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The consequences of density dependent selection on genetically heterogeneous, 
diploid populations reproducing by self-mating or various parthenogenetic 
mechanisms is investigated. A logistic fitness function that depends upon both 
the genotype of an individual and the density of the population is used. Such 
a fitness function simultaneously determines the population size and the 
genotype frequencies. The equilibrium solutions to a one locus and two locus 
model are given as we11 as some generalizations to n Ioci and nonlogistic fitness 
functions. Conditions are found that maintain several different genotypes 
simultaneously in the equilibrium population. The interaction of such selection 
with the genetic mechanisms which determine mode of reproduction in par- 
thenogenetic populations is also discussed. 

1. INTRODUCTION 

A common model of population growth is one in which the size of a genetically 
homogeneous population is regulated by density dependent factors. A common 
evolutionary model is one in which constant fitness values are assigned to the 
genotypes found in the population and population growth is ignored. However, 
it seems plausible that the forces which regulate population growth could also 
affect differentially the various genotypes found in the population and thus 
influence the genetic evolution of the population. The assumptions of genetic 
homogeneity and constant fitness are both unrealistic in such a case, and it is 
therefore of considerable interest to examine the consequences of natural 
selection in genetically heterogeneous populations regulated by density dependent 
factors. 

Roughgarden (1971), Charlesworth (1971) and Clarke (1972) have recently 
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studied this problem in monoecious diploid populations with respect to a single 
locus. However, sexual hermaphroditic populations are not alone in having 
genetic heterogeneity since many parthenogenetic populations can also maintain 
a large amount of genetic diversity (White, 1970). The impact of constant 
selective forces on certain types of parthenogenetic populations has already 
been examined by Asher (1970, 1972) and Templeton and Rothman (1973). 
Their work shows that constant selective forces can maintain genetic variability 
in some automictic populations. The purpose of this paper is to generalize 
these results to the case where the fitness of an individual is not only a function 
of its genotype, but also of the density of the population. 

2. ONE Locus MODEL 

A diploid parthenogenetic population with discrete generations shall be 
studied which restores diploidy by any combination of the following 
mechanisms 

(1) Inhibition of meiosis I 

(2) Inhibition of meiosis II 

(3) Central fusion of the haploid egg nuclei 

(4) Terminal fusion of the haploid egg nuclei 

(5) Gamete duplication (duplication of a single haploid egg nucleus 
followed by fusion of the cleavage nuclei). 

Details of these mechanisms are given in Asher (1970) and Templeton and 
Rothman (1973). They will not be discussed here except to point out that the 
genetic consequences of (1) and (3) are identical as are those of (2) and (4). 

First, consider a parthenogenetic population with discrete generations 
consisting of individuals differing at a single locus with two alleles A and a. The 
transition matrix from adults to zygotes in the next generation is given by 
(Asher, 1972) 

Zygotes 

AA ua Aa 

AA 1 0 0 
Adults au 

i 
0 1 0 

Aa +(l - K) $(l - K) K 1 

where 

K = E,Y + E,(l - Y/2), 

El = the proportion of eggs developing by terminal fusion or inhibition 
of meiosis II, 
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E, = the proportion of eggs developing by central fusion or inhibition 
of meiosis I, 

E3 = the proportion of eggs developing by gamete duplication, 

E,+E,+E,=L 

Y = the probability of recombination between locus A and its centromere. 

Sexual populations reproducing by self-mating are a special case in which 
K = + for all loci, although K can take on values other than one-half if segrega- 
tion distortion is present (Karlin, 1968). 

In order to study the impact of density dependent selection on this system, 
an absolute fitness will be assigned to each genotype which represents the 
expected number of offspring of all posible genotypes produced by a zygote with 
a specific genotype. It is convenient to use a logistic growth model of fitness as 
Roughgarden (1971) did which defines the fitnesses of the genotypes as 

Genotypes Fitness 

AA rAA 
rAA+l--C- 

AA 

aa yaa + 1 - + N 
all. 

Aa yAa + 1 - 

where N is the total population size. The r + 1 terms represent a density 
independent or intrinsic component of fitness for each genotype while (r/C)N 
is a density dependent component of fitness. Throughout this paper both r 
and C are always assumed positive. 

Letting 

Si = the number of AA’s at generation i, 

Qi = the number of aa’s at generation i, 

R, = the number of Aa’s at generation i, 

Ni = Si + Qi + Ri 9 

one obtains the following recursion formulas: 

SC+I = [SZ f 6(1 - K&I (TAA + 1 - (rAA/CAA)Ni), 

Qi+l = [Qi + +X1 - WWaa + 1 - (r,,/‘%>Ni), 
R+l = K&(~A, + 1 - (Y,AC~JNJ. 
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Hence, 

AS = [S + Q(l - Wlr,, KC,.,, - S - Q - RYC.4 + H1 - W, 
AQ = [Q + Hl - JWl~a, KG, - S - Q - WG,) + &(I - W, (1) 
AR = KRr,,((C,, - S - Q - R)/C,,) - (I - K)R. 

In the special case when only AA individuals are present, (1) reduces to 

AS = sr,,(C,, - WC,, 

and similarly when only au individuals are present 

AQ = Qraa(G, - QYGa . 
The meaning of r,, , Y,, , CA, and C,, is now clear. The T’S correspond to the 
intrinsic finite rates of increase and the C’s to carrying capacities for mono- 
morphic populations of the two types of homozygotes. CA, and r,.,, receive a 
similar interpretation in the special case of K = 1 which occurs when diploidy 
is restored by central fusion or inhibition of meiosis I and the locus is absolutely 
linked to the centromere. Otherwise r,, represents the intrinsic finite growth 
rate of heterozygotes at one generation to all other genotypes produced by them 
in the next, and CA, represents the population size at which heterozygotes 
contribute just enough genes to the next generation to replace all the genes they 
carry. 

When the population consists of only the two homozygotes, (1) reduces to 

As = Sr,u(C,u - s - QW,, , 

AQ = Qraa(Caa - s - QNGa . 
(2) 

This system of equations corresponds to the Gause model of “interspecific” 
competition with competition coefficients of unity. The system behaves as an 
interspecific one because the two homozygous genotypes are genetically isolated 
from one another. Since the competition coefficients are one in this case, the 
above equations imply that at equilibrium the population will be either entirely 
AA (which is stable when CA, > C,, , yaa, < 2C,,/(C,, - C,,) and rAA < 2) 
or UQ (when C,, > CA, , r,, < 2C,,/(C,, - CA,) and raa < 2). 

When all three genotypes are present the equilibrium solution is obtained by 
setting the equations in (1) to zero to obtain 

N,, = se, + Qea + R,, = CAJ - (1 - KYWA,I = C~as , 
So, = -6(1 - K)R,,(W,u + ~>/WAA , 
Qeq = -Kl - K) R,,Waa + l>/Waa > 

(3) 

R,, = C,,,IF - Hl - K)(l/w~, + Waall, 



DENSITY DEPENDENT SELECTION 233 

where 

WA.4 = YAA(CAA - C&)iCAA 1 

wacz = ymz(Ga - c,4ae)lGa Y 

and CA,, is defined as the effective carrying capacity for a population containing 
heterozygotes at equilibrium. 

The case in which R,, > 0 is of primary interest for otherwise this case will 
reduce to (2). First, Pen > 0 and Qea > 0 implies that -1 < WA, < 0 and 
- 1 < W,, < 0. This means that the absolute fitnesses, WA, + 1 and W,, + 1, 
of both homozygotes must be less than one at equilibrium so that both homo- 
zygotes do not replace themselves. The additional homozygotes needed to yield 
stationary numbers come from decay into the homozygote classes from the 
heterozygote class. Also note that N,, is determined solely by the fitness param- 
eters of the heterozygote and the parameter K while the fitnesses of the 
homozygotes determine how the population is partioned among the genotypes. 

The condition R,, > 0 also requires that KY,, > 1 - K. The quantity 
Kr,, can be thought of as the net intrinsic finite growth rate for heterozygotes 
from one generation to heterozygotes in the next since rAa is the intrinsic growth 
rate to all possible genotypes and K is the proportion which are heterozygotes. 
Similarly, 1 - K is an intrinsic decay rate from the heterozygote class into the 
homozygote classes. Hence in order to get R,, > 0 the net intrinsic growth 
rate of heterozygotes must exceed the intrinsic decay rate. Another way of 
stating this inequality is to define the effective intrinsic finite growth rate of 
heterozygotes as 

r Aae = KrAa - (I - K). 

Therefore, to have heterozygotes at equilibrium their effective intrinsic finite 
rate of natural increase must be greater than zero. 

Since it is biologically meaningless to have the expected numbers of offspring 
WA, + 1 and W,, + 1 negative, the W’s may be redefined as 

The conditions that yield R,, > 0, S,, 3 0 and Qee 2 0 are now 

CA,, > CAA and C,, . 
(4) 
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The effect of K, the probability of a heterozygote giving rise to a heterozygote, 
on (4) is given in Figs. 1 and 2. As can be seen, increasing the value of K broadens 
the possible range of values of C,, , C,, and r,, that yield RR,, > 0. In this 
sense factors which increase the value of K enhance the maintenance 
of heterozygotes. 

It is also important to investigate the local stability of the solution given by (3) 
and (4). It is convenient to make the following transformation: 

z1 = s - s,, ) 

xz = Q - Qea 3 
z, = R- R,,. 

FIG. 1. The effect of K, the probability of a heterozygous adult giving rise to a 
heterozygous zygote, on the range of values of CAA and C.,, that yield R,, > 0 given CA. 
and ~~~~ > 0. 

FIG. 2. The effect of K on the ranges of values of yAa that yield R, > 0 given 
max(CA,4 , Cd -c Ch . 
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At equilibrium all the z’s are zero. The difference equations for the x’s are 
calculated by substituting S = zr + S,, and so forth into (1). A linear 
approximation for these equations in the neighborhood of the equilibrium 
is obtained by a Taylor’s series expansion as 

AZ = Ax 

where 

1 
WA4 + YAA YAA ix1 - K)(WAA + 1) + YAA’ 

A= YlZlZ wm + yaa 3(1 - K)(Wa, + 1) + ya, 

i 

! 

The solution 

YAA = (1 - K)Re~r~~/(2W~~C~~), 

Y,, = (1 - We,raal(2WaaGJ. 

will be stable if the eigenvalues of the matrix A* = A + I where I is the 
identity matrix all lie in the unit circle in the complex plane with center at the 
origin. 

A necessary prerequisite for this stability condition is that the eigenvalues of 
A must all have negative real parts. The characteristic equation of A is 

A3 + a,x + a,h + a3 = 0 

where 

~1 = -(WA, f W=, -I- YAA f Ya, - KrA&,/CA& 

a3 = wAAwaa(KrAa - (1 - K)). 
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By the stability criterion of Lienard and Chipart (Gantmacker, 1959) the roots 
of this equation will have negative real parts when 

a1 > 0, 

a3 > 0, 

UlU2 - L2.J > 0. 

The conditions that yield R,, > 0 also yield a1 > 0 and a3 > 0. The last 
inequality can, after some algebraic manipulations, be rewritten as 

rAae < wAA + was i- .yRe, (5) 

where 

KYA~WAA WlZ, Kr~czUI,a 
CAa 

+ :A;&, - cAa 

- KU - f+A, + K yAa 
c AU 

__ (WAA + W.31 x /ljw,, + l/W,, 
c ALI 

The conditions that yield R,, > 0 insure that y > 0 and in general yReq will be a 
large, positive number. Since WA, + W,, can only vary from 0 to -2, the 
number WA, + W,, + yR,, will also in general be a large, positive number. 
In realistic situations r,,, will be small, (probably little more than one or two at 
the most) so that inequality (5) will add no additional restrictions in most 
situations. 

It now remains to be shown that 1 h + 1 j < 1 for all the eigenvalues, A, of A. 
Unfortunately, all attempts to prove in general that the eigenvalues of A satisfy 
this inequality have proven unsuccessful. However, some insight into the 
additional stability restrictions needed can be obtained from studying the 
special case in which both homozygotes have the same fitnesses. Substituting 
yAA = yaa = yh , CA, = C,, = C, and A* = A - 1 into the characteristic 
equation of A yields the characteristic equation of A* for this special case to be 

(w, + 1 - A*)(W, + ZY, + 1 - X*)(1 - Kr,,R,,/C,, - A*) 

- =-r,, R&(1 - K)(W, + 1) + yh]/c,, , 
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where 

Wh = rh(Ch - cAae)lG 3 

Yh = QU - K)RJ~(W,&‘~. 

One eigenvalue of A* for this special case is therefore AI* = W, + 1 which is 
always less than one in absolute value under conditions that yield R,, > 0. The 
other two eigenvalues are the roots of 

where 

h*2 + a,;\* + a2 = 0 

a, = (KRePr,,/Caa) - 2 - W, - 2Yh 

az = 1 + W, + 2Y, - (K”R,nr,,(W, + 1)/C,,). 

The inequality 1 A* / < 1 will be satisfied for both roots when (Goldberg, 1958) 

lfa,+a,>O 

l-ur+a,>o 

1 - u2 >o. 

These inequalities will be satisfied only when the previously discussed stability 
conditions hold and in addition when 

Rw 
C‘& - c, ) 

TAae < (++) ( 
4+2(wh+2yh) 

1 + KU+‘, + 1) 

Therefore, additional restrictions upon the magnitudes of the finite rates of 
increase must be made. These additional restrictions are needed because if the 
r’s are too large, population growth need not be smooth, and oscillations in 
population size could occur that lead to local instability. These oscillations arise 
in a discrete model because the population may overshoot its carrying capacity 
in the intervals between application of the density-dependent control. 

3. Two Locus MODEL 

The results of the preceding section can be extended to two loci with two 
alleles at each locus. The general form of the transition matrix from adults to 
zygotes for a parthenogenetic population reproducing by any combination of the 

653/5/2-7 
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mechanisms previously discussed and for a self-mating sexual population is 
(Asher, 1972) 

AB/AB 

AblAb 

aB/aB 

ablab 

ABlaB 

Ablab 

ABlAb 

aBlab 

ABlab 

AblaB 

Zygotes 

ABlAB AblAb aBlaB ablab AB/aB Ablab ABlAb aBlab ABlab AblaE 

1 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

1-K' 1-K 
2 

o- 0 K 
2 

1-K’ 
O- 

I-K 
o- 

2 
0 

2 
1-K" 1-K" 

2 2 
0 0 0 

0 
1-K" 1-K” 

o-- 
2 

0 
2 

0 

0 

0 

0 

0 

K 

0 

0 

% 

% 

0 

0 

0 

0 

0 

0 

K” 

0 

% 

a4 

0 

0 

0 

0 

0 

0 

0 

K” 

a4 

% 

0 

0 

0 

0 

0 

0 

0 

0 

% 

% 

0 

0 

0 

0 

0 

0 

0 

0 

% 

T5 

The actual values of these parameters are given in Table I in terms of Er , E, , 
Es and the map distances between the loci and between a locus and itscentromere. 
The coefficients of coincidence are assumed to be one, so the recombination 
frequency is given by 

Y = the recombination frequency, 

x = the map distance, 

and the probability of recombination Y is given by (Barratt et al., 1954) 

Y = $(l - e--3=). 
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Define 
XI = the number of AB/AB individuals; 

X, = the number of Ab/Ab individuals; 

Xs = the number of aBlaB individuals; 

X, = the number of ablab individuals; 

X5 = the number of AB/aB individuals; 

X6 = the number of Ablab individuals; 

X, = the number of AB/Ab individuals; 

Xs = the number of aB/ab individuals; 

X, = the number of AB/ab individuals; 

X,, = the number of Ab/aB individuals. 

The fitnesses for the various genotypes will be 

ri + 1 - (ri/C&v i = 1, 2,..., 10 

The fitnesses of the cis and tram double heterozygotes are assumed to be equal, 
so rs = y10 and C, = C,, . 

The set of fundamental difference equations is 

AX, = 
( 
Xl + y X6 + q x7 + alx, + a2xlo) I1 y 

1 

+1-K’ 
-xx,+yx,+a,x,+.,x,,, 2 

A& = (x2 + 2 1-K’x~+~X,+aZx9+alxlo)r3~ 
2 

1 - K’ 
+-y-x3+ 9 x, + “z-q + UlX,, , 

AX,= X,+yX5+F 
( x* + %X9 + %X1, 

C, - N 
r3 7 

3 

1 - K’ AX~=(X,+T-x,+ J+ x, + alx, + a,X,,) r4 y 

+ 
1 -2K” l-2K’x6 I 

X8 + %X9 + %X1,, (6) 
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AX, = (K’X, + %X9 + a3xlg)r5 v - (1 - K’)X, + a3(X9 + &I), 5 
43 = (K’X, + +&l + ~3&&6 9 - (1 - K’)& + ~3(& + X10), 6 
AX, = (K”X, + a442 + %Gl)~, y - (1 - K”)X, + cQ(X, + X1&, 

7 

AX, = (K”X, + a4X9 + cx,x,,,r,c+ - (I- K”)& + 4x9 + Xm), 
8 

AX,, = (a6Xg + o~~X~~)r~ y + %X9 - (1 - %Xm). (6) 
9 

The outcomes of competition among various genotypic arrays in which 
double heterozygotes are not present is given in Table II. When the double 
heterozygotes are present in the population, the equilibrium solution obtained 
by setting (6) equal to zero is: 

x9 = Xl,, 

x 
8 

= _ 2%-&P, + 1) 

K”W, - (1 - K”) ’ 

x 
7 

= _ 2~*&( w7 + 1) 

K”W, - (1 - K”)’ 

2”3X9(Ws + 1) 
x6 = - K’W, - (1 _ k”; 

h2GiW5 + i) 
x5 = - K’W, _ (1 _ K’)’ 

x4 = 
[ 
(1 - K’hWei + 1) + (1 - K”bdWs + 1) 
K’we-(1 -K’) K”W8-(1 -K”) 

x3 = 
[ 
(1 - Q4W5 + 1) + (1 - K”b4W3 + 1) 
K’W,-(1 -K’) K”W,-(1 - K”) 

- (a1 + a,)] tw3 Z31jXg , 

x 2 = 
[ 
(1 - V~3W’3 + 1) + (1 - K”b4W, + 1) 
K’W,-(1 - K’) K”W,-(1 - K”) 

- (a1 + a2)] cw2 G21jXg , 

(7) 
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x 
1 

= 

[ 

(1 - oxsw5 + 1) + (1 - KXhW7 + 1) 

K’W,-(1 -K’) K”W,-(1 -K”) 
- (a1 + a,)] w1 pxg , 

x9 = C9, 

i 

2 - 2c4, - 24, 

- (a1 + $) [!!!$A + !5$ + !kp + E@ Ii 
TABLE II 

Outcomes of Competition with the Two Locus Model When 

Double Heterozygotes Are Not Present 

Competing 

genotypes 

Equilibrium 

population Stability Conditions 

Xe i=l, 2,3,4 N,=X,,,=C, c,>c,, c, ) c, 
(two locus x,=0 i=2,3,4 r,<2 

homozygotes) Y,<2C,/(C,-C,) i=2, 3, 4 

x, i= I,..., 8 

(two locus 

homozygotes 

and single 

locus 

heterozygotes) 

Ne,=&.,=G G>C,, c3, G 
X,=0 i=2,..., 8 C,>Cj,=Cj[l-(1-K’)/(rK’)] j=5, 6 

C,>C,z,=C,[l-(l-K”)/(~,K”)] u=7, 8 

Y,<2 

Yi<2C,/(C,-CJ i=2, 3,4 

rj<(l+K’)Cj/[K’(Cr-Cg)] j=5,6 

r,<(l +K”)C,l[K”(C,-CC,)] u=7, 8 

Xi i= l,..., 8 

(two locus 

homozygotes 

and single 

locus 

heterozygotes) 

Ne,= C,e C5,>C,,C,,C3,C4,Ge, ,e, c G, 

Xc,,,= CdM a Yi<2Ci/(C,,-cCi) i=2, 4 

X,,,=G.” i=l 3 Yh<U -K’bYwm+ ~h)(G6--c,)l c 
X,=0 il2, 4, k, 7, 8 Y,<(l+K)C,/[K’(C,,-CC,)] 

Y,<(l+K”)C,J[K”(C,,-Cc,)] u=7, 8 

O<r,,=K’r,-(l--K’)<W,+~~+YsXsr.d 

c,, 4+2w+ m 
y5e < ~ , 

X,,, 1 +K W+l) 
- (1 - K’)” 

a M=K’-i(l -K’)(l/Wr+ l/W,) where B’,=r,(C,-C,,)/C, and lV,=r,(C,-CC,,)/C,. 

b G,= -&l -K’)X,,(W,+ 1)/W, . 

c Stability has only been shown when rl = Ye = rh , c, = c, = c, , W,=YjJC,- c&J/c, 

and Y,,=(l -K’)X,,,,(C,W,). 

’ ys is defined in a manner analogous to the one locus y. 
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where 

ws + 1 
bl = K”W, - (1 - K”) 

w, + 1 [I - (1 - K”) (W + F)] 

w, + 1 
+ K”W, - (1 - K”) 

[I - (1 - K”) (V + V)], 

w, + 1 
b2 = K’W6 - (1 - K’) 

[I - (I - K’) (y + q$J)] 

w, + 1 
+ K’w5 - (1 - K’) 

[l - (1 - K’) (V + Tj]. 

Once again the total population size is determined only by the fitness of the 
double heterozygotes, while the partitioning of the population among the 
various genotypes is determined by the fitnesses at equilibrium of all the other 
genotypes. 

The case in which X, and Xi, are greater than zero is of primary interest 
for otherwise this will reduce to one of the cases given in Table II. The conditions 
that yield X, , Xi, > 0 at equilibrium are solved from (7) as 

These conditions are analogous to those given in the one locus model since 
CQ + 01~ is the probability of a double heterozygote giving rise to a double 
heterozygote; therefore, ~~(01s + 0~~) represents the net finite intrinsic growth 
rate for double heterozygotes, 1 - 01~ - olg the intrinsic decay rate and rge 
the effective finite intrinsic growth rate of double heterozygotes. Similarly, C,, is 
of a form completely analogous to CAae in the one locus model. Thus the biologi- 
cal meaning of these conditions is identical to the meaning of (4). 

Unfortunately, it has not been possible to determine the stability of this 
solution. However, the close similarity of the mathematical and biological 
meanings of the conditions that result in a nontrivial equilibrium in this case 
to those of the one locus case strongly suggest that this is also a stable equilibrium. 

4. EXTENSION TO n LOCI 

Let gn represent a genotype that is heterozygous at 71 loci. A proportion, 
1 -pn, of the zygotes produced by an adult with genotype gn will lose heter- 
ozygosity at one or more loci while P, of them will retain heterozygosity at all n 
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loci. Finally, let gn be in a population consisting of several genotypes, but in 
which gn is the genotype with maximum heterozygosity. Zygotes with less 
than n heterozygous loci could be produced either by adults with identical 
genotypes in the previous generation or from decay from the more heterozygous 
genotypes. However, no other genotype can decay into gn, so all gn individuals 
must have been produced by a gn adult in the previous generation. Hence, if 
the fitness of gn is rn + I - rnN/Cn where N is the total population size, then 

AX, = PnXnr, ((Cn - WICn) - (1 - Pn)& 

where X, is the number of gn individuals. Thus at equilibrium 

Iv,* = C,(l - (1 - P?J/(~nPn>) = G, * 

The above quantity will be greater than zero only if 

r,P, - (1 - P,) = r,, > 0. 

I must now consider how gn interacts with the other genotypes in such a 
manner to yield X, > 0 at equilibrium. For those genotypes that are genetically 
isolated from gn, i.e., those that gn cannot decay into, the competitive exclusion 
principle tells us that such genotypes will become extinct if the equilibrium 
population with them present and gn absent is less than C,, . For those genotypes 
into which gn can decay the following situation holds. 

First, since some of the zygotes produced by gn individuals will be of these 
alternative genotypes, it is obvious that an equilibrium with X, > 0 cannot occur 
unless the fitnesses of the other genotypes are such that at equilibrium these 
genotypes do not completely replace themselves. The additional members of these 
other genotypes needed to yield stationary numbers come from decay from the 
more heterozygous genotypes. This can be expressed mathematically by letting 
Pi be the proportion of zygotes with genotype i produced by an adult with 
genotype i. Consequently 1 - Pi of the zygotes produced by genotype i are of a 
different genotype and represent an intrinsic decay rate for i. The stipulation that 
at equilibrium the fitnesses must be such that the ith genotype does not replace 
itself is 

Pir,(Ci - Cn,)/C, < 1 - Pi , 

c,, > Ci( 1 - (1 - PJ/(PgJ) = c, . 

This definition of Cde is applicable even when i represents a totally homozygous 
genotype for in that case Pi = 1, so Ci, = Ci and rie = ri . 
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5. EXTENSION TO NONLOGISTIC FITNESS FUNCTIONS 

In this section the absolute fitness of genotype i is assumed to be 

where W,(N) is a function of the genotype i and of the population size N. In 
order to impose a limit on population growth, it is further assumed that W$(N) 
is a strictly decreasing function of N, as was done by Charlesworth (1971) for a 
one-locus model of a random-mating population. 

As before, let gn be a genotype heterozygous at 12 loci, and let gn be present 
in a population in which it represents the genotype with maximum heterozygosity. 
Then, using (S), 

OX, = PnXnWn(N) - (1 - Z’JX, . 

At equilibrium, 

New = fnK1 - ~n>/J’nl = G (9) 

where fn represents the inverse function of IV, such that fn[Wn(N)] = N. 
Becausef,# - ~,JPnI P re resents the final size of a population in which gn is 
present at equilibrium, it can also be thought of as an effective carrying capacity. 
Note that, just as in the logistic case, this effective carrying capacity is deter- 
mined solely by the fitness function for genotype gn and by P, . 

Necessary conditions for X, > 0 at equilibrium are 

CL, =fn{(l - Pn)/Pnl > 07 

c;, > fi{(l - Pj)/Pj) = c,k for all other genotypes j. 

The first inequality reduces to r,, > 0 in the logistic case, while the second 
inequality insures that the fitnesses of all other genotypes j are such that they 
do not completely replace themselves at equilibrium. This last inequality shows 
that, just as in the logistic case, the equilibrium population consists of that 
ensemble of genotypes which maximizes population size. Thus, the qualitative 
aspects of the logistic fitness model are true whenever fitness is a decreasing 
function of density. 

6. DISCUSSION 

As can be seen for the situations discussed in this paper, the following is true: 

New = Cm 9 

cne > cic3 for all other genotypes i, (10) 

+ne > 0, 
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where 

for all genotypes, 

Tie = riPi - (1 - Pi) for all genotypes, 

Pi = the proportion of zygotes of genotype 
i among all zygotes produced by an 
adult of genotype i, 

and 7t is the largest number of loci for which a genotype is heterozygous in the 
equilibrium population. This equilibrium solution is very similar to the equi- 
librium solution in a model of interspecific competition within a common niche. 
If a group of species was competing within a common niche, at equilibrium only 
one species, say y, would survive such that 

Ne, = C,, 
c, > c< for all other species i, (11) 

ry > 0, 

where C and r refer to the carrying capacities and intrinsic growth rates of 
genetically isolated and homogeneous species. As can be seen, (11) is identical 
in form to (10). Thus, the complexity of the genetically heterogeneous popula- 
tion which involves segregation, recombination and mode of reproduction can 
be summarized in the parameter Pi. Then Ci, and rie which are functions of Pi 
and the logistic fitness parameter reduce the problem of competition in a 
genetically heterogeneous population to an equivalent case of competition 
between genetically isolated, homogeneous populations with respect to the 
equilibrium solution. In this sense, Ci, and rie play a role similar to that of N, , 
the effective population size, in population genetics. All reduce complicated 
situations to an equivalent ideal case with respect to certain parameters of 
interest. 

However, it should be emphasized that this analogy is valid only with respect 
to the equilibrium solution since the “type” of equilibrium population which 
corresponds to the “species” in the analogy becomes meaningful only at equi- 
librium. For example, it is erroneous to say that a population of AA, aa and 
Aa individuals is competing against a population of AA individuals. Obviously 
the true competition is between the individuals of the various genotypes and 
not between types of equilibrium populations. Also, once at equilibrium there 
will in general still be competition between genotypes since the equilibrium 
population can be genetically heterogeneous. 

In all cases where heterozygotes were present at equilibrium the fitnesses 
were such that there was heterosis as manifested through the effective carrying 
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capacities. In the absence of heterosis, heterozygotes will become extinct. This 
extends the conclusions of Asher (1972) b ase on constant fitness models and d 
selection in changing environments that “... heterozygostiy in automictic 
parthenogenetic and self-mating populations may only exist as a consequence 
of selection.” Thus, the very presence of heterozygotes in such populations can 
be regarded as evidence for heterosis. 

In this model, “heterosis” is manifested through the Cke’s and occurs when 
populations with heterozygotes are larger than those without heterozygotes 
since selection operates to maximize population size by choosing that ensemble 
of genotypes with the largest CL, . Heterosis in this model also means that the 
genotype with maximum heterozygosity has the highest relative fitness at 
equilibrium since the fitness of any given genotype, say i, relative to the maximum 
heterozygote is 

(1 + wi(Nm8/(1 + WrPw)) 

which is less than one for i # n whenever CL, > C:, . 
In all cases this largest C& can be written asfn{(l - P,)/Pn} and in general 

P, < 1 for heterozygous genotypes. As can be seen from (9), increasing the 
value of P, will increase the value of NGn since W, is a decreasing function of N. 
Therefore, population size can be further increased if P can be increased through 
the action of selection. Such increases in P would be favored under the model 
considered here if heterosis were present since the highest ranking heterozygote 
has the largest relative fitness. Furthermore, as P, goes to one, W,(N,,) must go 
to zero so that the relative fitnesses of all the other genotypes go to 1 + W,(N,,). 
As P, gets larger, N,, becomes larger and W,(N,,) decreases. Consequently, 
the fitnesses of all other genotypes relative to the fitness of the maximal 
heterozygote decreases as P, goes to one. As these relative fitnesses decrease, 
the selective forces driving P,, towards one increase. Thus, such populations 
represent a system which, if primed with an initial amount of heterosis, tends 
to become locked in on a heterotic strategy and evolves more and more heterosis.’ 
A consequence of such “P” selection is that certain types of automictic parthe- 
nogenetic populations can exploit the microevolutionary advantages of heterosis 
more efficiently than sexual populations, but with perhaps the long term dis- 
advantage that they tend to become locked into a single, adaptive strategy. 

As can be seen in the one and two locus cases were the P’s are explicitly 
stated, the P’s are functions of the frequencies of the diploid restoring 
mechanisms and the linkage relations. These relations are shown graphically for 
the one locus model in Fig. 3. Both the method of restoring diploidy and linkage 
relations can be theoretically modified. For example, parthenogenetic strains 

1 A more rigorous proof of this and similar effects will be the subject of a subsequent 
paper. 
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of Drosophila mercatorurn restore diploidy by gamete duplication and central 
and/or terminal fusion (Carson et al., 1969). Since gamete duplication produces 
only homozygotes, the greater E3 , the proportion of gamete duplication, the 
smaller will be the P’s for heterozygous genotypes. Thus, given some initial 
heterosis, any genetic change which decreases E3 will be favored. It is therefore 
important to see if E3 can be modified genetically. Carson (personal com- 
munication) has recently shown that the value of E3 varies from 99”/b to 78% 
in various strains of D. mercatorurn. This suggests that Ea is under genetic 
control to some extent and that genetic variability with respect to this trait 
exists. Consequently it would be possible to modify E3 in this species through 
selection favoring heterozygous genotypes. 

A possible example of this type of P-selection may be found in the naturally 
occuring parthenogenetic fly Drosophila mangabeirai. Drosophila mangabeirai 
reproduces primarily by central fusion (Murdy and Carson, 1959) which in 
general results in the highest P values for heterozygous genotypes (see Fig. 3). 

K=E,Y+ E,ll-Y/2 I=E,+Yl2E,-E,I/2 

- E,=O 

‘---- b=‘J 
2a,= E, 

FIG. 3. A graphical representation of the dependence of K, the probability of a 
heterozygous adult giving rise to a heterozygous zygote, upon linkage to the centromere 
(Y) and the proportions of the diploid restoring mechanisms (E, , E2 , Z$). 

As Murdy and Carson point out, D. mangabeirai has a meiotic spindle orientation 
which increases the probability of central fusion and which differs from the type 
reported for other species of Drosophila. Therefore, they concluded that “... the 
system has presumably evolved under natural selection.” 

The other mode of P-selection is through modification of linkage relations and 
recombination values. This may have occured in the two natural parthenogenetic 
dipterous species Drosophila mangabeirai and Lonchoptera d&a. L. dubia, like 
D. mangabeirai, also most likely reproduces by central fusion (Stalker, 1956). 
As can be seen by letting E, = 1, E1 = E3 = 0 in Table I or in Fig. 3, P in- 
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creases for heterozygous genotypes as the recombination frequencies between the 
loci involved and their centromeres decreases. Hence, if the heterozygous 
genotypes are superior one would expect selection for factors which decrease 
recombination frequencies. Indeed, it is found that D. mangabeirai has many 
inversions which function as crossover suppressors and make whole blocks of 
genes effectively absolutely linked to the centromere. Thus P is close to one 
for a large number of heterozygous genotypes, a condition Carson (1962, 1967) 
has termed “permanent heterozygosity.” A similar situation exists in L. dubia 
(Stalker, 1956) which is characterized by inversion heterozygosity and the 
absence of adult structural homozygotes in wild populations. Both of these 
species’ chromosomes and fusion mechanisms might well be an example of 
P-selection. However, increasing the falue of P is only an advantage when 
heterozygotes have superior fitness, so if P-selection really is a factor in the 
evolution of these two species it must also be concluded that heterosis plays a 
very important role in maintaining the fitness of individuals of these two species. 
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