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ABSTRACT For laminar flows over slender cylinders, the boundary-layer equations do not admit 
similarity solutions as do the laminar layers over cylinders with large radius. Conse- 
quently, the prediction of heat transfer from such surfaces requires the solution of a 
system of partial differential equations for different boundary conditions and Prandtl 
number. In the present paper we study the free-convective heat transfer from slender 
cylinders subject to uniform wall heat flux. This is done by solving the boundary- 
layer equations by an eff ic ient numerical method described in reference (1). 

Nomenclature 
• - 4 2 

Grro Grashof number based on r o, Grro ~ (qwgBro/k~) 
acceleration of gravity 

k thermal conductivity 

Pr Prandtl number 

Re Reynolds number, Re ~ Ucro/~ 

qw wal l  heat f l u x  

r r ad i a l  d is tance from ax is  o f  r e v o l u t i o n ,  r = r o + y 

r o c y l i n d e r  radius 

t s t a t i c  temperature 

u,v x- and y-components of velocity, respectively 

u c a characteristic velocity, u c = (~wgBr~/k)I/2/(Re)I/4 

x,y rectangular coordinates 

thermal d i f fusiv i ty 

8 c o e f f i c i e n t  o f  thermal expansion 

kinematic viscosity 

p density 

stream function 

Governing Equations 

We consider the boundary-layer equations for an axisymmetric flow with a body force. 

incompressible, steady, laminar flow they are: 

Conti nui ty: 

(ru) + B (rv) : 0 

For an 

( i )  
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Momentum: 

Energy: 

au a u  ~D (Du)  uT~+v ~ g~( t - t~ )+T-T£  rT~ 

u ~ +  v ~--~ ~ay r 

We consider the following boundary conditions: 

y = 0  u = v = 0 ,  

y ÷ ~  u = 0  

The introduction of the following dimensionless quantities 

T:  x--, ~ = Y  RVR~, ~_ u 
r 0 r O U C 

t = t  

V 
~=Tcc vl~ 

(~_8 _2x \ I /2  
r : r°~w "I 

7 -  ro , Uc 

u r ( t -  t ) k  
Re= co • g : . 

qwro 

into ( I ) ,  (2), (3) allows them to be written as 

~-- (FG) + L (~;)  : o 
DT D7 

u-D#D--~UU + ~  aya-~'U : g + Ir aay (r D'~v~) 

~_~+ 9~J.= 1 1 D ~- 
ax a~ Pr ~ Dy a~ 

We next introduce the Mangler transfomation 

dx* = dR, 

and by using the definition of stream function 

D) 

and by noting that 

F : ( I +  

dy* : ~ dy 

DR 

RYES! 

we can write (7) and (8) as 

qw 
k 

(2) 

(3) 

(4a) 

(4b) 

(5) 

(6) 

(7) 

(8) 

(9) 

(I0) 

(l l) 
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~y* ~x*~y* - ~ x *  ~y, ~ ~y, / 

a,~ ~_~g___ ~_k_~9 1___~____ F2 
~y* ~x* ~x* ~y* Pr ~y* ~y* " 

Equations (12) and (13) now can be expressed in similarity variables 

= x*, n : Y* 
(x*) F/T 

and by dimensionless parameters f(C,n) and G(~,n) defined by 

= (x*)4/Bf(~,n), g = (x*)I/5G(~,n) 

They become 

Here 

(12) 

~,n defined by 

(13) 

(14) 

(15) 

(bf") '  + ~ - f f " - 53 - ( f ' ) 2  + G = ~(f' ~ @f' - f "  ~-~Bf) (16) 

(cG')' + 54-fG ' - ~ f ' G  = ~(f' ~G G' @f) - ~ (17) 

b = l + An c = b/Pr 

The parameter A represents the slenderness of the cylinder and wi l l  be 

referred to as the transverse curvature parameter. I t  is defined by 

A = 2(x*)I/5/(Re) I/4 

(18a) 

(18b) 

Table l shows the derivation of the cylinder local Nusselt number, (NUx)cyl, from that of a f la t  

hlate, (Nux)f.p., for various values of A and Pr in tabular form. Here the ratio of two 
Nusselt numbers is found from 

Gw(O ) 
• = 

Calculated Results 

The solution of the system given by (]6), (17), (19) is obtained by an ef f ic ient  numerical method 

described in ref. (1). According to this method, at f i r s t  the governing equations (16) and (17) 

are written as a f i rst-order system. Then the derivatives are approximated by centered difference 

quotients and averages centered at the midpoints of net rectangles or net segments. A nonuniform 

grid described in ref. (2) is used in the n-direction. The nonlinear difference equations are 

solved by Newton's method using an eff ic ient block-tridiagonal factorization technique. For 

details see refs. (1) and (3). 

The boundary conditions (4) become 

n = 0 f = f '  = 0 G' = -l (19a) 
W 

n = n~ f '  = 0 G = 0 (19b) 
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TABLE 1 

Deviation of Local Nusselt Number of a Slender Cylinder Subject to Constant Wall Heat Flux 
From That of a Flat Plate for Various Values of Pr. 

A Pr=O. Ol Pr=O. 1 

O. 000 I .000 I. 000 

0.200 1.521 1.360 

0.275 1.627 1.367 

0.317 1.692 1.412 

0.437 I. 844 I .477 

0.502 l .939 I. 526 

0.693 2.161 1.631 

0.751 2.250 1.675 

0.796 2.301 1.700 

O. 914 2.444 l .  771 

1.099 2.654 1.872 

1.191 2.770 1.929 

l .262 2. 848 1.967 

l .  450 3.062 2.070 

I.  572 3.200 2.135 

1.741 3.391 2.226 

I.  888 3. 553 2.303 

2.000 3.681 2.363 

2.297 4.318 2.512 

2.491 4.221 2.615 

2.639 4.379 2.687 

2.759 4.515 2.749 

2.993 4. 764 2.863 

3.170 4.964 2.952 

(Nux) cyl / (N u x) f. P. 

Pr=O.72 Pr--1.0 

I .000 1.000 

1.294 l .283 

1.280 1.265 

1.315 I .299 

l .347 l .328 

1.379 I. 359 

1.439 I .412 

1.466 l .439 

1.481 1.451 

1.523 1.491 

1.583 1.545 

l 618 l .577 

1 640 I. 598 

l 703 I .655 

l 742 I. 692 

l 797 l .743 

1 843 1.787 

1 880 I. 82O 

1 970 I .903 

2 031 1.959 

2. 076 2. OOl 

2.114 2.034 

2.183 2.098 

2.237 2. 148 

Pr=lO Pr:lO0 

1.000 I. 000 

I. 231 I .  220 

1.203 I.  185 

1.231 1.207 

I .243 I .2 l l  

l .  263 1.226 

1.293 1.243 

1.310 ] .254 

1.316 1.257 

1.341 1.273 

1.372 1.291 

I. 392 1.303 

I .406 1.310 

1.441 1.333 

l .461 1.345 

1.493 1.364 

1.518 1.380 

l .539 1.393 

l .  589 l .  424 

1.625 1.445 

I.  650 l .460 

1.672 l .475 

l .  709 l .  497 

1.740 1.516 
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