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Abstract: The inclusion of longitudinal momentum transfers in the multiperipheral model is 
investigated. As recently pointed out by Jadach and Turnau, these longitudinal momentum 
transfers, if present, have a very large effect on properties of the model. In this paper we 
find that data rules out such effects. Furthermore, if the longitudinal momentum effects 
were present, they would in no way solve the serious problem with the multiperipheral 
model, that average multiplicity and elastic slope ought to be proportional, but experiment- 
ally are not. A multiperipheral model using transverse momentum transfers has fewer 
phenomenological difficulties than one using total momentum transfer. 

A powerful constraint on multiparticle models is the requirement that the model  
simultaneously fit relevant aspects of  both  multiparticle and elastic data; the elastic 
scattering is Calculated by unitari ty.  The multiperipheral model  has a serious diffi- 
culty with this constraint.  In this paper the effect of  longitudinal momentum trans- 
fers is investigated, and two main conclusions are reached: 

(i) Longitudinal momentum transfers do not help  solve the difficulty. 
(ii) Multiparticle data rules out using the entire momentum transfer, but is con- 

sistent with using only the transverse part, as the main variable on which the am- 
plitude depends. 

Recently,  Jadach and Turnau [1] pointed out a feature of  some versions of  the 
multiperipheral model  (MPM) which had been overlooked in several recent discus- 
sions of  the MPM [ 2 - 4 ] .  This feature is that the longitudinal momentum transfers 
provide the transverse momentum cutoff  in these versions. In the present paper, 
this feature i sexptored  from both theoretical and experimental  viewpoints. 

Several points are to be stressed: the phenomenon described by Jadach and 
Turnau involves a rapid dependence of  average transverse momentum on rapidity 
gap, which can easily be tested experimentally;  it is found that there is almost no 
effect. Even if  there were an effect, the random walk description of  the MPM would 
retain its validity. In particular, some peculiar features of  the CLA [5] model  are 
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simply explained by combining the phenomenon of Jadach and Turnau with either 
the random walk calculation [2] or the more accurate calculation involving the 
longitudinal momentum contributions [6,7]. Especially, I would like to stress that 
the proportionality in the MPM between average multiplicity and elastic slope is not 
at all modified by the phenomenon of Jadach and Turnau; this proportionality is in 
strong disagreement with the data. The phenomenon of clustering, if it exists, 
weakens the effect under discussion, and makes the calculations of refs. [2-4]  
more rrearly correct, although still not dominant. A multiperipheral model depend- 
ing only (or at least mostly) on the transverse momentum transfers (as considered 
in refs. [2-4])  is favored by the experimental absence of the Jadach-Turnau effect. 
We consider these points in some detail in what follows. 

We first review the effect [ 1 ]. The longitudinal momentum transfer of the ith 
rang of the MP ladder can be expressed as 

i n 

,L=_ (Me-Y_ ~mke-Yk) (Me-Y_ ~ mkeYk) ' (1) 
k=l k=i+l 

where M, Y are the mass and rapidity of the incoming particles (equal masses as- 
sumed. Y evaluated in the center of mass), and mk, Yk are the transverse mass, 
~ ,  rapidity the kth produced particle. and of 

In the approximation that all rapidity gaps are equal, that all mk's are equal, and 
that the link is far from the ends, eq. (1) reduces to 

e -d  
t L ~ - (mk)2 (2) 

(I - e - a )  2' 

where d is the average rapidity gap. In comparison, the "effective" transverse 
momentum transfer (when d is large) is given by [2] 

(tT)eff ~ -- ~ (mk)2. (3) 

("Effective" here means giving the correct relationship between <tT) and (mk)2; 
the small value of the pion mass squared is ignored.) The relationship between eqs. 
(2) and (3) is shown as a function of the rapidity spacing d in fig. 1. Two features 
are apparent: t L > t T for all d < 1.3 and t L varies extremely rapidly as a function 
ofd. 

If we now isolate one particle, k = K. letting its transverse mass M K and the 
rapidity gaps on either side of it, d+ and d ,  take on non-average values, eq. (1) be- 
comes 

~ t  L mkM K e-d++e-d- - + terms independent ofM K . (4) 
i (1 - e -d)  2 



F.S. Henyey, Multiperipheral model 437 

2O0 
100 
50 
zo 

Z 

~ ~0 
~ s  
~2  
F- 

.5 

~ ~  LONGITUDINAL 
w l - -  

X l  

i i i t I i i i i 1.0 2.0 
AVERAGE GAP SIZE 

Fig. 1. The relative impor tance  of  longitudinal  and transverse m o m e n t u m  transfers,  as the  func- 
t ion o f  average rapidity gap d. The ordinate is <tL)/<tTef f) = 2 e - d / ( 1  - e - d )  2 . For d < 1.3, 
longitudinal m o m e n t u m  transfer is more  impor tant .  

Because of the rapid dependence on d of eqs. (2) and (4), the presence of a de- 
pendence of the multiparticle amplitude on t L can easily be compared to experi- 
mental data. In a multiperipheral model one might expect dependence such as 

2a ~_, t i ( 5 )  IMI 2 "- l--I e2at i  = e i ' 
i 

where a might be a constant, or in a multi-Regge version, such as CLA [5], 

a - -~  In +const. . (6) 

If the rapidity gap is small,'and experimentally it is, t~ dominates over tT,'and the 
amplitude depends sensitively on the rapidity gaps. 

Experimental control over rapidity gaps can be obtained in (at least) two ways. 
The rapidity gap is approximately inversely proportional to the multiplicity, so the 
dependence on multiplicity can be examined. Alternatively, the actual charged 
particle gaps can be measured. Figs. 2 and 3 illustrate these comparisons. In fig. 2, 
!Pl  2) is plotted against multiplicity. The data shown is from the Michigan-Rochester 
100 GeV bubble chamber experiment at NAL [8]. Theoretically, from eq. (2), 

(1_e-d)2 
(7) 

t / e _  d ' 

where d is approximately inversely proportional to n. The actual curve drawn is 
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Fig. 2. Average transverse momentum as a function of multiplicity at Plab = 100 GeV/c. The 
Jadach-Turnau effect predicts a large <Pt 2) when the gap is large (low multiplicity) and a small 

2 <P~) when the gap is small (high multiplicity). The data is from the Michigan-Rochester bubble 
chamber experiment at NAL [8]. The "multiplicity" plotted for the data are ~ of the charged 
multiplicity. The small effect in the data might be diffaction (2 prong) and kinematics (16, 18 
prong). 
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Fig. 3. Transverse mass as a function of an appropriate combination (explained in the text) of 
the charged rapidity gaps on each side of the particle being observed. The data shown is from 
the Michigan-Rochester group [8]. The last bin had few events, and was averaged with the 
next-to-last. The data are consistent with no dependence on gap size, and inconsistent with 
anywhere near as large a role as expected for the longitudinal momentum transfer. 

calculated f rom a simplified fo rm o f  the CLA mode l  [5], described below,  bu t  the 

general e f fec t  is more  or less independen t  o f  details. 
In fig. 3, the average transverse mass in p lo t t ed  against an approjafiate combina-  

t ion o f  the charged rapidi ty  gaps on ei ther side. This variable is e - " +  + e - d -  , (see 
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eq. (4)) corrected for missing neutrals: 

rich 
- - a/do 

(e-d+_) = f e -a e 

0 d° 

1 +doe -(l+l/d°)dch 

1 + d  o 

- -da+  ? e-dC+he-a/d°d6 
dCh do 

(8) 

where d o is the average spacing between neutrals. Experimentally, d o ~ 1, which 
gives the variable used in fig. 3. The theoretical curve is calculated as follows: eqs. 
(2) and (5) imply 

e-d  1 = <t~> = <mk>2 (9) 
2a (1 - - e -d )  2 

Dividing this into eq. (4) we get 

MKZ 
~ t  L -  + other terms, (10) 

2a (Mk) e -d  

where 

Z = e - d + + e  - d -  ~ 1 +~ e-2d~h +1 e -2dc-h . (11) 

Putting this into eq. (5) we get 

from which 

2e -d  
(MK)= <ink) Z (13) 

(Recall that K refers to the observed particle while k refers to all of the other par- 
ticles.) We take d = 0.33, and from the data of fig. 3, read of f (m k) = 0.4. For com- 
parison we also show (M K) = constant, according to the hypothesis that the lon- 
gitudinal and traverse coordinates are independent. 

From figs. 2 and 3, it is clear that the data is completely inconsistent with the 
Jadach-Turnau effect. The slow variation in fig. 2 of the data can presumably be 
explained as the presence of diffractive events in the two-prong data, and kinematic 
effects at high multiplicity. The direct comparison of fig. 3 is entirely consistent 
with there being no effect of gap size on transverse momentum, and therefore little 
dependence of the amplitude on t L. 
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Although, as we have just seen, models including the Jadach-Turnau effect have 
serious difficulties when confronted by the experimental data, it is interesting to find 
out if their effect can help solve another difficulty, that of the elastic slope [2], and 
whether the random walk description of the MPM [2] is invalidated. 

The random walk description give a slope [2], 

BRW = ((n -- 1)×2R2), (14) 

where R is the step size, n is the multiplicity, and 

Je, 
X/ = Z _ ,  ~ • ( 1 5 )  

i =1  

The average is taken over] as well as over different events. The exact result, for an 
amplitude given by eq. (5), is [6] 

B = ((n - 1)xR2).  (16) 

In the multiperipheral limit × ~ 1, and eqs. (14) and (16) agree. In ref. [7] it is 
shown that the longitudinal momentum transfers give rise to a contribution (which 
adds to the slope) of 

B L = ((n - 1 ) ( × -  X2)R2). (17) 

Eqs. (14) and (17), added together give eq. (16), which provides a check of the 
approximations used in ref. [2]. From these equations, one finds 

BRW _ (X 2) 
B (X) ~" (X), (18) 

which is almost independent of energy. A reasonable value [7], consistent with ex- 
perimental data, is (X) ~, 0.8. Thus the random walk picture is not modified very 
much. The effect of Jadach and Turnau, if it were present, would however, serious- 
ly modify the value of R, as they point out [1]. 

They [1] found that the CLA model [5] has a curious property, namely, that 
the contribution to the slope decreases as a function of multiplicity. This is known 
as the "intuitive" dependence of multiplicity on impact parameter. They based an 
objection to the random walk picture on this property. On the other hand, they 
found that the Chew-Pignotti (CP) model [9] had the ordinary "multiperipheral" 
dependence. 

One distinction between these models, which is relevant to this point, is that 
the CLA model is a multi-Regge model, in which R depends on subenergies, while 
the CP model has R = constant. As the multiplicity increases, the rapidity gaps 
become smaller, and so do the subenergies. In the CLA model, 
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R 2 ¢z In (1 + Si ) ,  (19) 

(with S i in GeV units), so that the step size R decreases rapidly as a function of 
multiplicity. Thus, although the number of steps increases, the total distance 
walked decreases. 

This effect was verified in the following oversimplified approximation to the 
CLA model: for a given multiplicity, all rapidity gaps were set equal, and all sub- 
energies were set equal. Energy and longitudinal momentum were conserved. The 
transverse mass of the pions was determined by adding eqs. (2) and (3) (which is 
not an entirely correct prescription), and using (t) = 1/2a. This transverse mass is 
shown in fig. 2. The equations for energy momentum conservation, for transverse 
mass, for subenergy as a function of rapidity gap, and for R 2 were solved simulta- 
neously. The "partial" slope was calculated from eq. (16). (A "partial" slope is the 
slope of the contribution of the given multiplicity to the imaginary part of elastic 
scattering.) 

This simplification is not quantitatively accurate, as it does not properly treat 
end effects caused by the difference in pion and nucleon transverse masses. How- 
ever, as shown in fig. 4, it does exhibit the decrease of the slope with multiplicity, 
caused primarily by the extremely rapid decrease o fR  2. (X also decreases with 
multiplicity.) The magnitude of the decrease depends on the precise form o fR  2 as 
a function o f S  i. In particular, if the Regge scale S O were taken smaller than the 
(rather large) value of I GeV 2, the decrease would be less, or there would be an in- 
crease. In the limit S O ~ 0 (and a '  adjusted appropriately) the CLA model becomes 
the CP model. 

The principle conclusion of the second paper of ref. [2] is that, in the MPM, the 
elastic slope is proportional to multiplicity as a function of energy. The constant 
of proportionality is mainly R 2, which ban be varied by clustering, by including 
the Jadach-Turneau effect, or by including phases (including phases due to helicity) 
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Fig. 4. The slope decreases as a function of multiplicity in a multi-Regge model with a large 
value of So, because the random walk step size R decreases extremely rapidly. The curves are 
from a (very) simplified CLA model. 
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Fig. 5. Selected elastic slope [10] and multiplicity [11] data, showing that they are not pro- 
portional, contrary to the prediction of the multiperipheral model. The MPM predicts propor- 
tional straight lines for each of these. The lines shown are to guide the eye, and are not a fit, 
and are not predicted by any known model. 

Which make the uncertainty principle between impact parameter and transverse 
momentum an inequality. Thus the value of  the slope, at a single energy, only tests 
details of  the model. On the other hand, the energy dependence of the ratio between 
elastic slope and average multiplicity tests the fundamental assumptions of  the MPM. 
This ratio should be almost constant. Either in the models with [1 ] or without 
[2 -4 ]  longitudinal momentum,  the proportionality between the slope and the 
multiplicity will hold, provided R 2 and (X) are independent of  energy. Experimental- 
ly (×) ~ constant. Also experimentally the rapidity gap, evaluated at the~average 
multiplicity (not fixed multiplicity), is very nearly energy independent. Therefore, 
the multi-Regge dependence o f R  2 with rapidity gap does not modify the propor- 
tionality. 

The results of  the Monte-Carlo calculations of ref. [ 1 ] illustrate the proportion- 
ality. 

Nevertheless, experimental data are in violent disagreement with the propor- 
tionality, as shown in fig. 5. The average multiplicity varies much more rapidly 
than the slope. This difficulty remains the most serious phenomenological challenge 
to the multiperipheral model, and does not depend on whether or not longitudinal 
momentum transfers are present. 

The disagreements with the data shown in figs. 2 and 3 are not really in contra- 
diction with the fundamentals of  the MPM, although they do not rule out those 
versions on which most calculations have been performed. Only the large gap limit 
of the MPM is given by the fundamental assumptions. 
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In order to continue to small gaps, where the bulk of  experimental data is, a 
choice of  variables must be made. The momentum transfer variable can be t i, or t T, 
or any other variable which becomes equal to t i in the large gap limit. Some physics 
prefers t i, for example the existence of  t-channel particle poles and thresholds. Other 
physics prefers t T, for example absorption and double spectral function effects. 
Still other physics is not yet well enough understood to make a choice, for example, 

S a.(ti T) should be used in the Regge pole formula. whether S~(ti) or 
Therefore, no compelling theoretical choice can be made. However, as shown in 

figs. 2 and 3, a compelling phenomenological choice is made. The correct variable 
is much closer to t T than to t i. The authors of  refs. [ 2 - 4 ] ,  accepting the common 
lore that longitudinal and transverse coordinates are independent, chose t T as the 
coordinate. The data shown in figs. 2 and 3 justify their choice. 

In summary: 
(i) The Jadach-Turnau effect, if it were present, would be very strong. 

(ii) It is ruled out by the data, which are consistent with no dependence of  trans- 
verse momenta on rapidity gap. 

(iii) If  it were present, it would not seriously modify the random walk picture 
of  the multiperipheral model. 

(iv) It would not help solve the problem that the multiperipheral model predicts 
a proportionality between (n} and elastic slope, in contradiction to experiment. The 
energy dependence of  the ratio of  elastic slope and average multiplicity is a test of  
the fundamental assumptions of  the MPM. The MPM requires a constant ratio, 
while the data show a very rapid variation. 

(v) The transverse part of  the momentum transfer is a better variable to use in 
the multiperipheral model than the entire momentum transfer. 

I am grateful to A. Seidl for providing me with the data shown in figs. 2 and 3, 
and to G. Kane for a careful reading of  the manuscript. 
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