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1. Introduction 

The communication problem discussed in this article has been given 
various names in the literature. For example, Baker and Shostak (1) call it 
the “gossip problem” while Hajnal et al. (3) refer to it as the “telephone 
disease”. This is analogous to the well-known term “the four color disease” 
[(4), p. 1261, which arose from the fact that the problem has so many features 
of an ailment, the main difference being that this one was settled so effort- 
lessly, relatively speaking. In the literature of psychology the “common 
symbol problem” (2) is equivalent to it, although in disguise. Recently, 
Moon (5) studied a probabilistic variation of the communication problem 
in which the calls are made at random. 

ZZ. Background 

In brief, the communication problem has as its setting the hypothesis that 
each of n individuals knows a unique item of information. What is the 
minimum number of communications between pairs of people needed to 
exchange all the information T It is assumed that these are two-way contacts 
such as a telephone conversation and that each individual can phone any 
other. This amounts to the stipulation that the complete graph K, represents 
the communication network. Thus the communication problem is generalized 
when we take as the given network not K, but a connected graph G with n 
points. The lines of G can then be regarded as those two-way calls which do 
not entail toll charges. 

A further modification of the original problem results when the communi- 
cation acts are all one-way, such as writing a letter. Of course the underlying 
network must then be a strongly connected digraph D, in order that all the 
information eventually reaches everyone. 
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We now summarize the results obtained to date for K,, G and D. It was 
shown in (l), (3) and (6) (and also in an unpublished note by Bumby and 
Spencer) that the solution to the original communication problem (for K,, 
n 2 4) is 2n - 4. This means that 2n - 4 calls (two-way contacts) suffice and 
that no smaller number would do. 

We show that for an arbitrary connected graph G, 2n - 3 calls suffice and 
that if G contains a quadrilateral then just as for a complete graph, 2n - 4 
calls do. 

Finally, for a given strong digraph D, 2n - 2 is the minimum number of 
one-way contacts for all the information to be disseminated to everyone. 

III. Noncomplete Graphs 

By the solution of the communication problem for a nontrivial connected 
graph G is meant the minimum number of calls to acquaint all n individuals 
with all n items of information. We state now the result of (l), (3) and (5). 

Theorem I. The solution for K, with n > 4 is 2n- 4. (For K3 and K,, the 
solution is 2n- 3.) 

When G is not complete, it is logically convenient to consider trees first. 
Theorem II. The solution for a tree T with n points is 2n - 3. 
Proof: It is known [(4), p. 341 that every non-trivial tree T has at least 

two endpoints, and that T has n- 1 lines. The following procedure will 
achieve a solution in 2n - 3 calls. Let each endpoint of T first call its unique 
neighboring point. Let T’ [see (a), p. 351 be the tree obtained when the 
endpoints of T are removed. Repeat in T’ the process of “endpoint calling 
followed by deletion”, and so forth for T”, T”, . . . . Then this ingoing procedure 
terminates after n - 1 calls when the center of T is reached, whether T has 
one or two central points. 

The two individuals involved in the last call now know all n items of 
information. They proceed to disseminate it by calling back those who had 
called them previously, so that n - 2 outgoing calls are made. These are the 
first n- 2 calls repeated in reverse order. Thus after 2n - 3 calls, everyone 
has all the information. 

If fewer than 2n- 3 calls could suffice, then at least two lines of the tree 
would be used only once. But the removal of these two lines results in three 
subtrees, just one of which is “between” the other two. Thus there is no 
way for the people in one of the “extreme” trees to receive any information 
from the other extreme tree. 

Corollary l(a). The solution for a connected graph G with n, points is either 
2n- 3 or 2n-4. 

Proof: For G = K,, the solution is 2n - 4 by Theorem I. Every connected 
graph has a spanning tree T and by Theorem II the solution for T is 2n - 3. 
Obviously the solution for G is at most that for T, and the corollary is 
established. 

Theorem III. If a connected graph G contains a quadrilateral C,, then 
the solution for G is 2n - 4. 
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Proof: Clearly, G contains a spanning unicyclic graph H whose cycle is C,. 
It is well known that the removal of the lines of C, from H results in four 
trees, each of which may be regarded as rooted at a point of C,. 

We now show that the solution for H is 2n - 4, which implies the theorem. 
Apply the same process of endpoint calling followed by deletion, as in the 
proof of Theorem II, to the endpoints of H, forming H’, H”, . . ., H(‘) = C,. 
These n - 4 calls, one for each line of H not in C,, convey all the information 
to the four points of C,. Now, looking at Fig. 1, four calls are made to exchange 

u I ” 

3 

I 

4 

x 2 w 

FIG. 1. A quadrilateral and its calling scheme. 

all the information in H (and hence in G) among the four people in C,. 
These four calls are made in the order that the lines are labeled. A glance at 
Fig. 1 shows that after the first two calls u and v have “one half” of the 
information and x and w have “the other half”, After the third call u and x 
know everything, and after the fourth, so do v and w. Finally, repeating the 
first n - 4 calls in reverse order disseminates all the information to everybody. 

Thus only for graphs not containing C, is the question still open. We are 
so convinced of the next statement that even though it is by definition a 
conjecture, we shall call it a True Conjecture: a connected graph G with n 
points has solution 2n - 4 if and only if G contains a quadrilateral. 

Theorem III establishes the sufficiency; the necessity still eludes us, 
however.* By way of heuristic evidence in favor of the conjecture, we now 
show that no cycle other than a quadrilateral will serve to yield the minimum 
possible solution, 2n - 4, for a unicyclic graph. 

Theorem IV. If G is a unicyclic graph whose cycle is not a quadrilateral, 
then the solution for G is 2n- 3. 

Proof: We know by Corollary l(a) that the solution for G is either 2n - 3 
or 2n-4. 

Suppose a solution of 2n - 4 calls exists. We first observe that every line 
of G must be used, for if a bridge is omitted, the people on opposite sides 
cannot learn each other’s information. On the other hand, if a line of the 
cycle is not used, then the calling sequence is actually based on a tree, so 
2n - 3 calls are needed by Theorem II. Now since 2n - 4 calls are to be made 

* We offer U.S. $10 (regardless of its fluctuations relative to other currencies) for 
t,he first proof or (highly unlikely) disproof thereof. 
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on n lines and each line is used at least once, we see that at least four lines 
are used exactly once. We call such a line singular. 

We now show that all four of these singular calls must lie on the cycle. 
For if one of them is a bridge, then it separates G into two components, say 
of order b and n-b. Now since this bridge uv is used just once, u and v 
must each know all the information from his own side at the time of that call. 
This requires (b - 1) + (n-b - 1) = n- 2 prior calls. After the call uv, n- 2 
additional calls are needed to disseminate the information just obtained. 
Thus (n - 2) + 1 + (n - 2) = 2n - 3 calls have been made in this case. Since 
this violates the hypothesis that 2n - 4 calls suffice, we know that the four 
singular calls must all lie on the cycle. 

Now the removal of these four lines leaves four components Ti (each a 
tree) as shown in Fig. 2, in which ui and vi may coincide for some choices of i. 

FIG. 2. The four singular lines and the four associated trees. 

Of the four singular calls u1 v2, u2 v3, u8 v4 and uq vl, the first two made cannot 
be “consecutive” on the cycle as, for example, u1 vs and ua va, for then there is 
no way for component T2 to receive any information from T4. Thus, we may 
assume without loss of generality that the relative order of these four 
singular calls is urvs, uav4, u4v1 and then u2vs. Now in order to transmit all 
the information among the four components, n -4 calls must precede the 
four singular calls, and n-4 calls must follow them, as in the proof of 
Theorem III. Thus, this accounts for the allotted total of 2n- 4 calls, so 
calls u1 v,_,, us v4, uq vl, u2 vs must occur in sequence with no other intervening 
calls. 

Remember however, that the cycle is not a quadrilateral. Therefore, while 
ui = vui is possible for some i, there must be a choice of i for which ui#vi. 
Thus, the two singular calls into this particular component Tk arrive at 
distinct points, hence Tk cannot be used to relay information between its 
two neighboring components. However, this is a contradiction because each 
component must provide one such relay in order to exchange information 
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between the diagonally opposite pairs of components. Consequently, no 
sequence of 2n - 4 calls exists, and so the minimum solution is in fact 2n - 3 
calls. 

Thus we see that the True Conjecture is more plausible in the light of 
Theorem IV in that the presence of a quadrilateral is seen to be important), 
rather than a cycle of any other length. 

IV. One-way Communications 

A variation of the original communication problem for graphs is obtained 
when instead of considering two-way contacts (such as phone calls), only 
one-way messages (such as letters) are possible. The setting for the resulting 
problem is of course a digraph D which must be strong (st’rongly connected) 
if each item of information is to reach all n people. At first glance one might 
assume that it would require nearly twice the number of letters as calls 
since it takes two letters for mutual contact between two people. Thus the 
theorem which establishes the minimum number of letters comes as a bit 
of a surprise. In fact, only one more letter is needed for a strong &graph 
than the number of calls needed for a tree. 

Theorem V. The solution for a strong &graph D with n points is 2n - 2. 
Proof: By definition, every pair of points of a strong &graph are joined by 

two directed paths, one in each direction. Thus, at any particular point v, it 
is possible to find a tree qn spanning D with all its arcs toward v. This is 
called an in-tree ; an out-tree Tout is similarly defined. These two trees can now 
be used to provide a solution. Starting at the endpoints of q!,,, one letter is 
sent for each arc in Ti, so that after n - 1 letters, v is fully informed. Now 
the n - 1 arcs of Tout are USed to convey this information from v to everyone 
else. Thus 2n - 2 letters serve to inform everyone about all n items. 

We observe that no smaller number can suffice, for obviously no one can 
be fully informed after only n- 2 letters. Each subsequent letter fully 
informs at most one person, so at least (n - 2) + n = 2n - 2 letters are re- 
quired. Since we have achieved this bound, the proof is complete. 
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Note added in proof: We have recently learnt from R. L. Graham that the True 
Conjecture has been proved by D. Kleitman, 
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