ - %I) d T < (To + <j/2. (5.55) 

(The motivation for the choice of this interval will become clear later on.) 
This compact segment does not contain the point 0. Consequently for T 
in the interval (5.55) the inequality (5.13) holds for some positive p < R. 
We now define S, as the set obtained from (5.14) by taking the union over the 
T in the interval (5.55). Let now m i , hi , be two constants playing the same 
role for S, as m, h for S. If then in the arguments following (5.14) we replace S 
by S,, m by m, , X by h, and the interval I 7 ~ < E by the interval (5.55) 
we arrive at the following conclusion: if p is a constant such that (5.15) 
and (5.16) hold then (cf. (5.21)) 

1; U(T, ii) - U(To , uo)l/ < 7 - To/m, + I’ u - u. I8 e h’ , (5.56) 

for 11 u - u,, 11 < p and for 7 in the interval (5.55). 
In order to use (5.56) for the proof of the continuity of 6 we subject u to 

the following additional restriction: 

j ? - 7s 1 = 1 h(u) - h(u,)l < min 
To(l - k) E - To 
____ 
3(1 - a”) ’ 2 

and restrict 01 to the interval 1 01 - a,, / < (1 - K)/3. With these restrictions 
T = $1 - N) lies in the interval (5.55) as may be verified by an elementary 
computation. 

From (3.1), from (5.56) (with 7 = $1 - 01), and from the second part 
of Lemma 5.1 we obtain the inequality 

= ‘1 U(f(l - Cd), a) - U(T,,(l - No), U,)ll 

< !/ U(F(l - 01), ii) - U(T,,(l - ol,,), ti)li (5.57) 

+ /I u(To(l - %)T g> - u(T,(l - %)> %)I1 
< [ 7(1 - a) - ~~(1 - a0 l/ml + 17 - 7. \/ml + 1; 5 - u. // e+ 
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which obviously implies the continuity of S(ii, a) at (~1s , %) since 7 = /Z(B) 
and ~a = Iz(u,). 

Case C. u,, E Z(R, , r), 0 < ~ya < 1. Here the assumptions of Lemma 5.4 
are satisfied. If we choose p as indicated in the proof of that lemma (see 
(5.15), (5.16)) it follows immediately from (3.4), (5.21) and Lemma 5.1 that 
for 11 E - u,, 11 < p the inequality holds which is obtained from (5.57) by 
replacing m, , h, , by the numbers m, h, respectively, defined in the proof 
of Lemma 5.4. 

CuseD. u,=0,0<01~<1.Then6(8,ar,)=~forO,<~+,<l.There- 
fore to given positive a we have to exhibit a neighborhood N of 0 such that 
II a(~; a)11 < u for ii E N and 0 < 01 < 1. Let 0 < a, < u, and let z1 be such 
that C(ul, r E ) C B(u). (Such l 1 exists by Lemma 2.1). Using (3.4) it is then 
easily verified that N = C(ul , EJ satisfies our requirement. 

PROOF OF THE CONTINUITY OF THE DEFORMATION (3.20) 

Case A. ua E Z(R,), 0 < (~a < 1. Let v be a number such that 

a?0 <v < 1. 

With the notation 

ti = LXJ(l - (YJ, i = 0,l 

(5.58) 

(5.59) 

we see from (3.20) that for ur E Z(R,) 

Sk 1 , 4 - quo , ao> = @l 9 Ul) - Nto > uo), (5.60) 

and have to show that the left member tends to 0 as (tlr , 0~~) -+ (u. , %). 
We restrict (or and ur to neighborhoods of 01~ and ~1~ , respectively, given by 

I a1 - %I I < v - go, II % - uo II < II uo /l/2. (5.61) 

For later use we note that then by (5.58) and (5.59) 

0 < t1 < v(l - v)-1, I t, - to I < j al - a0 I (1 - v)-“. (5.62) 

Since 1) u(t, u,)l/ is (by Lemma 3.2) decreasing with increasing t we see from 
(3.4), (5.61) and (5.62) that 

for 0 < t < t, , 
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where v1 = ~(1 - v)-l. This shows that the set S of all points u(t, ur) where t 
varies over the interval just indicated and where ur satisfies (5.61) is bounded 
away from the zeros of y. Therefore there exists for S an upper bound M 
and a Lipschits constant for the right member of the differential equation 
(3.20). Application of Lemma 5.1 then yields the inequality 

II 44 , 4 - @, , %)lI < II @I, %) - 4t,, %!I + II u(h ) %)- U&l > %I! 

dll~l-~olle A’tl-to’ $ L-u 1 t, - t, / . 

On account of (5.62) and (5.60) this inequality shows that 6(u, , 01~) --f S(U, , aO) 
as 04 ,4 - ho ,4- 

Case B. us E Z(R,), 01~ = 1 

Case C. uo=e,o<ol,<l. 

In both cases S(U, , LX,,) = 0 by (3.20). Th ere ore f for both cases it will be 
sufficient to prove 

Now by (3.20) for ur # 8 

WJl 9 4 = i 
“(h F %), for0 < 01~ < 1, 
0 3 for oil = 1. 

Therefore by (3.7) for or # 0 and 0 < 01~ < 1 

II S(u, , 4 < II u1 II e+. (5.64) 

Now in case B we note that t, = c~r(l - c&l + co as 01~ + CQ, = 1. Thus 
(5.63) follows from (5.64) since 11 ur I/ < R, . 

In case C, ur --f u,, = 0, and (5.63) follows again from (5.64) since t, >, 0. 

Proof of Lemma 4.3. Let L be a Lipschitz constant for y in B,- u 8. 

We will show that the assertion of the lemma is true with an 01~ satisfying 

0 < 01~ <: min{L-l, pe’(r(8))-l, +(ej, e’) *(eL@))-l}. (5.65) 

Where e is the base of the natural logarithm and e’ as defined in the lemma. 
Let u0 = 8 . We want to set 

%(4 = - jy Yod8)) 4s 71=1,2,...; O<cx<a1. (5.66) 

To legitimize this we will prove that 

G4 E B,- for 12 = 1, 2,... and 0 < 01 < ar. (5.67) 
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Moreover we will prove that for the 12 and cx indicated in (5.66) 

We claim first that (5.68) implies (5.67). Indeed u,(a) = C,“=, (u”(a) - u,-r(a) 
since us = 6. From this, (5.68) and (5.65) we see that 

II G4ll < aeaL II @iI < ale II r(e)ll < P. (5.69) 

This implies that ~,(a) E B, . To establish (5.67) it remains to prove that 

044, 0 < 0 for n = 1, 2,... and 0 < a: < C+ . (5.70) 

Now from (5.66) (with n = 1) we see that 

044 el> = (ul(4 e’> + <u,(4 - u1(4, 4 

= -4r(e>, e’> + (4~) - ul(a>, el>. 
(5.71) 

But from (5.68) and (5.65) one concludes easily that 

II ~(4 - ~d4ll < L2eLa’ II rP>ll < Law II mi, 

and combining this with (5.71) and using (5.65) we see that 

<~(4, el> = -4w9, 0 - he II roll < --o( e(e), el>. 

Here the right member is, by assumption (4.14) of our lemma, negative 
for positive 01. Thus (5.70) . t 1s rue, and (5.68) implies (5.67) as claimed. 

Thus to establish (5.67) it remains to prove (5.68). That this inequality 
is true for n = 1 is obvious from (5.66) and the fact that us = 8. The validity 
for n 3 2 follows by a familiar induction procedure. Likewise the convergence 
of the u, to a solution of our problem (4.15) and the uniqueness of that 
solution follow by a well known procedure from (5.68). 
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