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Abstract-- .A new type of trtal solution which differs from the usual linear combination of 
approximating functtons is considered. It tn\olves modif>in p the approximating functions with 
“form functtons:” functtons contatmng undetermined parameters appeanng non-linearl). the 
proper choice of which provide a closer approxtmutton to the large local curvatures which appear 
in some non-hnear prohlems. In this paper the “form function” approximation is demonstrated for 
stead!-state solutions of the Dufhng equation This equation arises in the problem of non-linear 
\thration of buckled beams and plates. It is shown that the stability behavior of these steady-state 
solutions is so\erned by a Hill equation. It is found that the “form function’. approximation gives 
nottceabl! hettet- numertcal results than. for example. those giben by the harmonic balance method. 
The method also provides additional insight into the non-linear behavior. particularly in the IOU 
frequent\ response reyon. 

I. INTRODUCTION 

In applying the method of weighted residuals.[l] e.g.. Galerkin’s method, method of least 
squares. etc.. to non-linear structural mechanics problems. one must first assume a “trial” 
solution. Generally this trial solution is a linear combination of a set of approximating 
functions (multiplied by unknown coefficients). all of which satisfy the necessary constraints 
in the problem. Such a linear combination has the strong advantages of simplicity and 
existing formalism. [ I] In certain problems. however. it can be inadequate numerically. One 
such example is a class of problems which exhibit large local curvatures in the dependent 
variable or variables. $ Solutions in these large curvature regions using a linear combination 
of approximating functions are often either poor (particularly derivatives of the solution. 
e.g.. stresses) or require adding many terms. usually requiring significant effort. There 
appears to be no systematic study in the literature of other types or combinations of 
approximating functions which might be useful for such problems. 

In the present paper a type of trial solution is proposed which is both efficient in such 
situations (at least for the problems investigated to date) and useful in terms of gaining 
additional insight into the non-linear behavior. It involves modifying the usual trial solution 
with “form functions:” functions containing unknown parameters appearing non-linearly 
the proper choice of which approximate the desired local effects. Details are included in 
the following section. 

The particular problem for which the method will be applied is the forced. steady state 
response of the following form of Duffing’s equation; 

d’; 
ds’+ptl -;.1:+g3 = F(r) (11 

+ Present11 \vtth Ltght Truck Design 4nalysis. Ford Motor Company. Dearborn. Michigan. U.S.A. 

+ Consider spectficall!. sa!. beams plates ha\ing concentrated loadmgs and vanishing flexural rigidit! + 
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where F(r) is periodic. An equation of this type arises in the non-linear vibration of 
beams/plates subjected to axial/membrane loading. see [2. 3.41. In the base of beams for 
the value ,? = 1. the axial load is the static buckling load while for i = 0. the axial load 
vanishes and for E_ > 1 the beam is vibrating in a post buckled state. 

Note that two motions are physically possible in the post buckled case, a one-sided 
vibration about the buckled configuration and a dynamic snap-through. In its present 
form equation (1) pertains to the dynamic snap-through response. 

The purpose of the present paper is to provide an alternative approach to the methods 
currently used for obtaining periodic solutions to the above equation. see [5.6.7], which is 
particularly useful both numerically and for gaining additional insight into the non-linear 
behavior. It is also pointed out later that this approach is useful for other similar non-linear 
problems. 

II. “FORM FUNCTION” ,\PPROXIMATION 

Exact solutions to equation (1) for a general forcing function do not exist. Exact solutions 
are available in terms of elliptic functions. however. for both the homogeneous equation. 
Burgreen.[8] and for forcing functions of the elliptic type. Iwan[9] uses this latter result 
in an “equivalent equation” approach. i.e.. an equivalent (auxiliary) differential equation for 
which a known exact periodic solution exists is defined and the difference between the two 
equations minimized. A more direct approach is considered here. We look for an 
approximate solution of the form 

4(r) = ,j Gi(T; ki,. . . klj)ri(T) (3 

where ri(t) are terms of the usual periodic approximation. generally trigonometric. The 
G(s can be thought of physically as “form functions.” which are capable of reflecting local 
effects (e.g., large curvatures) in the approximation by proper adjustment of the as yet 
unknown parameters kij. In effect. the functions Gi improve the convergence of the series. 
Two questions arise. How are the functions Gi generated and once found do they represent 
an efficient approximation in the various approximation schemes. The first question is the 
more difficult from a theoretical viewpoint and is only partially answered in the present 
paper, while the second (and major thrust of the paper) is dealt with in detail in the 
following sections. 

To demonstrate the generation of the G,‘s. we consider the first term of the series (2) 
with G1 dependent on a single parameter k. Thus+ 

<(r. k) = Gls; k)<(s) (3) 

We further consider F(r), = Bcos UK. where B. (~1 are given. For this forcing function we 
chose t(r) = Acostor: A is an unknown amplitude. This is the usual lead term in the 
harmonic balance method. If equation (3) is substituted into equation (1) the following 
residual R results 

R = 
! 

G-~o~G+p(l--i)G-+ 
! 

Acosr!~~-Ir,,ACisinr,,r+qA’G3cos3r,r,.-~. (4) 

The following integral. which is a measure of the error. is defined, 
ZRSCJ lnrw 

J= 
!’ 

R’dr = 
i 

F(t. G. G. %) dz (5) 
0 Y 0 

t Subscripts are dropped to simplify noration. 
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A necessary condition for J to be a minimum is that it satisfies the Euler equation, i.e., 

Substituting equations (4) and (5) into equation (6) the following non-linear differential 
equation in G results 

Ccos ~07 -4&sin (07 + 2[ - 3t02 + I)( 1 -I.)] % cos m 

+41o[~~--p(l -i.))Gsin~ + [w’ -I)( 1 -i)J2G COSWT +; [to2-p(l-i:jJcosu7 

+ 34 [2t02 cos CUT sin’ (UT - 2~’ (30s~ WT + jn( 1 -i,) cos3 COT] G3 

- 8to cos' COT sin torG”G + 2 cos3 to7GG2 +2cos3 CNG’% 

-~cos~wTG~+~A~cos~wTG~ s A2 = 0. (-0 

Boundary conditions for G are 

G(7, k) = 1 at 7 = 0. n/w 

QT. k) = 0 at 7 = 0. n!cL, 
(8) 

In addition to periodic&y of G. we expect (for the snap-through vibration) symmetry about 
7 = 0. Ttl’2W. 7L!eJ. 3x:2to, 2ni0J. . . . . 

A closed form. analytic solution for G is not available. Instead. we look for a perturbation 
solution (q << 1) of the form 

Gfs. A) = 1+kj(?f+k2g(7)+... (9) 
with 

x- = alq+a2q2+ ..I (10) 

and ,f(r), g(7). . . . are functions to be determined. If the solution is expanded about the 
linear, natural frequency Q’JT( 1 -i.).t and further if B is assumed smalLthen 

If equations (9)-(U) are substituted into equations (7). (8) and the results ordered in powers 
of q, the following boundary value problems in f(7). g(7) result (carrying the solution 
through two terms): 

4 I - ycos 0~ + 4to.Tsin iu5 + 4t02_j^ cos (07) -2w2A~~3~~~~~7sin2wr-cos”wr} =0 (13) 

a: { lj’cos COT - 4tog’sin ~97 - 40~’ g cos OJT> 
+az~‘coswr-4a~~~,~sin~~~-~4~~~~2+2a,h, -6alA’ COS~OT~~COSW~ 

+ {4ulb, ro-24a,rt~cos” ws]fsin WT+ {18a1~~’ sin2 o7-6~~~~ COS’ cc~7)A~j’c0sw 

+ {b: i- b, cl 1. cos (tts - {4hl A + 3c, )A cos3 WT + 3A4 cos’ 07 = 0 (14) 

+ Note that this is valid for 0 < i < 1 oni! 
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with 

f‘(r) = 0. $1(T) = 0 

flr)=O, $j(r)=O 
at T = 0. Z. ('1 

The solution to equations ( 13). ( 15) can be shown to be 

f’(t) = -sin’ (‘1~ 

.-I2 
(11 = --i 

801- 

t 15) 

(16) 

With f’(5), LIP known, equations (14). ( 15) can be solved to give 

with a2. h,, cl determined from the following two coupled. non-linear algebraic equations 

For a given forcing function. i.e., fixed L’~. equations (18) admit two sets of solutions for 
a2. h, while aI is determined uniquely from equation (16). The form of G(r. k) is also 
determined uniquely 

G(T. k) = 1 -k sin’ CIX + ki sin‘l(‘)r + ( 19) 

As discussed previously. what is ofinterest in the above arguments is not the perturbation 
solution per se. but the form of G(T. k). equation (19). G(r. k) will be used directly in 
equation (3) with k an unknown parameter to be determined by whatever approximation 
scheme is chosen. Since the full non-linear range is of interest. G(s. k) in the form of equation 
(19) will be replaced by a function with the same asymptotic behavior. Functions which 
suggest themselves are [l + ksin2 CM-’ and for a limited range e-hbln’tJ;. The choice of 
function is now governed by its behavior for large non-linearities and such practical 
questions as ease of integrability in the approximating scheme. etc. For these reasons. 
e-‘sln’i,‘r will be used. Additional work is underway using asymptotic methods to establish 
further criteria for selecting the Gi’s. 

The form function G(7. k) = e-islnLc~J- has several interesting features. It has the capability 
ofintroducing large curvatures at ('17 = 0. TC. ~TC.. . shown by the Jacobian elliptic functions 
in the exact solution (free vibration case). see [8]. Large local curvatures can also be viewed 
as the appearance of higher harmonics. Note that although the approximation. equation (3). 
is a two parameter approximation it contains the higher harmonics and thus should provide 
better accuracy than the usual two term harmonic balance (for comparable numerical 
effort). Although G(7. k) is established formally only for y CC 1. the numerical results obtained 
indicate a much wider range of validity. The only exception to this is the low frequency 
forced response where the higher harmonics enter strongly.[ lo] Here the approximation 
(3) yields good results in an averaged sense. i.e.. a-reasonably accurate amplitude frequency 
plot. but it does not capture ali of the response details. Additional terms of series (2) are 
needed here. 
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111. RESPONSE 

Consider equation (1) with F(r) = BCOSC~T. We seek an approximate periodic 
of the form. 

T(r) = A ,-~sin’0Jr cos (UT 

If equation (20) is substituted into equation (1). the following residual results 

R(5) d2r = p+P(1-i.){+q~3-hOS~C)T. 

To minimize R(r) with respect to A. k. the method of weighted residuals is used 

1 

2n,w 

R(t)cdr = 0 
0 

s 

2X!O - 

0 

R(@$di = 0. 
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solution 

(20) 

(21) 

(22) 

(23) 

The weighting functions {. c’R/?k correspond to Galerkin’s method, and the method of least 
squares respectively. Note that the non-linear appearance of k in equation (20) imposes 
limitations on the choice of weighting functions. Although alternatives to equations (22) 
(23) exist, these are used because of the resulting simplicity. 

Substituting equation (20) into (21) and then (21) into equations (22). (23) the following 
coupled transcendental equations in A. k result 

-A{[w2(k+ 1)-~(1 -i.)]z,(k)+ [to2(k- I)-~(1 -;.)]z,(k)} 

-B[zo(;)+zI (;)I = 0 (24) 

+[~~2(;-&$)+~(l->.)(;-$)]zI(2k)~ 

-R’qB[;.zc,(;k)-(&$j~l(;kj] 

-A 
i[ 

to”(12k+2)+2w2p(I -i.)+p2(1 -i)2k 1 z,(k) 

-[c+k+4+;)+~2~(l-+t+;j]zI(k)} 

1 
+ 2B[(*J2 -p(l --jL)] - z1 

k 
(25) 

where z~(s) = e-“l,(x) and zl(s) = e-“1,(.x); I,(x). II(x) are modified Bessel functions of 



order zero and one respectively. Equation (24) is the counterpart to the visual amplitude 
frequency equation. Note that as k -0. this reduces to the usual one term amplitude 
frequency equation of [2]. Equation (25) is needed to establish k. however. it has no 
particular physical interpretation. Solution of these equations establishes the response of 
the system. 

The logic used in solving equations (24). (25) is as follows. Equation (24) is a cubic 
equation in A and has either one or three distinct real roots except for a single point in the 
frequency spectrum (W = w*) where it has two distinct roots (see Fig. 1). CS)* is first located 

- FF approx. 
--- Cosme app 
- Unstable res 

Fig. 1. Frequency-response curves for i. = 0 

using the properties of cubic equations. The Newton-Raphson method[ 1 I] is used to find 
A. k for both regions u < (I)*, w > OJ*. For CI > UJ* three sets of A. k are obtained. The 
upper branch is found by extrapolating the A. k solution for (!J < co* and using these 
values as initial guesses in the iteration scheme. Once the upper branch is found the tirst 
equation can be reduced to a quadratic and the latter two branches obtained in a 
straightforward manner. This algorithm is quite efficient. as demonstrated by convergence 
to four significant figures in less than six-seven iterations. 

Numerical results are obtained for a variety of cases and are shown in the figures. 
Figures 1. 2 and 3 are amplitude-frequency curves for i. = 0, 1.2 respectively. Shown are 
the present approximation and the usual one term approximation ck = 0). Exact results in 
terms of Jacobian elliptic functions are available for the free vibration case for j. = 0. 1.2.[5] 
These are indistinguishable from the present results. Several important features emerge. .As 

E. increases, the difference between the two approximations also increases. This is due to 
the deviation of the 5. T response from the cosine function, e.g.. see the 2’. r inset plots on 
Figs. 1. 7 ’ and 3. This effect is maximum in the forced. low frequency. (‘J < , p. response 
region where many approximation schemes have difficulty. see [ 171. Note. for example. the 
smooth behavior of the cosine approximation on Figs. I. 7 and 3. The correct response. 
however. contains strong higher harmonic components[ lo] which cause the “bump” in the 
curve at low frequencies. It should be pointed out that the present approximation is also 
in doubt for tc) =? 0.4, p. This is due to the limited two parameter (.-l. k) approximation 
assumed. i.e.. all harmonies are represented but are not linearly independent. This region 
can be extended by considering a more general approximation. see equation (3). 
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Fig. 2. Frequent! -response curves for i = 1 
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Fig. Ii. Frequent! response curbes for ,. = 7 

Important information concerning the non-linear behavior and the changing form of the 
<. 7 response can be deduced directly from k. Figures 4. 5 and 6 are plots of k vs forcing 
frequency for i = 0.1 and 2 respectively. As (‘J increases. k tends asymptotically to the free 
vibration k values (for the p. 9 parameters chosen) for all /, and B. indicating little change 
in form at high frequencies. Note. also. that k becomes large for low frequencies indicating 
the strong effect of the higher harmonics. 

Accuracy of the method is considered in two ways. Where exact results exist. as in 
certain cases of free vibration. the approximation is identical to the exact results to the 
fourth significant figure for the entire range considered. 0 < P) < 4.5, p. 0 < i. < 2. Note 
that the system considered is strongly non-1inear.t For the forced response (no exact 

+ The numerical values of p. ~1. B. i used in the computauons arc 1lstc-d on the figures. 
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Fig. 3. Form parameter k vs frequency w \. J’ for i. = o 

Fig. 5. Form parameter k YS frequency fc, , p for 
/. = 1. 

0 06k 
\ 

FIB. 6. Form parameter k vs frequency w ~ p for 
1. = 2. 

results available), comparison of the present approximation is made with the cosine 
approximation. The square ofthe residual is summed over one cycle. equation (51, for several 
representative points in the ampiitude frequency spectrum for both approximations and the 
results presented in the table below. Note that the present approximation is in general two 
orders of magnitude better. 
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Table 1. Comparison of form function. costne. approximations 

,_ 
\P branch 

FF .A C.4 FF-2 CA FF.4 CA 

0,s 
I N.S. N.S. I.7 X lo- l3 1.7 X lo- ” 4.6 x IO-” 6.3 x IO- I” 
3 N.S. N.S. N.S N.S. N.S. N.S. 

0 ~~~ - ~~~- -~~ ~-~ .~~~ ~~ ~~~~~~ ~~~ ~~~ - ~~~-~-- ~~~- ~~ 

74 I 58 * IO-‘2 ‘.0x10 ” 8.0 X 10. ‘2 2.4 X lo- 4 2.9 X 10-r’ 5.3 X lo-“ 
3 N.S. N.S. 2.0 X lo- 12 2.4 X lo- u N.S. N.S 

0.8 
I I.4 x IO-” 3.6 x IO- I2 I.8 Y 1W’~ 7.6 X lo- ” 5.4 X IO- ‘(’ I.1 X IW ‘i 
3 N.S. N.S. N.S. N.S. N.S. N.S. 

1 

3.0 
1 I.1 X lo- Ii 2.8 X lo- 4 1-4x10-” 3.3 X lo-” 3.2 X 10-l’ 54 x lWq 
3 N.S. N.S. 2.6 x IV” 3.3 X lKU I.1 X lo-‘” 5.4x lo-” 

0.X 
I I.4 X 10. ‘2 6.2 X IO-” 9.3 X lo- 12 2.4 X IO- iil 6.3 x lO- lo 1.7 X lo-’ 
2 N.S. N.S. N.S. N.S. N.S. NS 

2 

3.0 
1 I.8 X IO- 1’ 3.8 X lo-” 2.2x10-” 4~4xlo- u 4.8 X lo- 11 6.8 x IO-” 
3 N.S. N.S. 3-7 X to- I2 4.4 X lo-” I.? X 10. I(’ 68 X IO-” 

Note: FFA is the form function approximation. C.A is the cosine approximation: N.S. is no solution. Solution 
branches are numbered with decreasing amplnude. 

IV. STABILITY 

The assumed steady-state solution. equation (20). represents a periodic state of 
equilibrium. The physical existence of this solution depends on its stability; which will now 
be considered in the classical manner: we let 

C(r) = &.,(s)+f~(T) (26) 

where rl(s) is a small perturbation of the assumed steady-state solution <Jr). Substituting 
equation (26) into equation (1) and neglecting higher-order terms of q(7). we obtain the 
following variational equation for q(r) 

d’ll 
~+[pil-i)+3qAZe-‘~sin~‘i’cosZ(,)T]?(T~ = 0, (27) 

Since the coefficient of the IT(T) term is periodic. equation (27) is a form of Hill’s equation. 
If the solution. I!(T). is bounded. the corresponding steady-state solution 437). is stable. 

Equation (27) can be put into a standard form. see [6]. by introducing the change of 
variable r = WT and expanding the periodic coefficient into a Fourier series in the interval 
0 < T < 271. i.e.. 

d211 
x + 0” + 2 f o,, cos 2nr i/(T) = 0 

Il=1 1 (28) 



where 

(29) 

In the cases under consideration here. the series 

converges rapidly. and it is sufficient to retain the first four terms. 
By the use of Floquet’s theory and a method similar to Whittaker’s method for solving 

Mathieu’s equation. see Ince.[l3] higher-order solutions of equation (28) in the first three 
unstable regions are calculated. These are tabulated in Appendix II of Hayashi,[6] and the 
results can be used to establish the values of H,, on the first three sets of boundaries 
separating the regions of bounded and unbounded solutions. 
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where the numerical superscripts represent the orders of the unstable regions. and the 
subscripts I and I’ stand for their left and right boundaries respectively. In addition we have 

(j(i) < ()b’i’ 1) DT . j=I 7 . _. . . . 1311 

where this condition does not hold. rCf_” assumes the value O$. 
Note that there exists two simplified stability analyses for the Hill equation. In the first. 

higher order terms of 0,, in equation (30) are neglected. This leads to linear stability 
boundaries in the No. & plane. These results can lead to erroneous stability predictions in 
certain regions of the amplitude frequency plot. In the second case. 0, is much larger 
numerically than 0,,. n > 1. The Hill equation simply reduces to a form of Mathieu’s 
equation. the stability properties of which are well known. 

In the present study. however. neither approximation provides sufficient accuracy. An 
algorithm based on the full form of equati.on (30) is used. The values of &, and 0,,‘s are 
obtained for a given point in the frequency-amplitude space. The calculated value of fl, 

(response point) is then compared with f1,[ ‘ik. fll;‘,’ and is in the Ph unstable region if 

(72’ < fro < rg i=lT . _. . . . (321 

except for the low frequency range consideration of the first three unstable regions. 
i = 1.2. 3, is sufficient. Results of the stability investigation are shown on the amplitude 
frequency plots, Figs. 1-3, i.e.. unstable response points are flagged. 

V. CONCLUSIONS AND DISCUSSIOh 

A new type of approximating function has been used to determine the steady-state 
response and stability of the forced Dufing equation. This function has two important 
features. It is capable of exhibiting large curvatures and due to the non-linear appearance 
of the unknown parameter the “form” can change throughout the non-linear range. Thus 
single term (two parameter) solutions provide very accurate results throughout the 
non-linear range. In terms of numerical effort. a comparison with the harmonic balance 
method. for example. indicates that for equivalent accuracy the form function approach 
requires less effort. This is due to the presence of all higher harmonic components in the 
form function approximation. 

The form function approximation has currently been used in the solution of the above 
mentioned problem and the large deflection of plates. [ 141 It is felt. however, that there are 
many mechanics problems for which the method would be useful. namely those in which 
the dependent variables undergo large and changing curvatures in the non-linear range. 



There are several areas of future investigation. Additional rationale is necessary for 
narrowing the selection process of the ~3,‘s. This is being investigated through the use of 
asymptotic methods. Also. it should be pointed out that for the current class of problems 
investigated the location of maximum curvature are known. For many physical problems 
of interest this is the case. When indeterminate. however. it is not clear at present how to 
choose the form function. A possible approach is to consider the position as yet another 
unknown parameter. The space and time problems mentioned above can also be combined 
to solve the complete problem of the non-linear vibration of buckled beams,plates. This 
problem is currently under investigation. 
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Zusammenfassung - Eine neur .Art ion Versuchsitisungen wird untersucht. die bich bon den iiblvzhen 
Linearl\omblnatl[~ncn bon ~\nn.~herungsl’unl\tl~~~~~~~ unterscheiden. Dab Vcrfahren belnhaltct dte 
Abhndcr:lng drr Ann;iheI-ungsfilllhtl~~ncn durch “Formfuni\ttn~n”. dir nichtlinrar auftrctrndr 
unbestimmttt Parameter enthaltul. DIG rlchtlse Wahl dlesrr Parameter ergibt ane hessrre 
Ann;ihcrung fiir dw posscn iirtlichen Krummungw. die In txmgttn mchtlinraren Problemen 
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auftreten. In dteser Plrbeit wird die Annaherunp durch “Formfunktronen” fur die stationaren 
Liisungen der Duffing-Gleichung demonstriert. Dtese Gletchung tritt bei nichtlinearen 
Schwtngungen ausgeknickter Trager und Platten auf. Es wird gezeigt. dass das Stahilitatsverhalten 
dieser station&-en Liisungen durch die Hillschc Gleichung beschrieben wird. Es zeigt sich. dass die 
Annaherung durch “Formfunktronen” merklich hessere numerische Ergbnisse liefert als die z.B. 
mit der Methode des harmonischen Ausgletchs erhaltenen. Die Methode gestattet such ein besseres 
Verstandnis von nichtlinearem Verhalten. hesonders im Gebiet niedriger Frequenzen. 

AHHorauwr- PaccMarpt4samrca npa6nweHHbre pellreHnn HOBO~O TAna,oTnnqawuwecs 0~ 

06bIYHo ynorpe6nneMbrx nt4tleiiHbrx Ko364Hauefi annpoKcwwipyKurtx +y~~tWi. B HOBOM 
MeTODe allllpOKCHMHpyIOlUl4e @yHKUWi MOLIH$WUpyHJTCR lTpL4 IIOM0l.W W$yHKUAfi(POpMbl)); 

+~HKUW. conepmauwe HeorrpeneneHHble naparderpbl BXO!WT Henmieibio, H coorsewrsy- 
IOLWih wx Bbl60p 06eCtIeWBaeT 6onee TOVHYIO annpoKcHMauMIO npw 6onbmux JIOKanbHblX 

KPHBH3HaX, KOTOpble BO3HHKaIOT B HeKOTOpbIX HenHHefiHbIX 3anaYaX. B DaHHOfi pa6oTe 

annpoKcuMauun +YHKUHIMH @opMbw neMoHcTpHpyeTcn Ha npsMepe cTawoHapHor0 

peU.IeHHFl ypaBHeHHn Ay+l$,UHra, KOTOpOe OITllCblBaeT HenHHeiiHbIe KOne6aHW4 6anoK H 

IWlWTMHOK nprr noTepe ~CTORYMBOCT)I. noKa3aH0, LLTO yCTORWBOe noBe3ewie 3THX CTB- 

UBOHapHblX peIUeHAti OIIHCbIBaeTC8 ypaBHeHHeh1 XWIna. 06HapyxeH0, YTO aITl-ipOKCHMaUHFi 

~<~yHKUWflMH S$OpMbl)) ,,prlBOiWT K PHaYHTenbHO JIy'U.UHM YACneHHblM pe3y,IbTaTaM, YeM, 

Hal-tpHMep, pe3ynbTaTbl,IIOnyYaeMbIe II0 MeTOny rapMOHWieCIiO~O 6anaHca.fiaHHbIB MeTOA 

DaeT TaKIe nO,,OnHElTenbHble CBeLleHBR 0 HenHHefiHOM IlOBeIleHWi, B YaCTH0CTU.B o6nacTrr 

HH3KIIXYaCTOT. 


