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Abstract: The imaginary part of the proton-proton elastic scattering amplitude, as measured at 

the ISR, is examined in impact parameter. The transformed amplitude has two important 

properties. First, it is very accurately Gaussian in the impact parameter from the center to 

two fm with very little flattening near the center. Flattening would be expected from eikonal- 

ization. Secondly, there is a tail beyong two fm with a much flatter slope. This tail in impact 

parameter is equivalent to the break of do/d t at t = - 0.15 GeV. 

We discuss the. physical origin of the tail. It cannot reasonably be diffraction dissociation, 

since diffraction should be large where absorption is large. We suggest that the tail is due to 

dissociation which must be distinguished from its diffractive part, and make a physical model 

which gives the tail and describes do/dt very well. This model predicts the Deck model part 

of the diffraction inelastic cross section. 

We discuss the interpretation of elastic scattering in terms of s-channel unitarity rather 

than a t-channel exchange or the structure of a single hadron. 

1. Introduction 

Most of the high energy elastic scattering amplitude is widely believed to be dif- 
fractive. That means different things to different people. For example, in the Regge 
frame-work, diffraction is defined as the exchange of a “Pomeron”, To proceed 
from that viewpoint one transforms the energy dependence of the amplitude to 
t-channel angular momentum, and looks for singularities near J = 1. 

A more traditional viewpoint, which we shall adopt in this paper, is that diffrac- 
tion is a consequence of s-channel unitarity. The structure of elastic scattering is 
supposed to be a reflection of all reactions which can occur between the initial par- 
ticles. These viewpoints are not necessarily exclusive; it is likely to be profitable to 
study elastic scattering from both. 

This latter viewpoint is more concerned with the momentum transfer dependence 
of the amplitude than its energy dependence. One way to proceed is to transform 
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to direct channel angular momentum, in which unitarity is diagonal. To simplify the 
calculations, and to exhibit the approximate energy independence of elastic scattering, 
one uses instead impact parameter which is essentially the same as angular momentum 
(i.e., 2 = kb where k is the c.m. momentum and b is the impact parameter). 

In this paper we do several related but different things. First we present the ex- 
perimentally determined amplitude for high energy pp scattering as a function of 
impact parameter. The elements of structure in the amplitude measured as a function 
of t, namely the break at t = - 0.17 and the dip at t = - 1.3 give rise to structure 
of the amplitude as a function of impact parameter. We shall see that the break gives 
rise to a very long range part of the amplitude. We then describe the features of this 
structure which are relevant to any attempt at a physical interpretation in terms of 
s-channel concepts. We suggest such an interpretation and discuss difficulties with 
other interpretations. Our interpretation of the long range part is that it is caused 
by the possibility of dissociation of the incident and/or target particle into a larger 
system. At small impact parameter the entire amplitude has less structure than either 
the overlap function or the eikonal; we suggest that the small account of short range 
structure is absorption of the dissociative part. Finally we construct a simple model 
to exhibit our interpretation. This model although extremely crude, reproduces the 
structure in the Cxperimental amplitude. Our model shares one feature with other 
attempts to explain the small t break, namely that it is associated with a singularity 
in t. The origin of our singularity is physically different from other models, although 
not necessarily inconsistent with them. 

Each part of the paper is based on the preceeding part. Thus the transform to im- 
pact parameter is relevant even if our interpretation is incorrect; the interpretation 
and speculations may be right even though our model cannot be an accurate approx- 
imation to the true situation. 

2. Impact parameter transformation 

We define the transformed elastic amplitude (helicity non-flip) as 

0 

h(b) =; j” M(t)Jo(bfi) dt/ZqW, 
_m 

(1) 

where M(t) = M(s, t) is the usual amplitude and q and W are the center of mass mo- 
mentum and total energy, respectively. 

The differential cross section is 

do/dt = IM(t)/2yW12/16n , (2) 
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and the elastic cross section is 

(3 = 
el ; dr do/dt= f bdb iiii(b)i2/8n. 

-cc 0 

The total cross section is 

aT = ImM(0)/2qW = 1 bdb Imfi(b) . 

0 

441 

(3) 

(4) 

Unitarity is given at high energies by 

Im h(b) = 1 h(b) 12/8n + d(b) , (5) 

where d(b) is the overlap function [4] due to non-elastic s-channel intermediate 
states. The unitarity bounds are 

O<Imfi(b)<8n, 0<6(b)<2n. (6)> (7) 

For a given d(b) and Re k(b), the quadratic unitarity equation (5) has two solu- 
tions for Im a(b),. The smaller solution obeys 

O<Imfi(b)‘<4n. (8) 

We shall call this solution diffractive, as the larger solution corresponds to a 90’ 
phase shift as well as the absorptively generated scattering. There is no known reason 
that 90° phase shifts should occur any more regularly than, say, 4.5O phase shifts. 
In an optical picture the phase shift is given by the product of the index of refrac- 
tion (real part) and the path length, and is independent of impact parameter only if 
the index of refraction is zero. Thus, a dominantly imaginary amplitude is very good 
evidence for a phase shift near zero and the smaller bound (8). 

By combining eqs. (3 - 5) we find 

‘Sine1 = UT - (se1 = J o(b) bdb = f 6(b) bdb = 7 6(b) bdbJo(bx/+=o . (9) 
0 0 0 

The overlap function is the sum of contributions from each process with the given 
initial state. The cross section for each process is its contribution integrated over b. 

We want to study mainly the dominant imaginary diffractive amplitude. To iso- 
late it we work at the highest available energy, with the CERN ISR data [S-7] for 
pp scattering at s = 2800 GeV2. It is possible that the cross section includes contri- 
butions also from the real part of the amplitude and from helicity flip amplitudes. 
The real part is probably as large as 10% of the imaginary part at some t values near 
the forward direction, and for -t near or beyond 1 GeV2 the real part is presumably 
comparable to the imaginary part, probably filling in a zero in the imaginary part to 
make the dip at 1.4 GeV2. We have tried several hypotheses for the real part and our 
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results are quite insensitive to any reasonable choice. Basically that is becausefi((b) 
arises from an integral over t which is dominated by the small t cross section where 
the real part is of order a 1% (incoherent) effect. To be as realistic as possible we 
have used a reasonable model for the real part, but our results would not noticeably 
change if we chose zero real part. Similar statements apply to helicity flip contribu- 
tions; since they are presumably present at the 1% level at 1500 GeV/c, they will 
have no qualitative effect on our results or our arguments. We have put them equal 
to zero. The only choice that can sifnificantly affect our results concerns the be- 
havior of the imaginary part of the amplitude near the dip; does it have a single or 
a double zero? To our knowledge there is at present no compelling argument for 
either choice, but we are inclined to believe the amplitude has a single zero, arising 
from a cancellation between two physical mechanisms. The model we exhibit below 
will have this property and we will discuss it there in some detail. Miettinen and 
de Groot have considered the double zero case in a recent preprint [2]. 

Fig. 1. The amplitude, overlap function, and eikonal extracted from experimental data as a func- 
tion of impact parameter squared. (A straight line on this plot corresponds to an exponential 
in t.) The amplitude has a long tail between two and three fm, and continues to 1, = 0 without a 
noticeable change in slope. These features are related to the break at small t and the position of 
the dip at large f, respectively. 
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Finally then, we calculate Im k(b) from 

0 

Imfi(b)=i s dtJo(b~)(16~(do/dt- [do/dtl,)t , 
_m 

(10) 

where (da/d f)R is the real part contribution taken from ref. [8] and shown in fig. 7. 
The result for Im &f(b) is shown in fig. 1, plotted against b2. From eq. (5) we can 

calculate the overlap function, also shown in fig. 1. 

3. Observations 

There are two striking features of Imfi(b). First is the large b tail. At about two 
fm (b2 = loo), the curve levels off rather dramatically and maintains the shallower 
slope to about three fm (b2 = 225); beyond that point the existing data without 
published numerical values is not good enough to see what is happening. The down- 
ward rounding around b2 = 180 might be spurious; if not it is very interesting. The 
slope change suggests that the amplitude be considered as a sum of a short range 
piece and a long range piece [8,9]. The slope change occurs rather slowly near two 
fm so it is reasonable to extrapolate the tail in to smaller b to give the long range 

piece. 
The tail in b is closely related to the sharp break observed in da/d t at - t = 

= 0.15 GeV2. We have transformed a number of different functions which closely 
approximated the amplitude apart from the small t break and the tail was always 
absent in their transform. Models which try to reproduce the break without a tail 
(e.g., ref. [IO]) do so at the expense of badly disagreeing with data for t 2 0.5. 

The second striking feature of the amplitude in impact parameter is that it is 
very nearly Gaussian near b = 0. No bending is visible near b = 0 in fig. 1. 

It has been widly hypothesized that elastic scattering would show structure due 
to eikonalization [ 11, 121; that is, at small b the amplitude would be reduced be- 
cause of its proximity to its limit of 47r. The eikonalization is given by 

k(b) = 4n i(1 - exp(-f?(b)/47ri) , (11) 

where L?(b) is the eikonal. (l?(b) obeys the unitarity bound Im &b(b) Z 0, and the 
overlap function is related to the eikonal by 

b(b) = 2n [l - exp(-lm l?(b)/2n)] . 

The eikonal is 8n times the phase shift.) 
In looking at fig. 1, one sees no evidence for any reduction near b = 0 in G(b). 

If the eikonal were extrapolated from larger b where it is small and approximately 
equal to the amplitude, assuming it were approximately Gaussian the amplitude 
calculated from eq. 11 would have an intercept of about 7, compared to the true 
intercept of 9.25. An intercept of 7 would require a considerable flattening of the 
amplitude as it approached b = 0, and would be quite visible in fig. 1. 
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By inverting eq. 11 we can find the eikonal which gives the observed amplitude, 

B(b) = 4ni ln(1 - h(b)/4ni) . (12) 

i?(b) calculated in this way is also shown in fig. 1. As can be seen, E:(b) must have 
considerable upward curvature near b = 0. If one believes that it is the eikonal which 
should be given by a model rather than the amplitude directly, then it must be con- 
sidered an accident that the amplitude is so nearly Gaussian. It will be interesting to 
discover reasons for such rapidly varying eikonals. In any case, it is clear that eikonali- 
zation cannot be justified on grounds of simplicity. 

On the other hand, the overlap function (fig. 1) does flatten out near b = 0. If 
one believes that a model should describe the overlap function, then the central re- 
gion must somehow be suppressed, e.g., by absorption. If the overlap function from 
larger b were extrapolated as a Gaussian, its intercept would exceed its unitarity 
bound of 2n. In this case it need not be considered accidental that the amplitude is 
nearly Gaussian; the amplitude is the sum of multiparticle production and 1 *12/8rr. 
The former could be simple and Gaussian but have its central region absorbed out. 
The latter is as central as absorption, so adding it back could reasonably produce 
the simple shape. 

It is useful for studying the amplitude to note that it can be very well approxi- 
mated by the sum of Gaussians 

Im &f(b) = 8.94 e-b’l21.3 + 0.5 e-b2/62.4 _ 0.239 e-b’l0.92 . (13) 

The first Gaussian dominates out to about two fm, beyond which the second takes 
over. The third is only present at small b, having to do with the dip at larger t, and 
can be ignored for the moment. This form exhibits the features we have described 
so far. The long range tail comes from the second term. The first has a mean radius 
of 0.8 fm and the second a mean radius of 1.4 fm. The first term is a central con- 
tribution, while the second term provides a peripheral, edge contribution, as in refs. 
[8,9]. Near b = 0 this sum of exponentials closely approximates the amplitude and 
is not to be corrected by eikonalization; the eikonal which gives the correct ampli- 
tude cannot be described very simply. 

In momentum transfer eq. (13) becomes 

ImM(t)/2qW= 95.33e5*33t + 15.6e15.6t - 0.11 eu.23t . (14) 

The first exponential is larger than the second everywhere. The second is only im- 
portant for very small t, - t 5 0.2, and is responsible for the break. The comparison 
between eqs. (13) and (14) clearly shows the connection between the small t break 
and the long b tail. 

Assuming the first exponential represents the contribution to diffraction of one 
type of multiparticle process, and the second to that of another type of multiparti- 
cle process, one sees that the second has a significantly smaller cross section than 
the first. From the t = 0 intercepts one finds about 6 mb for the second. 

In fig. 2 we plot the slope of M(b) extracted from data as a function of b2; the 



F.S. Henyey et al., High energy elastic scattering 451 

.O+d[LnM(b)]/db' 

.08 !l 
\ 
\ 
i 

- DATA 
---- FIT WITHOUT DIP 
.-.-. EIKONAL 

t 

\ 
.07 '\ 

\ 
'\ 
‘\ 

1 ‘\ 

.06 ‘L, 

GeV* - 

.05 _ 

0.4f 0.6f 0.8f If 1.2f 1.4f 
.02 +. +* .+ + j s4 ' c 

0 10 20 30 40 50 
Gev-' b* 

Fig. 2. The slope d lnfi(b)/db’ as a function of b. There is a 10% decrease in the slope related 
to the dip at t = - 1.4. The slope of the eikonal, dlnE(b)/db*, varies considerably. In an eikonal 
model it is an accident that the amplitude has so nearly constant a slope. 

slope is given by d In @b)/db2. A Gaussian would give a constant value for this slope. 
As b approaches zero one can see a slight decrease, about 10%. For comparison we 
show the slopes of the eikonal needed to produce the amplitude, and the slope of 
the first two exponentials which give a good fit to the data for - f < 1 GeV2. 

It is necessary to associate the negative term with one of the two positive expo- 
nentials because all processes must contribute positively at all b [ 131. Since its size 
at b = 0 is comparable to, but smaller than the second exponential, it is natural to 
associate it with that piece. Such an association is made both in the model we ex- 
hibit below and in the work of refs. [8,9] which treat the longer range piece as ab- 
sorbed but the shorter range piece as not absorbed. 

It is very important to realize that the negative contribution is very small. The 
rms size of the proton is about 1 fm. A diffractive amplitude for scattering of an 
object that size typically has a diffraction dip in the region 0.6 GeV2 <, - t 5 
5 0.8 GeV2. On the other hand, the pp scattering has its zero at t = - 1.4 GeV2 
where the amplitude is two orders of magnitude smaller than at 0.6. The negative 
exponential would have to be about 25 times larger to move the dip in to 0.6 GeV2. 
Thus in a sense the dip is nearer to - t = infinity than to - t = 0.6. 

This is illustrated in fig. 3 where we show two eikonals which are similar, one 
giving an amplitude with a dip at - t = 1.4 GeV2, the other no dip at all. There is no 
obvious way to choose between them except to know the data; 
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Fig. 3. Two possible eikonals. One gives a dip at t = - 1.4, and the other gives no dip. They are 

so nearly alike that only the data allows one to choose the correct one. Thus, in an eikonal type 

model the position of the dip is essentially unpredictable. 

All of this discussion of the negative contribution is, of course, dependent on our 
decision to choose the imaginary part to be negative beyond the dip. If it is positive, 
clearly a three exponential fit is inadequate. 

4. Interpretation 

So far we have been led by the data to a two component picturet of elastic scat- 
tering. There is a central component, large in size, with no apparent structure, and 
there is a peripheral component, small in size, extending well beyond the central 
component. The peripheral component appears to be absorbed. Our observations 
are largely phenomenological and model independent. Now we turn to speculations 
on the origins of these components, and interpretations. 

t As is explained in the text, our two components (peripheral and other) do not correspond 

exactly to the usually defined two components (diffraction and other) of Wilson [ 141 and 

many recent works. 
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What processes, via unitarity, contribute to the two pieces? In particular, what 

gives rise to the contribution at large b? Since unitarity is diagonal in b, it must be 
processes which are themselves spread out. The mechanism which suggests itself is 
that a hadron can virtually dissociate into a system of two or more particles, and 
the system occupies more area than the original proton [ 151. One of the fragments 
then strikes the other proton (or a piece of it). The impact parameter statement 
that the dissociated system has a larger area than the original proton is equivalent 
to the momentum space statement that the fragment which interacts with another 
hadron has a propagator and a form factor. (Either one alone causes spreading.) 

The absorption of the dissociation piece can be understood as the possibility that, 
for example, a proton dissociates into two fragments and both fragments interact 
with the other proton. This possibility has been taken into account in the central 

(b) 

Fig. 4. s-channel unitarity mechanisms for elastic scattering and diffraction dissociation, con- 

centrating on the peripheral component. (a) All scattering builds up elastic scattering. (b) All 

dissociative scattering builds up diffraction dissociation as given by the Deck model. (c) AU dis- 

sociative scattering also contributes to elastic scattering. This is a part of that shown in (a). We 

identify the dissociative part with the peripheral component. (d) The contribution of elastic 

scattering is only part of the total shown in (a), (although the largest single piece). It has a 

shorter range than the total. (e) Analogous to (d), diffraction dissociation is a contribution to 
the dissociative component of(c), and has shorter range than all of(c). 
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component with the possibility that the entire proton interacts with the other. This 
sort of effect is familiar from absorption calculations. 

A very important distinction must be made between dissociation processes and 
diffraction dissociation, analogous to the distinction between all scattering and 
elastic scattering. The imaginary part of elastic scattering is built up by contributions 
from all scattering (fig. 4a). The contribution of elastic scattering itself is only one 
contribution out of many (fig. 4d), although it is the largest single contribution. In 
the same way, all dissociative scattering builds up diffraction dissociation (fig. 4b), 
diffraction dissociation being but one contribution. Dissociative scattering also con- 
tributes to elastic scattering (fig. 4~). Diffraction dissociation is just one part of it 
(fig. 4e). 

It would be unreasonable to assume that the peripheral component was caused 
by diffraction dissociation alone. Diffraction is the shadow of other scattering. Thus, 
if there is no other scattering, there cannot be diffractive scattering either. Between 
two and three fm (fig. 1) the peripheral part is much larger than the rest, and there- 
fore is not diffractive?. 

5. Model 

We can make a crude model incorporating the mechanism we propose. The model 
is not meant to be complete either theoretically or phenomenologically. Rather, it 
shows simply and clearly how the features we have described can give rise to the 
structure seen in elastic scattering. 

Assume the central contribution to M(s, t) is given by a known function H(s, t); 
for numerical work we will choose H(s, t) = i sA 1 e’l t. All the amplitudes are 
treated as purely imaginary elastic ones. Similarly, the dissociation component of 
elastic scattering, shown in fig. 5, is given by an integration 

s d3k W,) GO,) Ws2> t) , 
El 

(15) 

where G(t) describes the dissociation vertex and propagator of the virtual fragment 
which interacts with the target. We estimate the integral using an exponential in t 
for G(t). Essentially all the integral comes from s2 being proportional to s, and the 
integrand is moderately strongly peaked at tl + t2 a futed fraction oft The integral 
can then be approximated by 

M(s, f)A2 eBzr . 

Thus the amplitude satisfies 

M(s, t) = H(s, t) + M(s, t) A 2 eBz ’ , (16) 

t The opposite opinion has been expressed by Barshay [ 161. 
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Fig. 5. Diagrammatic explanation of our mechanism for elastic scattering. The amplitude is the 

sum of a relatively structureless central component and a dissociative component. We have not 

illustrated the absorption of the dissociative component. The kinematics of dissociation is shown. 

or 

M(S, t)=H(s, r)/(l-A,eBz’)=H(s, t)+H(s, t)A,eB2t/(1-A2eBZ’). (17) 

Finally, according to our physics arguments above, we must effectively absorb the 
dissociation component, which can be identified with the second term in eq. 17; 
the central part is given by H(s, t). This can be done by first expanding 

M(s,t)-H(s,t)=HA2eB2’(1+A2eBzft...), (18) 

then transforming the entire equation to impact parameter, then absorbing the cen- 
tral partial waves by multiplying each term by 

Seff(b) = 1 - e-b2’4B1 , 

where the right hand side gives the simple form used for numerical work, transforming 
the whole series back to the momentum transfer variable and resumming. The ampli- 
tude for our model can be written in the form 

M(s, t) =H(s, t) + (H(s, t) A, eBzf/(l -A, eBzt))* Se, (19) 

where * means an impact parameter convolution as explained above. 
The parameters A 1, A 2, B,, B, are adjusted to best fit the data, giving the results 

shown in figs 6,7. The decomposition into central plus dissociative is shown in 
figs. 6,7. The parameter values are Al = 80.7, B1 = 4.32, A, = 0.35, B2 = 3.09. 

The entire cross section can be broken down into the individual pieces shown in 
fig. 4, i.e., the individual amplitudes at t = 0. We find that the entire cross section of 
43.1 mb is made of 3 1.4 mb of central component and 11.7 mb of dissociative com- 
ponent. The central component includes 7.6 mb of elastic scattering (eq. (3)). The 
dissociative component includes 1.7 mb of diffraction dissociation. This calculation 
is the diagram of fig. 4e. Fig. 4d is calculated by an impact parameter convolution, 
the result is multiplied by A2 eB2t to approximate the loop integral and then this is 
absorbed and evaluated at r = 0. 

The value 1.7 mb for diffraction dissociation is smaller than that usually estimated 
[ 181 at NAL and ISR energies. This may be caused by the severe approximations in 
our model. Another possible explanation is more physical. Our diagrams (fig. 4b) for 
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Fig. 6. Model fit to the amplitude, shown in impact parameter. The decomposition into 
terms of fig. 5 is shown. The dissociative component is long range and absorbed. 

the two 

diffraction dissociation correspond to the Deck model, and have the feature that the 
intermediate state to final state scattering is disconnected. However, non-Deck dif- 
fraction inelastic processes can occur in which the intermediate to final state scat- 
tering is connected. In these processes the initial state becomes a non-dissociated 
intermediate state, which then becomes a final state slightly different from the ini- 
tial state. These processes are not properly dissociative; they should be referred to 
as direct diffraction inelastic rather than diffraction dissociation. In our model, such 
processes are to be included in the central component. Therefore our 1.7 mb is only 
an estimate of the Deck type diffraction dissociation which is to be added to the 
direct diffraction inelastic (if any) to give the total experimentally estimated diffrac- 
tion inelastic. In other words, perhaps the experimental diffraction inelastic includes 
more than our theoretically defined diffraction dissociation. In this connection it is 
interesting to note that the experimental data usually called diffraction dissociation 
often show a break in slope [ 171 at - r - 0.2 GeV 2 with about half the area under 
a (peripheral) piece with steep slope (slope greater than elastic) and about half under 
a shallow piece (slope about half elastic). It may be that the correct interpretation 
will be to identify only one part of the usual curve with the (Deck type) diffraction 
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Fig. 7. Model fit to the amplitude, shown in momentum transfer. The decomposition into the 
two terms of fig. 5 is shown. 

dissociation part of our model and the other part with the direct diffraction inelas- 
tic. 

By expanding the solution in powers of A 2 one can separate the contributions of 
fragmentation into n hadrons, which is important for understanding the tail as large 
b. In the fit shown in figs. 6 and 7, the two fragments dissociation is less than half 
of the total dissociation beyond two fm. Thus the multifragment processes are 
phenomenologically important. The dissociation curve in fig. 6 is approximately 
given by including the dissociation with four or less fragments suggesting a reason- 
able (low) multiplicity for the dissociation part of the cross section. 

Since we include all numbers of fragments, the infinite series generates a singu- 
larity in t. In our model this singularity is a pole (see eq. 17 or 19) at A 2 eBzt = 1. 
With the parameters of our fit, this pole is at t = + 0.26 GeV*. This pole should 
not, of course, really exist in the amplitude and will be replaced by a soft singularity 
in a model with less approximations. 

Although the pole is not reasonable from a fundamental theoretical viewpoint, 
it is extremely reasonable as an approximation. There are singularities in t which 
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really do exist in the amplitude, the two pion threshold, the two rho threshold, the 
m threshold etc. Our pole should be interpreted as an effective singularity, approx- 
imating all the singularities which actually exist. In a sense, the t-singularities are 
responsible for the structure at small f. 

A singularity in t is responsible for the structure at small r in other approaches. 
For example, Anselm and Gribov [3] suggest that the rrrr threshold is responsible 
for the break. However it has not been shown that this effect is sufficient to give 
the magnitude and shape of the small t cross section. As another example, the model 
of Cheng and Wu [12] contains a singularity at a position which they take to be an 
adjustable parameter. In a model such as our which admits being crude, it is reason- 
able that the position of the effective singularity be an adjustable parameter or an 
output from fitting data. In a model such as that of Cheng and Wu which makes a 
claim to be a much better approximation it would seem to be appropriate that the 
two pion threshold be the singularity nearest t = 0. (Cheng and Wu discuss the limit 
of extremely large impact parameter which they claim to be relevant. It is clear that 
the 2n threshold dominates as b + -.) 

The only implication of our model that might give trouble (which we are aware 
of) is the connection with diffractive production on nuclei [19]. The question is a 
complicated one, which will require careful calculations. Basically we have given 
dissociated hadrons a larger size than undissociated ones. In the present crude model 
this spreading is too large to allow the shadowing of the fragments to reduce the 
cross section to that observed. In a version of the model which gives a large diffrac- 
tion dissociation, the spreading will be smaller, and the cross section in nuclei will 
be smaller. 

We would like to make one observation concerning energy dependence. Our 
analysis has been done in impact parameter, and is essentially unconnected with s 
dependence. However, our interpretation in terms of dissociation states suggests a 
way to look at the situation [ 151. Note that at 1500 GeV/c in fig. 7 the full curve 
is the sum involving 1, 2, and 3 dissociations. At a lower energy presumably the 
contribution with three dissociations is less probable because it requires considerable 
phase space. Then the tail in b could not extend out so far and the small t break 
would not be so pronounced. In addition, aT could increase with increasing energy 
as more dissociative states are produced. Unfortunately, we cannot say whether the 
energy dependence effect we are noting here is numerically large enough to matter 
because we have no dynamical energy dependence in the model. 

6. Summary 

We would like the reader to remember the following points. The experimental 
data, looked at in impact parameter b, shows two properties which must be present 
in any interpretation. These are (i) the surprisingly long tail in b, which is directly 
related to the small t slope increase, and (ii) the lack of any large deviation from a 
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pure Gaussian shape in b at small b, which is directly related to the dip in do/dt 

occurring at a large r where the cross section is very small (rather than where a dif- 
fraction minimum would occur). The dip is almost at -t + 00, as indicated by the 
fact that eikonalizing with form factor structure gives a dip while eikonalizing with 
a slightly different eikonal gives no dip. 

We have tried to interpret these phenomena from the viewpoint of s-channel 
unitarity and physical particle states. The model we have exhibited describes the 
large tail in b as due to dissociation of hadrons; the dissociated states are spread out. 
An important point is that the dominant contribution to the dissociation cross sec- 
tion is not diffraction dissociation; diffraction dissociation is the shadow of the other 
processes that can occur and will always be less than half (much less at large 6) of 
the cross section at a given b just as diffractive elastic scattering will be less than 
half of uT, unless direct diffractive inelastic processes occur. The dip at - r z 1.4 
GeV2 arises in our interpretation because the dissociation contribution should come 
from the edge region of the hadron interactions; this can be thought of as a periph- 
eral interaction when the central region of the dissociation is absorbed away. Then 
the destructive contribution which causes the dip is smaller because it is the absorp- 
tion of the dissociation part (udiss - f aT) rather than of the entire amplitude, so 
the dip is moved out in -t compared to what would be expected from a diffraction 
zero. Our interpretation leads to some incomplete speculation on energy dependence 
because the dissociation mechanism is inhibited at any finite energy. 

We would like to thank Marc Ross for comments and for careful reading of the 
manuscript. 
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