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Abstract — A new type of trial solution which differs from the usual linear combination of
approximating functions is considered. It involves modifving the approximating functions with
“form functions:” functions containing undetermined parameters appearing non-linearly, the
proper choice of which provide a closer approximation to the large local curvatures which appear
in some non-linear problems. In this paper the “form function™ approximation is demonstrated for
steady-state solutions of the Dufling equation. This equation arises in the problem of non-lincar
vibration of buckled beams and plates. It is shown that the stability behavior of these steady-state
solutions is governed by a Hill equation. It is found that the “form function™ approximation gives
noticeably better numerical results than. for example. those given by the harmonic balance method.
The method also provides additional insight into the non-linear behavior. particularly in the low
frequency response region.

[. INTRODUCTION

In applying the method of weighted residuals.[1] e.g.. Galerkin’s method, method of least
squares. etc.. to non-linear structural mechanics problems. one must first assume a “trial”
solution. Generally this trial solution is a linear combination of a set of approximating
functions (multiplied by unknown coefficients). all of which satisfy the necessary constraints
in the problem. Such a linear combination has the strong advantages of simplicity and
existing formalism.[ 1] In certain problems. however. it can be inadequate numerically. One
such example is a class of problems which exhibit large local curvatures in the dependent
variable or variables.} Solutions in these large curvature regions using a linear combination
of approximating functions are often either poor (particularly derivatives of the solution,
e.g.. stresses) or require adding many terms. usually requiring significant effort. There
appears to be no systematic study in the literature of other types or combinations of
approximating functions which might be useful for such problems.

In the present paper a type of trial solution is proposed which is both efficient in such
situations (at least for the problems investigated to date) and useful in terms of gaining
additional insightinto the non-linear behavior. It involves modifying the usual trial solution
with “form functions:™ functions containing unknown parameters appearing non-linearly
the proper choice of which approximate the desired local effects. Details are included in
the following section.

The particular problem for which the method will be applied is the forced. steady state
response of the following form of Duffing’s equation;

a
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+p(l=7)E+gE = F(1) (1)

o

dr

+ Presently with Light Truck Design Analysis. Ford Motor Company. Dearborn. Michigan. U.S.A.
1 Consider spectfically. say. beams plates having concentrated loadings and vanishing flexural rigidity.
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where F(t) is periodic. An equation of this type arises in the non-linear vibration of
beams,/plates subjected to axial/membrane loading, see [2. 3.4]. In the base of beams for
the value 4 = 1. the axial load is the static buckling load while for 4 = 0. the axial load
vanishes and for 4 > | the beam is vibrating in a post buckled state.

Note that two motions are physically possible in the post buckled case, a one-sided
vibration about the buckled configuration and a dynamic snap-through. In its present
form equation (1) pertains to the dynamic snap-through response.

The purpose of the present paper is to provide an alternative approach to the methods
currently used for obtaining periodic solutions to the above equation, see [5, 6. 7], which is
particularly useful both numerically and for gaining additional insight into the non-linear
behavior. It is also pointed out later that this approach is useful for other similar non-linear
problems.

II. "FORM FUNCTION" APPROXIMATION

Exact solutions to equation (1) for a general forcing function do not exist. Exact solutions
are available in terms of elliptic functions, however, for both the homogeneous equation.
Burgreen.[8] and for forcing functions of the elliptic type. Iwan[9] uses this latter result
inan “equivalent equation” approach, i.e.. an equivalent (auxiliary) differential equation for
which a known exact periodic solution exists is defined and the difference between the two
equations minimized. A more direct approach is considered here. We look for an
approximate solution of the form

n
&)= Giltikip.....kij)CilD) (2)
i=1
where &;(t) are terms of the usual periodic approximation. generally trigonometric. The
G/'s can be thought of physically as “form functions,” which are capable of reflecting local
effects (e.g.. large curvatures) in the approximation by proper adjustment of the as yet
unknown parameters k;;. In effect. the functions G; improve the convergence of the series.
Two questions arise. How are the functions G; generated and once found do they represent
an efficient approximation in the various approximation schemes. The first question is the
more difficult from a theoretical viewpoint and is only partially answered in the present
paper, while the second (and major thrust of the paper) is dealt with in detail in the
following sections.
To demonstrate the generation of the G;’s. we consider the first term of the series (2)
with G, dependent on a single parameter k. Thus¥

&r. k) = Glt: k)E(n) (3)

We further consider F(r) = Bcoswrt. where B.w are given. For this forcing function we
chose &(1) = Acoswrt; A is an unknown amplitude. This is the usual lead term in the
harmonic balance method. If equation (3) is substituted into equation (1) the foilowing
residual R results

, B . d
R = (G —wiG+pl -G - Z) Acoswt—2wAGsinwt+gA43G* cos® wr, = o (4)
The following integral, which is a measure of the error. is defined,
J-——J R*dr = [ F(z.G.G. &)dr (5)
{

) Jo

+ Subscripts are dropped to simplify notation.
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A necessary condition for J to be a minimum is that it satisfies the Euler equation, i.e.,

¢F d fcF d® [¢F

G ar (5‘5)*&;‘2 (‘s) =0 (©)
Substituting equations (4) and (3) into equation (6) the following non-linear differential
equation in G results

G cos w1 —4wGsin wt+2[ —3w? + p(1—4)]G cos wr

. ) . B .
+dof[w?—p(1=2)]Gsinwt+ [0 —p(1 = 2)]*Gcos wr + =4 [w?—p(l—A)]coswr

+3q {[2(02 cos wt sin? wt —2w? cos® wr+$p(1—4)cos® wr]G?

— 8w cos? wtsin wrGG + 2 cos® wrGG? + 2 cos® wr GG

B
) cos® wrG? +gA* cos® ths} A2=0. (D

Boundary conditions for G are

Git.ky=1 at T =0. 7w
Gir.ky=0  at 1=0. 1w

In addition to periodicity of G. we expect (for the snap-through vibration) symmetry about
=0, 72w, /o, 372w, 2n/w, ... .

A closed form. analytic solution for G is not available. Instead, we look for a perturbation
solution (g « 1} of the form

(8)

Glt. k) = L +kfln)+k*gn)+ ... 9
with
k=aq+aq*+... (10)

and f(1). g(7)....are functions to be determined. If the solution is expanded about the
linear, natural frequency /p(1 —2).t and further if B is assumed small..then

w?—pll—7) = b1g+barg*+ ... an
B
Z:C1q+fzq2+... (12)

If equations (9)-(12) are substituted into equations (7). {8) and the results ordered in powers
of g. the following boundary value problems in f{1). g{r) result (carrying the solution
through two termsj:

a;{ — {cos wr + 4w sin wt + 4w*f cos wrl — 2w2A%{3cos wrsin? wr—cos* wr} =0 (13)
a}{ g cos wt —dwg'sin wt—4w? §cos wt}
+a, 1 cos wt —4da,mf sin ot~ {4a,w? + 2a;, by — 6a; A% cos? wt) f cos wr
+ {day by w—24a; wcos? wt) f sin wr + {18a; »? sin w1 — 64, w? cos? wr}d?f cosw

+{b?+byc,lcoswr—{4b; A+3c, ) Acos® wr+34%cos*wr =0 (14)
§ 3 1 3

+ Note that this 1s valid for 0 < 4 < 1 only.
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floy=0. ylr)=0

. at =0. e 15
flo)=0. gin) =0 it T T {15)

The solution to equations (13). (15) can be shown to be

(1) = —sin*wt
J 42 (16)
a, = ‘8—(1-)5
With f(1), ¢; known, equations (14). (15) can be solved to give
glr) = sin* ot (17

with a,. by, ¢, determined from the following two coupled. non-linear algebraic equations

48uar 0t +3h A2 —bi —byc; = gA* (18)

64ﬂ:(')4 bl 2b1 f:lz - 3(_'1 A= _%1‘44
For a given forcing function. i.e, fixed ¢,. equations (18) admit two sets of solutions for
a;. by while a; is determined uniquely from equation (16). The form of Giz. k) is also
determined uniquely

G(t. k) = 1 —ksin*wt+k?sin*wr + ... {19)

Asdiscussed previously. what is of interest in the above arguments is not the perturbation
solution per se, but the form of Gt k). equation (19). G(t. k) will be used directly in
equation (3) with k an unknown parameter to be determined by whatever approximation
scheme is chosen. Since the full non-linear range 1s of interest. G{. k) in the form of equation
(19) will be replaced by a function with the same asymptotic behavior. Functions which
suggest themselves are [1+ksin?wt] ™! and for a limited range e ~*¥""* The choice of
function is now governed by its behavior for large non-linearities and such practical
questions as ease of integrability in the approximating scheme. etc. For these reasons.
e ksin*or will be used. Additional work is underway using asymptotic methods to establish
further criteria for selecting the Gs.

The form function G(t. k) = e ~*50°7 has several interesting features. It has the capability
ofintroducing large curvatures at wt = 0, . 27, ... shown by the Jacobian elliptic functions
in the exact solution (free vibration case). see {8 ]. Large local curvatures can also be viewed
as the appearance of higher harmonics. Note that although the approximation. equation (3).
is a two parameter approximation it contains the higher harmonics and thus should provide
better accuracy than the usual two term harmonic balance (for comparable numerical
effort). Although G(z. k) isestablished formally only for ¢ « 1. the numerical results obtained
indicate a much wider range of validity. The only exception to this 1s the low frequency
forced response where the higher harmonics enter strongly.[10] Here the approximation
(3) vields good results in an averaged sense. i.e.. a reasonably accurate amplitude frequency
plot. but it does not capture ali of the response details. Additional terms of series {2) are
needed here.
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IT1. RESPONSE

Consider equation (1) with F(r) = Bcoswt. We seek an approximate periodic solution
of the form.

E(1) = Ae~ksin*ot cog oyt (20)
If equation (20) is substituted into equation (1). the following residual results
d*¢
dr?

R(¢ = +p(l1—2)E+g& —Bcoswr. 1)

To minimize R(&) with respect to A. k. the method of weighted residuals is used

2ni0
f R(§Edt =0 (22)
4]
2n/0 ~
‘[ R(C)(,—R dr = 0. (23)
0 ('k

The weighting functions & ¢R/¢k correspond to Galerkin's method. and the method of least
squares respectively. Note that the non-linear appearance of k in equation (20) imposes
limitations on the choice of weighting functions. Although alternatives to equations (22).
(23) exist. these are used because of the resulting simplicity.

Substituting equation (20) into (21) and then (21) into equations (22). (23) the following
coupled transcendental equations in A. k result

1
A3qg (::0(21\') + <1 - 4—k>zl(2k)]

—A{[w*k+1)=p(1 = 2] zo(k) + [ (k~ 1) — p(1 — 2)]z,(k)}

K\ [k
"B[Z(’(E)Hl <5>]=0 .
1 LI WA (I L
A |:<2k 7 R R E i A

20(2k)

k k
1 3 1 4 3\
2 - . -
-4 qB[z‘°(§k>‘<z‘3—kf>~'l (5")_

1
—-A {[(04(121\' +2)+ 203 p(1 = 2)+ p2(1 =) EJ zolk)

- ljw“ <3k+4+§>+w2p(l —A) <4+%> zl(k)}

k
+2B[0? —p(1=4)] ]\1 Z <;> =0 (23)

+
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where z4(x) = e " *Io(x) and z;(x) = e *I;(x); I,(x). I,(x) are modified Bessel functions of
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order zero and one respectively. Equation (24) is the counterpart to the usual amplitude
frequency equation. Note that as k — 0. this reduces to the usual one term amplitude
frequency equation of [2]. Equation (25) is needed to establish k. however. it has no
particular physical interpretation. Solution of these equations establishes the response of
the system.

The logic used in solving equations (24). (25) is as follows. Equation (24) is a cubic
equation in A4 and has either one or three distinct real roots except for a single point in the
frequency spectrum (w = »*) where it has two distinct roots (see Fig. 1). «o* is first located

L ={0"- ~ FF approx.
w=08 & — —- Cosine approx.
14— { 05 —~———— Unstable respons
o
2=
10—
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=] -
e
X
~ g=10"
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w/ 7

Fig. 1. Frequency—response curves for 4 = 0.

using the properties of cubic equations. The Newton-Raphson method[11]is used to find
A, k for both regions w < w*, v > w*. For & > w* three sets of A. & are obtained. The
upper branch is found by extrapolating the 4.k solution for « < w* and using these
values as initial guesses in the iteration scheme. Once the upper branch is found the first
equation can be reduced to a quadratic and the latter two branches obtained in a
straightforward manner. This algorithm is quite efficient. as demonstrated by convergence
to four significant figures in less than six—seven iterations.

Numerical results are obtained for a variety of cases and are shown in the figures.
Figures 1. 2 and 3 are amplitude-frequency curves for 4 = 0, 1. 2 respectively. Shown are
the present approximation and the usual one term approximation (k = 0). Exact results in
terms of Jacobian elliptic functions are available for the free vibration case for 4 = 0.1.2.[8]
These are indistinguishable from the present results. Several important features emerge. As
A increases, the difference between the two approximations also increases. This is due to
the deviation of the £. r response from the cosine function. e.g., see the 7.t inset plots on
Figs. 1. 2 and 3. This effect is maximum in the forced. low frequency. « < | p. response
region where many approximation schemes have difficulty. see [ 12]. Note. for example. the
smooth behavior of the cosine approximation on Figs. 1. 2 and 3. The correct response.
however. contains strong higher harmonic components[ 10] which cause the “bump™ in the
curve at low frequencies. It should be pointed out that the present approximation is also
in doubt for w < 0-4,/p. This is due to the limited two parameter (A. k) approximation
assumed, i.e.. all harmonies are represented but are not linearly independent. This region
can be extended by considering a more general approximation. see equation (2},



A new type of non-linear approximation with application to the Duffing equation 185

16—
[ & s:10¢ - //
S, w=0-8 7,
41— \\ k= 0,357{;0 // .
”O! N i / 27
12— i \/
10f—
e 2
- r p=-|§(0005)
g o 27 gL
L o Z 4
ey
2 61— PR ///
N B=10 /// Yy,
== /
4 _ - .
L (L &=10
A
21— N
B=0 S
| | | T e E———————
o 05 0 15 20 25 3C 35 a0 45
w/VE
Fig. 2. Frequency-response curves for /. = 1.
6—
L 8=
14|~ v
- \\
2
10—
T8
o -
; L
E 6p—
=
al—
2
|
¢}

Important information concerning the non-linear behavior and the changing form of the
.1 response can be deduced directly from k. Figures 4. 5 and 6 are plots of k vs forcing
frequency for # = 0.1 and 2 respectively. As « increases. k tends asymptotically to the free
vibration k values (for the p. ¢ parameters chosen) for all 4 and B. indicating little change
in form at high frequencies. Note. also. that k becomes large for low frequencies indicating
the strong effect of the higher harmonics.

Accuracy of the method is considered in two ways. Where exact results exist, as in
certain cases of free vibration, the approximation is identical to the exact results to the
fourth significant figure for the entire range considered. 0 < » < 4:5./p. 0 < 2 < 2. Note
that the system considered is strongly non-linear.t For the forced response (no exact

+The numerical values of p. 4. B. 2 used in the computations are listed on the figures.
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results available), comparison of the present approximation is made with the cosine
approximation. The square of the residual is summed over one cycle, equation (5), for several
representative points in the amplitude frequency spectrum for both approximations and the
results presented in the table below. Note that the present approximation is in general two

orders of magnitude better.
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Table 1. Comparison of form function. cosine. approximations

o Sofution B=0 B=10"° B=5x10"°
PR L T
\p  branch FFA A FFA CA FFA CA
08 1 N.S. N.S. ]7x]() 13 17><10 t 46xlO 10 63 x107 1
‘ 3 N.S. N.S. NS, NS. N.S. N.S.
8} - e e e —_ — e ——— e
20 | Nbx]O"‘ "Oxl(‘l N 80x]0 12 ’4x]()’ ’9x]0 I 53%x107°
. 3 N.S. N.S. 20X 1071 24 %107 N.S. NS.
0% | TAx 1071 36x10°17 [8x 1071 76x10-1 S4x10°10  []x10°°
3 N.S. N.S. N.S. NS. N.S. N.S.
1 e e . el e — —
30 1 llxlO'” 28 x107° 1-4 x 10! 33 10 N 32 %1071 34><]() N
3 N.S. N.S. 26x 10772 33Ix107°  1x1071° $54x107°
08 1 145107 621070 93x10-10 24x 10710 63x10°10 17 x 10-°
3 N.S. N.S. N.S. N.S. NS. NS
bl _ . e I I e . N . o
n 1 leIO'” ?bxlo’ "’xIO t 44x]('“’ 48 x 107 68x1077
: 3 N.S. N.S. 37x10712 44x107%  13x10710 68 x 107

Note: FFA is the form function approximation. CA is the cosine approximation: N.S. is no solution. Solution
branches are numbered with decreasing amplitude.

IV. STABILITY

The assumed steady-state solution. equation (20). represents a periodic state of
equilibrium. The physical existence of this solution depends on its stability: which will now
be considered in the classical manner: we let

) = &l +n(1) (26)

where n(1) is a small perturbation of the assumed steady-state solution &.(t). Substituting
equation (26) into equation (1) and neglecting higher-order terms of 5(1). we obtain the
following variational equation for n(r)

j ’27+[p 1=7)+3gA% e~ cos? yr]n(t) = 0. (27)
Since the coefficient of the n{7) term is periodic. equation (27) is a form of Hill's equation.
If the solution. 5(z). is bounded. the corresponding steady-state solution &(7). 1s stable.

Equation (27) can be put into a standard form. see [6]. by introducing the change of
variable T = wt and expanding the periodic coefficient into a Fourier series in the interval
0< < 2nie..

d2
—d~+[()0+7 Z f), cos 2111]17(1') = (28)
n=1



188 CHao LiN Lou and Davip L. SIKARSKIE

where
0, = p”wz ) ; 42[zolk) + 2,(K)]
0, = % % Al[:o(k) + (1 - i):l(k)]
0y = % (j’: AZKI —aso(kw(l —% ki Ak)}
05 = % (;12 AZ[<1 —%+%>:04k)+<1 —i+p—%§>:1(k)J
0, = ; (:12 AZ[<1 —% ;4 2?>-o(k)+ <1 —%+g—%§+%>:1(k)}

In the cases under consideration here, the series

2 10l
n=1

converges rapidly. and it is sufficient to retain the first four terms.

By the use of Floquet’s theory and a method similar to Whittaker's method for solving
Mathieu’s equation. see Ince.[13] higher-order solutions of equation (28) in the first three
unstable regions are calculated. These are tabulated in Appendix IT of Hayashi,[6] and the
results can be used to establish the values of 8, on the first three sets of boundaries
separating the regions of bounded and unbounded solutions.

OB Y = 13, é”f—é“f—%(’f?%“l“z
1%() 0 +6121“3+4iS”20 1370 0 + 141140 02_73104 032
418() 0, ;;8( 0205 + ..
0 =4:u2+<é Du 312( 10()’-1404
:éolaﬁllé 10124 3y <11995i é) )1202-&_-3;—60%04+%()§()4
t";sl)z“i ﬁ31040 Ui F ; 030,
7 5 1 )

|

O

9 1
-~ = ]0,0,0 — 10,050
340~ 96)“ 2 1| 3 480)( 00+
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1 1 1 1
O 3 = S 02— 2
{ 9+03+168 —6—10, 7,)(3 14(4
1 1 1
+= T4 3+
49‘9 Fglh 0”64’ —5184 °

2 2, + H )
10902_2569(3_40092(3+ 030,

9 73 3
Iy 1,0
3136 M“ Taap 10203 £ 7501020
103
+ 2035 (1 0a0e £ 552 28 > (1,030, + ... (30)

where the numerical superscripts represent the orders of the unstable regions. and the
subscripts | and r stand for their left and right boundaries respectively. In addition we have

00 < 097Y i=1.2.... (31)

where this condition does not hold. #~ ! assumes the value (4.

Note that there exists two simplified stability analyses for the Hill equation. In the first.
higher order terms of 8, in equation (30) are neglected. This leads to linear stability
boundaries in the #,. 6, plane. These results can lead to erroneous stability predictions in
certain regions of the amplitude frequency plot. In the second case. 0, is much larger
numerically than 6,, n > 1. The Hill equation simply reduces to a form of Mathieu’s
equation. the stability properties of which are well known.

In the present study. however. neither approximation provides sufficient accuracy. An
algorithm based on the full form of equation (30) is used. The values of 6, and s are
obtained for a given point in the frequency—amplitude space. The calculated value of ¢,
(response point) is then compared with (4. () and is in the M unstable region if

08 < Oy < O i=1.2.... {32)

except for the low frequency range consideration of the first three unstable regions.
i=12.3, is sufficient. Results of the stability investigation are shown on the amplitude
frequency plots, Figs. 1-3, i.e.. unstable response points are flagged.

V. CONCLUSIONS AND DISCUSSION

A new type of approximating function has been used to determine the steady-state
response and stability of the forced Duffing equation. This function has two important
features. It is capable of exhibiting large curvatures and due to the non-linear appearance
of the unknown parameter the “form™ can change throughout the non-linear range. Thus
single term (two parameter) solutions provide very accurate results throughout the
non-linear range. In terms of numerical effort. a comparison with the harmonic balance
method, for example. indicates that for equivalent accuracy the form function approach
requires less effort. This is due to the presence of all higher harmonic components in the
form function approximation.

The form function approximation has currently been used in the solution of the above
mentioned problem and the large deflection of plates.[14] It is felt. however, that there are
many mechanics problems for which the method would be useful. namely those in which
the dependent variables undergo large and changing curvatures in the non-linear range.
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There are several areas of future investigation. Additional rationale is necessary for

narrowing the selection process of the G;'s. This is being investigated through the use of
asymptotic methods. Also. it should be pointed out that for the current class of problems
investigated the location of maximum curvature are known. For many physical problems
of interest this is the case. When indeterminate, however. it is not clear at present how to
choose the form function. A possible approach is to consider the position as yet another
unknown parameter. The space and time problems mentioned above can also be combined
to solve the complete problem of the non-linear vibration of buckled beams,plates. This
problem is currently under investigation.
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Résumé—- On considére un nouveau type de solution dessai qui différe de la combinaison linéaire
habituelle de fonctions dapproximation. Il nécessite de modifier les fonctions d'approximation
avec des “fonctions de forme™: fonctions contenant des parametres indéterminés apparaissant
non lincairement. un bon choix de ces fonctions fournit une approximation plus fine des
importantes courbures locales qui appuraissent dans certains problémes non linéaires. Dans cet
article on montre 'approximation de la “fonction de forme™ pour des solutions en régime
permanent de I'équation de Dufling. Cette cquation apparait dans le probléme de vibrations
non linéaires de poutres ct de plaques apres flambage. On montre que le comportement en
stabilité de ces solutions en régime permanent est régi par une équation de Hill. On trouve que
I"approximation de la “fonction de forme™ donne des résultats numériques notablement meilleurs
que. par exemple. ceux donnés par la méthode de balance harmonique. La méthode fournit
cgalement des indications supplémentaires sur le comportement non linéaire. particuliérement
dans la région des réponses a basse fréquence.

Zusammenfassung — Eine neue Art von Versuchsiosungen wird untersucht. die sich von den tiblichen
Linearkombinationen von Annitherungsfunktionen unterscheiden. Das Verfahren beinhaltet die
Abinderung der Annitherungstunktionen durch “Formfunktinen™ die nichtlinear auftretende
unbestimmte Parameter enthalten. Die richtige Wahl dieser Parameter ergibt cine bessere
Annitherung fiir die grossen Ortlichen Krimmungen, die in einigen nichtlinearen Problemen
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auftreten. In dieser Arbeit wird die Anndherung durch “Formfunktionen™ fiir die stationdren
Losungen der Duffing-Gleichung demonstriert. Diese Gleichung tritt  bei nichtlinearen
Schwingungen ausgeknickter Triiger und Platten auf. Es wird gezeigt. dass das Stabilitétsverhalten
dieser stationédren Losungen durch die Hillsche Gleichung beschrieben wird. Es zeigt sich. dass die
Annzdherung durch “Formfunktionen™ merklich bessere numerische Ergbnisse liefert als die z.B.
mit der Methode des harmonischen Ausgleichs erhaltenen. Die Methode gestattet auch ein besseres
Verstindnis von nichtlinearem Verhalten. besonders im Gebiet niedriger Frequenzen.

AnHoTauusd — PaccMmaTpuBaroTes npubaMxKeHHbie PEeLeHH HOBOTO THMA, OTJIHYAIOLIMECH OT
06bIMHO YHOTPeOAAeMbIX JTIMHENHBIX KOMOMHALIMA ammpOKCUMHUPYIOWUX QyHKUMI. B HOBOM
METOnNEe anmpOKCUMHUPYIOLIHe QYHKUMM MOIUGULHPYIOTCA NIPH TIOMOLM «hyHKUHH dopMbI»;
(YHKUMM. coAepXallHe HEONpenesieHHbie mapamMeTrpbl BXOAAT HEJMHENHO, M COOTBETCTBY-
rolIki ux BoIGOp obGecneunBaeT OoJiee TOYHYHO AMIPOKCHMALMIO NIPH OONbILAX JIOKaIBHbIX
KPMBHU3HAX, KOTOPble BO3HHKArOT B HEKOTOPBIX HENMHEHHbIX 3anasax. B nawHoi pabore
anmpoKCHMaUMs  «hyHKUMAMHM  (GOPMbI»  IEMOHCTPUPYETCS Ha [PUMEpPE CTAUHOHAPHOIO
peluenua ypasHenus [dyddunra, KOTopoe ONMCHIBaeT HenHHelHble KonebaHus 6anok
[INACTHHOK TNPH 1OTEpe YCTOMYMBOCTH. T10Ka3aHO, 4TO YCTOHMHBOE MOBEJEHHME I3THUX CTa-
LMOHAPHLBIX PELIEHUN ONMUChIBaeTCA ypaBHenueM Xunna. OOHapykeHo, YTO annpoOKCHMalMs
«PYHKUMAMH (POPMbI» NPHBOMKT K 3HAYMTENBHO JIYYIIMM YUCJIEHHBIM DE3yibTaTaM, 4eM,
HanpuMep, pe3yIbTaThi, OJy4aeMble IO METOAY rapMoHuyeckoro 6ananca. JanHbi# MeTon
DaeT TaKXe NOMOJHHTEIbHbIE CBEAEHHS O HelHMHEeHHOM MOBENeHUH, B YAaCTHOCTH, B obnacTu
HYM3KHX 4acioT.
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