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FREE CONVECTIVE HEAT TRANSFER FROM SLENDER CYLINDERS SUBJECT TO UNIFORM WALL HEAT FLUX
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ABSTRACT For laminar flows over slender cylinders, the boundary-layer equations do not admit
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similarity solutions as do the laminar layers over cylinders with large radius. Conse-
quently, the prediction of heat transfer from such surfaces requires the solution of a
system of partial differential equations for different boundary conditions and Prandtl
number. In the present paper we study the free-convective heat transfer from slender
cylinders subject to uniform wall heat flux. This is done by solving the boundary-
layer equations by an efficient numerical method described in reference (1).

Nomenclature

Grashof number based on 1o, Gryp = (ﬁwﬁbrg/kvz)
acceleration of gravity

thermal conductivity
Prandtl number
Reynolds number, Re
wall heat flux
radial distance from axis of revolution, r = o +y
cylinder radius

static temperature

x~ and y-components of velocity, respectively

a characteristic velocity, u, = (ﬁw_gbrg/k)]/z/(Re)]/4
rectangular coordinates

thermal diffusivity

coefficient of thermal expansion

Hy

ucro/v

kinematic viscosity
density
stream function

Governing Equations

We consider the boundary-layer equations for an axisymmetric flow with a body force. For an
incompressible, steady, laminar flow they are:
Continuity:

%;-(ru) + %y-(rv) =0 (1)
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Momentum:
ou ou _ _ N3 u
UtV 5y ga{t —t ) + T 3y (r ay) (2)
Energy:
at 3t a3 .3t
v ey (5 (3)
We consider the following boundary conditions:
_ - at) . _ M
y=0 u=v=0, (5?) ” (4a)
W
y > e u=20 t=tw (4b)
The introduction of the following dimensionless quantities
- X v A /Re - _u - _V
X = s y= Re , u=-—, v=-— JRe
To "o Ue Ue
r2 1/2
— r - 0 W
r=-—, u. =1gs (5)
o ¢ k vRe
ur (t —t )k /Re
Re = SO’ g= oor
9% o
into (1), (2), (3) allows them to be written as
(Rl + &= (F) = 0 (6)
3x 3y
i 7. 1L g
3X 3y ray 3y
aé{hvéﬁ_{:%?]-a__(ﬁﬂ) (8)
ax 3y r a3y oy
We next introduce the Mangler transformation
dx* = dx, dy* = r dy (9)
and by using the definition of stream function
ri = 2, e (10)
oy 9X
and by noting that
1/2
F—(1+?L*-) (1)
/Re

we can write (7) and (8) as
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o o%y oy of =g+ 2 (7 o2 (12)
Ay* ax*yy*  ax* ay* 3y ay*

3y 39 _3p 3g _1 3 (=23g

§%¢“3%T aX* 3y* ~ Pr a3y* <r ay* | * (13)

Equations (12) and (13) now can be expressed in similarity variables &,n defined by

£ = x*, n = &;‘)ng (14)

and by dimensionless parameters f(z,n) and G(f,n) defined by

b= 0o em), g = 60 %(en) . (15)
They become
1 ! 4 u 3 2 — |_3il___ W ﬁ
(bF) + o —2 ()P - g(f o 2 ) (16)
! 4 1 _ 3G af
(cG') +ng'—B-f'G—€(f'§-E——G' 8_5_) (17)
Here
b=1+ A c = b/Pr (18a)

The parameter A represents the slenderness of the cylinder and will be
referred to as the transverse curvature parameter. It is defined by

po= 2(x%) V5 (Re) /4 (18b)
The boundary conditions (4) become

n=0 f=f =0 Gy = -1 (19a)

f

n=n f''=0 G= 0 (19b)

Calculated Results

The solution of the system given by (16), (17), (19) is obtained by an efficient numerical method
described in ref. (1). According to this method, at first the governing equations (16) and (17)
are written as a first-order system. Then the derivatives are approximated by centered difference
quotients and averages centered at the midpoints of net rectangles or net segments. A nonuniform
grid described in ref. (2) is used in the n-direction. The nonlinear difference equations are
solved by Newton's method using an efficient block~-tridiagonal factorization technique. For
details see refs, (1) and (3).

Table 1 shows the derivation of the cylinder local Nusselt number, (Nux)cy], from that of a flat

vlate, (Nux)f p . for various values of A and Pr in tabular form. Here the ratio of two

Nusselt numbers is found from
(Nux) g 6,(0)

WixTe 5. GOT
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TABL

£
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1
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Deviation of Local Nusselt Number of a Slender Cylinder Subject to Constant Wall Heat Flux

0.000
0.200
0.275
0.317
0.437
0.502
0.693
0.751
0.796
0.914
1.099
1.191
1.262
1.450
1.572
1.741
1.888
2.000
2.297
2.491
2.639
2.759
2.993
3.170

California State University at Long Beach, California (1974)

Pr=0.01
.000
.521
.627
.692
.844
.939
.161
.250
.301
444
.654
.770
.848
.062
.200
.391
.553
.681
.318
.221
.379
.515
.764
.964

AR bhR R R WWWWWNRNNND RN NN e a e e e

From That of a Flat Plate for Various Values of Pr.
(Nux)f.p.

Pr=1.0
.000
.283
.265
.299
.328
.359
412
.439
.45]
.491
.545
.577
.598
.655
.692
.743
.787
.820
.903
.959
.001
.034
.098
.148

Pr=0.1
.000
.360
.367
.412
477
.526
.631
.675
.700
771
.872
.929
.967
.070
135
.226
.303
.363
.512
615
.687
749
.863
.952

N RN NN R RN N RN N e e et ocd e oad oed ed md oed e oy

(Nuy)

Pr=0.72
1.000
1.294
1.280
1.315
1.347
1.379
1.439
1.466
1.481]
1.523
1.583
1.618
1.640
1.703
1.742
1.797
1.843
1.880
1.970
2.031
2.076
2.114
2,183
2.237

cy]/
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