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Solution of a non-linear equation 

(Received 2 February 1974) 

Dear Sirs, W. R. PATERSON 
In a recent paper, Shacham and Kehat[l] discuss the Department of Chemical Engineering, 

problem of solving a single non-linear algebraic equation. Unioersity of Edinburgh, 
They present the following convergence criteria (their King’s Buildings, 
notation and equation numbers)- Mavfield Road. 

(7) 
Ediburgh Ek93JL, Scotland 

fcG+,) x f(Xi) < 0. (15) 
Thus convergence is deemed to have occurred when two 
successive iterates are close together and bound the root. 
The authors state that criterion (15) is not used in the 
chemical engineering literature. It would appear that they 
may have overlooked two algorithms which make use of 
(15), namely the Rule of False Position[2] and Cox’s 
method[3], both of which exhibit superlinear con- 
vergence[4] and have been successfully applied to 
chemical engineering problems [5,6]. 

If the comparison of algorithms had included these two 
techniques the advantages of the authors’ novel al- 
gorithms might have been demonstrated more clearly. 
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Non-iterative solution of a boundary value problem 
in reactor design by parameter differentiation 

(Received 18 September 1973; accepted 20 November 1973) 

In this letter the method of parameter differentiation is 
applied to the solution of the nonlinear, two-point bound- 
ary value problem governing the concentration of reactant 
in an isothermal tubular flow reactor. Starting from a 
given set of solutions of the differential equation for a 
particular value of the reaction parameter R, solutions for 
a range of values of R can be obtained by this method 
noniteratively. Although the method has been discussed 
in general form in Ref. [l], it is felt that its usefulness has 
not been emphasized; especially its application to other 
engineering problems has already established that it is as 
convenient and simple as the method of transformation 
groups of Ref.[2]. 

Consider the isothermal packed-bed reactor in which a 
chemical reaction of the form 

A+A+B (1) 

takes place. Assuming negligible influence of the packing 
on the reaction except for its contribution to the axial mix- 
ing, the nondimensional differential equation for the frac- 
tion, y, of the reactant A remaining is of the form: 
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subject to the boundary conditions: 

s =o: dy(O)=o 
ds 

s=l: I++++$ 

To apply the method of parameter differentiation, we 
have to identify initially the parameter to be differen- 
tiated. For the problem under consideration, we are look- 
ing for solutions of Eq. (2), subjected to the boundary 
conditions (3) corresponding to a given value of N,. and a 
given order of reaction, n, for a range of values of R. The 
parameter is therefore identified as R. 

Differentiating Eq. (2) and its boundary conditions (3) 
with respect to R, we get: 

3 + N,. $- N,.Rny”-‘f = W.Y * (4) 

and the boundary conditions: 

where f is defined as: 

f=dy 
dR 

Equation (4) is now linear and can be separated into two 
initial value problems as follows: Let 

f=F+hG (7) 

If we identify 

A = f(O) (8) 

then Eq. (4) can be separated into the following equations: 

$+ N,.g- N,.Rny”-‘F = N,.y” (9) 

F(0) = 0, y = 0 

$+ N,.g- N,.Rny”-‘G = 0 (10) 

G(O)=l, y=O 

The value of A can be evaluated by using the boundary 
condition at s = 1, which gives: 

N,.F(l) + dF(l)/ds 
- * = N,.G(l) + dG(l)/ds 

(11) 

The solution procedure can be illustrated by an example. 
Consider the solutions of Eq. (2) for N,. = 1 and n = 3 
and a range of R from R = 0.1219 to 2.5, with the solu- 
tions of Eq. (2) for R = 0.1219 given as: 

R = 0.1219, y(O) = 09058 

It should be noted that, in applying this method, the solu- 
tions for one value of the parameter is needed as a 
starting solution. With this in mind and with the function 
y(S) in Eqs. (9) and (10) known, Eqs. (9) and (10) can now 
be integrated for R = 0.1219 + AR to give F and G along 
with their derivatives. These values can then be used to 
evaluate h from Eq. (11) and subsequently f from Eq. (7). 
As a final step, integration of Eq. (6) yields the solution of 
Eq. (2) for R = 0.1219+ AR as follows: 

Y(S)1 = Y(S)1 +f(s)l . AR 
R = O.l219+AR R = 0.1219 from Eq. (7) 

This procedure can be repeated to calculate the solutions 
of Eq. (2) for R =O.l219+2AR, 0,1219+3AR,. . . , etc. 

Based on our experience in this method, we found that 
a high degree of accuracy can be obtained using this 
method when AR does not exceed a one percent of the 
range of R being studied. In our case we investigated a 
range of R from 0.1219 to 3.9128 for n = 3,2, f, and N,. = 
1, 2, and 5 and found that our results are essentially the 
same as those obtained from the transformation group 
method. The choice of R = 0.1219 as our starting solution 
was made simply because such a solution was available to 
us. Other starting solutions can be used including the one 
with R = 0. 
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