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K. Statman
where the length of A is its nurnber of symbols, and if so how fast must such an m
grow?

(2} Speed-up. Given a systern % 2 8, is there 2 function n1 such that

b 4 o el 4

and 1 how fast must such an m grow?
Our principal results will be srated for the language of predicate logic (including
e theory without the axioms of choice oy izmnuy; and systems of natural
duction {(along with seguential variants of these svstems). Systems of natural
deduction, first introduced by Gentzen In 1935, lend themselves o our study for

several reasons:

i deduction has the same structure as some informal description
presents (for some case by case verification of this the reader
pler 4, 1L1-I1.5]. Thus, pending completeness considera-
resulis about ni tural doductions have a natural interpretation in
terms of inte ﬂﬁg ‘ul‘;iy of proofs.

{(2) G neraily speaking, natural deductions are shorter than their counterparts
in other “schematic” caleuli (however, it tums out that most of
ished below for systems of nadaﬁi deduction would have the same ovd 21 of

. thoroughly analyzed inferences.
e of thcﬁumi comniemy
Iy simple analysis of the notion
& between derivat w.4}

upper bounds for *m,of search in the equation calculus (sequen-
5+ entd zmad oft & proot- %arch procedure due to Tait. In addition, this
coptains an analysis ional derivations (natural rules) after the
C Gentzen's cut-gl t. Th axza?aa"sis is applied to obtain
eqmmzai rules + cut over the rules without
certain auxiliary results wm howill be used in la\ier sections. For connec-

reader shouwld refer to Kozen [15], and

nd jower boun -search in the propositions)
containg lower bounds for

wnhonf {t mpcs‘ bounds are

- cui) in

given in Se

2
shopdd 1

is obisined by formal 11
the standard bounds for cui-slimination. In
of {.sga}m%ii proof-search bounds for the general ¢

ower bounds {or speed-up by the predicate calculus
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{without equality) over the propositional calcutus. 7
corabining the bownds of Section 2 with the rmim“
function i such that [ 4 = there is a valid B of logical
that A is a substitution instance of B.

Section 5 presents upper and lower bounds for speed-up by
with equality over the equation calculus (for eguationsal Eht.Oqu
theorem). The upver bound is obtained by analyzing Prawiiz
and the lower bound is obtained for a fixed equational theory

esult of Hindley and an idea of Tait. In addition, the chapter ¢
mwe; bounds for speed-up by the sequential rules for the predi
equality + cut over the rules without.

In Section 6 we prove the existence of bounds for
{over first order logic, with and without equality
without equality). The existence of bounds for speed-up is ol
Prawitz style normalization procedure forse -order ogic (he
note that [30, B.3]is in ervor). The section & lower boun

Section 7 considers proof-search in and speed-up by the theory of ¢
choice and infinity, 11 is shown that there are no bounds for proof-searth even
(higher type) propouitional {ormulae, and there are no bounds for s spee
tor quentifier-free formulae {over the propositional calculus). In add
shown that there are no bounds for speed-up by the theory of types w
over the equation calculus (for eguational theories a la Herbraod's ¢

us the theory of types constilutes an upper bound for the kind of work done in
Sections 1-6.

.54, We consider equations E between individual terms a, b, d, e, ...
from constaals ¢, ..., paramelers w, v, ..., asd ﬁam:& ou symbols

uiing ¢ |

L, 1

-~ for the operation of simultsnecusly subsiit

write Subd

. A function s from terms (o non-negative integers is catled a pre-n
i mgismb)=>m ‘i:ea ¢ dy=<m{Subl ) and whepever u occurs in 4 we

mi{ay=m(Sabl 4).
m s & moeasure if m(Subé d) = m{d)—mGok +min)k for u oeourring
¥
[
5253, If m is a pre-measure gnd § -a substitetion, then my s the pre~
defined by m,{a) =m{ m} i
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e define the linear form 14 as follows;

mv)+ '7 i,u,

o s mifo, - 1,0~
1

so Hf @ contains just the parameters uq-- -, then {5L=1%(u,;,...,u,) and
sa)= L (mlay), . omia).
in addition we set m{eg =b =gym{a)+mibd) and mF) =g ner i

uations. Finally if m >0 we define m™ by

= bYy=max {m{a)mh), m{b)/miu)}

WM E)y=gmax im™E): Ee FL

1.2.8, I F is a finfte set of equations, then Sub F is the set of 3l substitution

L2386, F is called simpie i each equation tn it has one o' the forms;

e, OF BT

only parameters which
fed {0 a f’m(i“i M*of F
DW of each funciion

equation cccurrences bullt up from

re binary trees of seyuent ocourrences buoili up from axioms

$ {out).
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and a shiff is 2 veplacement of a subdeiivation

f
f

& C%‘a‘am 2 b&d

Subt E & Sub?

Subi™ B

by

Subf B aS8ubl e

i~
i3
Suble E i? @ z.'f

Q ; Subie =
SR, £

or

2, Dy
D, {Sub] b)&d =l
Subiit B (Buby bdd

o, Dy
L Subtt 5 "
Q“Ebol\‘ JJ:, {?,E—“,(:'

z;“\f’“b b i (Siié'}a b\) @d

Su L‘?‘j =

[

 or a shift, and we say that I, reduces to Ix, if I3
snce Of moves.

firgt we show that I¥ reduces 10 a

()

7
e
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The magimun val
(G+1y2-1,..., M),
I ia!»rf nn this vaiue
of max
ihie
Mow suppose im
(). W' o.g assume i’m
computation is

18 R S

G

f:zmmf nﬁmuws wigh @ 4
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(1) his WE-reckonable from F ond SubF g hD=0; let f and

F Fr
bl
;zmcrw 1 symbaés and’ set Fl=g4 F3'U<{g%’} =0, gsu=zgu, fO0=0, fsr;e = 'ghy}
Ea -

g l e
=0 and Sub F e k(670 =¢'0 we have {=<m,

Froof, ] ! be the valuation function for closed terms determined by somc
interpretation over the et of natural numbers (with 0§ denoting zero and s ths
successor functio ¢ WF, and let (7 be a closed finite subset of Sub F°
;{s"’““ ion 1.2.3 there is a computation of
r{ T e ol
e =g, E_,
f{gnw-l(}}: a
3 fer b a clotad term as follows; i b s

then ofb ):‘—vai{&}, Oiherwise

(’} and sug}pase that oli + 1) <ol{i);

"

».u; or

¥ 1 cocurs in g, with off) = ofi), then ¢ begins wi
ad ) aSbis 51{1@: gsu = gu OF fsu == fghu (=1 snd

’} of z) w%ﬂf‘h contradicis

s s 2n equation gse = ga in G such that

: is @ pre-sing miar ME-derivatio

position 1.;‘,\, there is 2 cony
e FU{E} contains only unary fung
v it u;iiew.-s easily thal no term ocourring in this

w
a3

]
ey
T
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uilt up from the constants 8, B, C, I, P, Q, 0 and 1, parameters, and
unction symbc: (). Terms w:ri en as a concatenation of constanis

are 1o be associated by { ) 0 the left. Let L = {Su uuz=
Bwluazey: (u1(!.é2l\53;}, Cuvau = {{usin,), Im=u} and set
ety Let T=4(SBY(CBIM)), set T =4 T and put T, Qf{'ﬂﬁ)
e equation PO = (PUT, N0, The souatio

poy
e

[

@ in L correspond in an
ohvious way to axiom schemes which define % reduci E) lity relation enjoying the
Chureh-Ross serty. The phrase “CL-normal form” has the obvious

Meaning.

et

Suppose ;fh’ét G s a closed finite subset of Sub F such that GV}
)

5 closed finiie subset H of SubF st HU
5 and each term occiaving in H iz in OL-

w occurs in b
D B ‘ﬂ A8 % nal form = (Fg) has a CL-normal form, and
o b has a CL-normal form < Sub™9 b has a CL-pormal form.
i computation of B,

mﬁ Suby

‘fm:; frome a,.
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if a is a close

{(PAy B 0 # ¢ is OF for j<k, and
N t kY
{(Pa) v 1 otherwise.

By [‘33. Theorem 31, CL7 ha
SubCL™ [we0=1. Let E be the squatic
so since (W}z "1y is the f'ﬂ-ﬂsrmch form

1t suffices to show that Sub OL° Fﬁg?ﬁz PG

1

Case 1: Suppose that g
not of the form O forany § s
{(B(Qa))) »»0or k<j, j+1

Cose 2 Suppose that g; contains P in funct iion. g
fﬁ“m containing ¢ or 1 and without P in "‘ﬁncaéﬁn position so Pa,

nally we obtain the

. Sub (CLUR

1.4, Speed-up

142, A linear derivation of E from & is a sequence

=
Ly

wve s @ finear derivat
dogtion of E from

C there s a bnear &
“pre~singular” one of Eﬁﬁg;ﬁ
ph on is eguation occur
nce of F as a sink, T
wicus adjacency relation)

3]

tion e*‘ H from F of lengih <p, b
of length <n. Now ?mpiy Propos
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there is a linear

kg

recursion

Subt G FSubs

1aG@bisubd GFSuld B

Gy ESubl B

pnidd

wen each £
:bE G (this representation may not be uniguej. Thus

the form

ot
iy

1

ub® J, Sub® JF < 8ub® G, and card (J)=card (F). Let

ve et D7 =

41 & S
Dy A5 e

KU Sebd Ik
N &5 oy

abl THSubl B

ja
e i
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1.4.5. Prap

5. P@Gﬁ; -seqrch

oy

1.5.%. An SE-derivation I of FFE is said 10 be m~dirsct for ¢ pre-m
for ex c%* term g occurring I ¥ erm b oocarring o F

mi{a)<m(b). pm{F) is the number of pa 'S GoUurTis

.52 1
SE-dertvation of F ;, o=

Poand T
LEeEL. 128

define 2

is an m-divect SR-~derivation of F
from this by applying cut © the sguations in

Soppose that Fiw =y has been def
such that ¢ I not b and m{a) smib),

Upy Zaitp Doy =g 0 ond define F,=
Uran = Subj v,
o

To prove the lemre it suffic

i& ff fui--rufo
belongs 1o F ',, E‘j simila
() if u' belongs o _F«_, then u
Thus an interprefati ;
and ondy if 1y is v, But

his model of Fy, can be CXTB&*‘W&«A ica

Proof. To each ccowrrence 1 of atermin Fra=b assign & new parameter k. Let
Fy fsgf{’vﬁﬁ.,-»g,‘ = fu, - bef,j u =, mes=cn fiy oo 1, an oot xux,m: 2§ an OCCurrence

»y..i.;r- ' i I‘:, Mow apply

abi

of v, and ¢ an ocour
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L Il e

er formulae A, B, C, ... built up from propositional parameiers
propositional cong zem L (falsehood), and the connuctive con-

ant —, and se quem% FrG for F and G finite sets of formulae with &
W’e set A =,4A - L and '":F df{“\A AcFy H F=lA:1si=m}

&F = B =g

=14

2.1.2. The Interpretation of FFG is &F — (&G > L)
We define the poton of positive and negative oceurrenc~ as follows: A

s A occurs positive In B or negative in O, then it occurs
i A occurs negative in B or positive in €, then it ocouss
positive in B — £ A ocours pes??iws in FF 3 i it ccours positive in 2 member of

I

ative in FH G if it occurs ()QUJEVE iry

G or negative in g member of F) A ocowrs neg
a member of F or ﬁegaﬂve in 2 member of G.

s for the propositional calculus)
L/};} and the rules

.7 o LAk
d, then F L& 3,

31 unrﬁ@ict £Nas
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T

and A, —» B,

then FI-& GU{AL

The proofs {or this

ag. If

and A, — B, does not cccur positive in.

=G U{A, - By} and A~ B, doe

S0

a
wen either FREGUB or FUAGED

and I does not cccur positive in

s Ay YU > ALy 8,

[

i
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L’& : m‘viai.
Induction step:
Cuse 1: D={), A=A, and
A= BEF and H=FU fi'eﬁ}r
FEGU{A, L I n 1, by applving hvp,

1 E30m

of length<=m — 1. By applying hyp. ind. to the deriv

ey

B faﬂ assume

Ko N

Dowith {—> b

Case Z: D =(ji}, AﬁA\, and
FU{A — B} Apply bvp. ind. 1o }

Case 3: D=0}, A=A, :
Apply hyp. ind. 10 I3, and end w

LAy By Wio.g can assu

and U, By Wlog can
B} ¥ n=1, by applying hyp. fx‘zf}. o B

applying hyp. Ind. o Dy we get an Sy-derivation

of length<ih
tvgtion of

St

of lengih<sih {D.). Comby & : dex iwﬁﬁn m {c} §3§
{— ¥) ghves ‘

the desired S, : X
ar ™ 3 i g
Cazes 2 uz“w 5 a,m stmilar EG thost 0f 2,37,
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100 ZoSade

= {A
ap »‘ws*zﬁ hyp. ind. to D; we get FU{A) ;—';“‘ GU{EL
D= -.r) A=A, and B=B, Wlo.g can assume J=G {A—AB}
and A — BE£ G, Apply hyp. ind. to I3 and end with (F —).
Case 3 D={vi), A =A;, and B =18, W Lo.g can assume H=F and
. Apply hyp. ind. 10 both Dy and D and end with {(— F).

\..,..r

4, and B=1, Wlo.g can assume J
iz

2340, Prool of Lemmma 2.3.4.

Basis: trivial,
Induction step:

o~ ~

Case 10 Ds=(i), A=A, and B
A=L A, and B=E, (n=1) W.
i ns 1 proceed a
is an ‘:(V,mcnvaﬁon of

en—1 & > (U= A)— By), or D= (i}:
O.g cen assume H = FU{A -» H} as
£

{238 . Hn=1, by Lemma 2.3.53 there

w“

e

5]

9

By

7

&

e m.
o]

of lengih <Ih(I). SBince U does a0t ocour positive in

{z) there s an Sy-
derivation of
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So-derivation of

(© FULL — A,g) - By

~derivagion of

of length=1h {Z3,). In case (a), by hyp. ind.
(@ FU{{E’J~—> A BIFGU{LT— A}
'k:ngih =ih (Di)

{~> I} gives the

Sy-derivation of

(e) FU{U (U

5y

Ay — B Ui GUiA}

of length<th (I3}, Thus by hyp. ind. applied 1o the
So~derivation of

() FUNU = A - BRULGUi{A)
of length<th (2).
(g) FuU{U -

of length=1th (D). i '
- | gives the dﬁswgrj G‘;ﬁ ation.
Cases 2 and 3 are simi

noof (o by

B
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& Ay Vi,\g

ot

Cloay =

= 4 1=i
Pl =arl 2 1i=n

~

e I
‘*"";:,m,?{ daf \ W 3 b !l L0 ie i

/
B — %\Enﬂ -

[ Gt i )

Foo Rk
Pk 755

By induction on min {n, m, k} with 2 subsidiary inducdon on »
¥

s
g

Basis: min {5, 1y,
Induction ster

o
S AT ke

C‘:
5
S

HULEG e UW) HULUBLGIG

Hul

i
SN

it G,

Fnnnk

here is an

i} and
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(d) B G U4,

of lengih =<1k (£,). Lat
with V,, and each !
an Sy-de

(@  HFGUA,}

of length<1h (D). By Lemma . 2.3.3 there is an Sp-derivation of
163] ByU{U, 1=k G UV,

of length<=1k (D). Aopplying hyp. ind. 1o the derivation of (I) we
~yrmin {nmm k-1 5 )
me {r k¥ ,\\‘}1} (bl)

By Lemma 2.3.2 there is an §y-derivation of
(é’,\i HU {Cylzf‘i}gﬁ Gn,m,l«.
of length=lh{D,). Let H, =4l 1si=sn
Lemmaa 2.3.2 there is an Sp-derivation of
1}“:““ Gst,zn,k

h (D). Let B, vesult from H, aﬁd G, f
Uis; {by the appropri

eriviiion of

of length=ih (D) +p~ 1. H*nf‘e by applying hyp. ind. o the
Gﬁfi Zxx;mm k-1 < ﬂ‘i !«D“\ dp— S'X ‘;mm RLNEN r~.}< 1%‘ ( -}}
A% ZF Ly

Case 20 D=

D,
KU ULFG

HURF G U zuzuy%;ugﬂh

whers B = ¥ odsl
whore H =, 0 ~{B Btk d s {BL,
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G o €79 -
Wi Ot

erivation of

{szg-i‘i,

o 3 FEL Y N i
(a) BUFRG e W4}

16

*.»1
u,;g
=
—
My
.
fes
g
&
=1
o
it
Lt
b
ot

not cocur ne

%.vaﬂ(m s‘_:ef

of length=tth (D)), Thus there is an S,-derivation of

derivation of (d) we get

EULWUBIL WG,

five

et K, = since W, does not ocour posi

n §D~Jc,rwa

is

C&:

0ot Geour nega

Y, then ¢

5
£y
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3.3 there is an Sg-deriy

bt
hers ds an S~

Let K result

then there is an 8§,

then by Lenuma 2.3.3 thore I8 an ¥.-derivition of

(0} KV, A g IS s mi)
of : ). sppiving by (o
jmm v, k;—l =1 e mer {amt.k} /ﬂ’? "kﬁ })'
Since all cases can in the form of Case 1 or Case 2, this completes the

proot.

‘2’:9&14 P tton. There is ne polvng

of shows that vatiation of the vérameter K.is unheces

vdss fren by
}
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i we shall show that for a suitable coustant k,

BN

s

£y

We conzider formulae A, B, C, ... of predicate logic bullt up from arbitrary
dual terms R‘d&éi@ﬁ symbois I, ¥V, W,... individual (bound) variables

o, >, 4, and V. We refer the reader o Prawitz [29] for additional
i conveniions m»d distin éi@m In what follows we shall make no mention
changing and choice of bound variables (and proper parameters) leaving

RS

b

2. A formula is called mouadic if all it relation symbols are unary and all its
sig-terns are parameters and variables.

5,13, The Cch(:uhm 8, {cut-free sequential rules for the predicate caloulus) is
obtained from S, by the addition of the rules

=

vral rules for the predicate e'ﬂczﬁﬁs} s (e systemy O
the definition of should const

e;;g}‘ia;mimﬁﬁ 5

Sy

chagy

Y OB OIOrs

“unification” slgonthm, 25" can be replaced by 2F
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letting uf: - - - ¥ be all the ocourrences of parameters in A o 1oft to vight so
. b,,--x} We %gw 7 =Aw,1, Cees "‘j 07 80me @1* cespim (z:@d {

smui’amy ;rypes uf se@uems occur in any ﬁ {Pl e B

subformmila proverty” tor cut-free derivations.

el 1

For any paraweters vy, 15 and any L(P, - -+ B,)-sequerd F+G,

= Subli? G Subl F Hep e Subli G
oo Poyesequens FRG; if I(Fy+m{E)=
nbinkl

ey & where k=20 +loglog (n).

s follows easily

For an FELEGE

g"i

1+ ot~
by :“q}zaa,mﬂ each sequent HRJ

s:;ﬂd cach
s hwvious bisar y u'ee of cuts on prime formulae followved by

e

w universal closure
munas 3,2.8 and 3

zo called “invers

heorem”




Praod. As in Richardson [311

3.%%

Doate s

Proof. There are notions ==, ==, of stmélarity !

(i} length is a property of =
(i) '%bgd & are Gfﬁy finitely man JJ
(&1 A ’—W‘L By, and
(iv} tre, B

T
ePosFufis i

a fnitely genecrated
“mu;@ £ a ‘:‘armw‘é“ ~3}f %‘ﬁze r"ﬂ

set of

and 1(3

5;; We consider formuls

term is defined as

U z’a & Aaza*i@,: :@zm

‘A:--‘\‘v‘,é‘s/”ﬂ

ARG PO

$.2.2, The logical complexity of

of logical operations and

e of & very specis

derivaior

il From W f-
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to N,-derivations in the obvious way. Both of these maps will also be denoted

B
ety

T}, then we write § =Subll1 $% in the

1 fs Ty,

f’"‘&

Hdomécil/,. .., 15118

o

b way.

L.i.4, If @ and & are substitutions, then 8¢ is their composition and 6+ ¢ is the
substitution defined by
B+dU=ql) i Uedomo,

=8t if Uéddomd.

relation terms and F=F, ---F, then ¢ |F is the

(8 [ FU=8U i U ocergs in a member of some F,

A
#h
&
&
£
EN
il

of relation terms and F=F, -+ F,. then lg(F) is the
2 y of a relation term belonging to some F, and rel (F) is
ii?if: tu:a mim’) e oﬁ r@‘&mm symbols occurying in members d the F.

H

=g max {1g{81)): Uedom ¢}. Note that
°i§{.§7)wca GF = §"F, - - - 9"F,

e

@, Suppose that F, is a finite set of formulae,
then there are substiiutions ., . such that

e and 8

sformulae beginnin

&
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the first symbols at wh
prims  and 1. WL
B(Ubt 8L, ..., U b
ences in B, from left to rght. Note
s“m:iai notion of substitution, Since &

(Cl, s M) where éwq = {ri}« \],)t%'f ceebdl

we have

o S

variables bound m (a af: mma @ccn:*"c;;zf:& thex
= ,—v#.
Axy o %, 2(CHdL .., didi.ons

Ay v f"’(e‘{, oo, ef) wher

L., L)y and

Ca

ey, by oo by,
Sub di=¢l= Sub el

Xyt X vivig

Let V- ¥V, be new relztion symbols sat

(a) arity (V) = k,, and
®) V=V, & U=

et Twgha - x,B(Vidi- - di,. .., vd)
ya. Vo€l - - - el and put }

=aehZy e Z,
ST T,

&= Bub
lJedy s LR

gof. Tet w be an injsctive assignment relatio
accurrences of D o each ér:reﬁsn wn
formulae as follows
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Ce(ANU{w(A)— L],

A

A
e w(A) = w(B), w(A > B,

Alu)
() ws«a{w(f (), Un} {wlx AG)), Vx U}
¥x /‘\vu‘C

for U a new 1-ary relation symbol u a proper parametes

s {wl{4), Ul {w(Wx A), ¥x Ul

YxA

for U a new O-ary relation symbol,

=xfw{Ala), Ual {widx Alx)), ¥x U}

il £

fo- U a t-ary velation symbol x occurs in A(x),

Yy A 7
___,_,_y) {w(A), U {w(dxA), ¥ U}
A

for U a new O-ary relation svmbol.

3

Let F be the sequence of all such sets, then theve is a subsiituiion ¢ such that @

wifles ¥ and for each oeourrence A in D we have A = fw(A), By Lemma 4.2.1
there are &y, &, satisfying the conditions ed m@'*' et ¥ result from D by
&aa;:’h formula occurrence 4 by * is an N -derivation by

N

(““)

quantifier-free A, M A

crnstants, ( } a4 %
each seguence s
, as follows: a

<o, then we
M*Ak e (2‘

} zan be replaced by 25

unification’ algor =)
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)
oo B

define W,-derivations

and I, 08) =4

SFLE Ay o (§EIBH, > g

~

{(¥xs¥x

'“¢

for u a new parameter. The desired Ny-derivation of /

- P
4.3.3. Lemmme, P A, 2071

Proof. For each sequerce § of
of the form {/&R —» Ud,. For
MNy-derivation of A,y since the 1
symbol is not valid.

4.3.4, v There s no polynomicl p(x}

Ay ADHER A

by the analysh

cannot be obiained
5 this procedus

Ho ‘-’J&zé 8 GE

h-caleuivs foliow 3 ':5‘1@ observ
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where

is a term of the typed system {see [2, p. 10]).

4.4.2. In cordrast to 4.4.1, we shall show in Section 5 that the analysis of Prawitz
{207 norn 1 zation procedure does give the right order of magaitude for spred-up
by the cate calculus with eguality.

¢ follows we vefer the reader to Prawitz [30]

&0.2. An MNE;-derivation is called normsl i it does not contain any of

£,

following combinations of inferences;

{a) an - ¥ whose conclusion is the major premiss of an — E,
(b} a ¥i w%z:siz conclusion is the premiss of a ¥E,
{¢} a L whose due&{m is m@ s of ’fm elimination,

an = wWhos

i
{e} an = who

don an :
!wﬁ.ef‘ivﬁﬁljﬂ

o F \,f I

derivation D such that

:L

o el B scmimnes T3 e T3 s By %
sfnd 2 sequence D=0y, 2 - 2



vy

Ve define the

(A — B)

N

Ala}—» Bla}

a &b

Alb)— B(b)

The imwnediate expandibil

1

5

agh-

=

ty and

elations are defing

kk by ey
Ty In
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A4 anu 3.4 2} Tae expandibility relation ir denoted “<7 (the
cotverse of > will never be used).

Jrk

prop.sitional system NE, in which we shall simuiate NE,. The
1e bui;h up from propositional parameters U, . .., the *gmgosxa
T Eﬁ\. 5

tional constanis L and E¥, —», and the unary connective constant v
of NEY are —J, ~FE, L,

ether with the axiom %
notions of reduction, expansion
ke those for . The co
relaiions are dencted -*::»* ’ aud L

™ h;\

518, 3 For each NE -devivation I} there is an NET-derivation D such
thai

ad > Dz

= D% and D=

ons (in the order

o

the following operat

mal oocur giieis iy
armula cecurrence of J=0 %}v ﬁ':,"‘ and each sul

e of ‘*‘}/’5} i ~{3 b'y U fip such a way that the correspondence ViU i

£YTER
SFEedl



Bounds for proof-seqrch and speed-up 25

tha

iwe gw;", the PIo oof in ordes
o F; we define FY, 87 st

() F* =giF,

{i) pm (F Yy =pm (F)—~i+1,

(iii) for some k, 8% unifies F*

{iv) if ¢ unifies F' then d ==(§~3{-? and
(VY =h{F).

2,

Fl és;“zd card
and .

Given such ¢ the desired 6 i R L8

Suppose that F' has been defined ’3 B
A, from F) such that A, z‘fq Assuming A
notation, let
whzcn -nev

SUPpose ahuﬁ

erivation I there is nn NE

(B if A cocuws in D

{a) D=8D" and

¢ yliere =3 DI

Fust like 4.2.2.

R ol N ipations Dy and Dy, and the

8 we have Dy =

(2) fua,‘w’ D,
(b} if D,>* D,

(e} Iy is normal < D, is normal
(@) (D) =1k (D).

oinf, }Lﬁﬁ iike 5.1.6,
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NEF-derivation such that s;é” Ao
th=7 - n - th (D) such that D7
in ° is prione.

then h{
the conclusion of any L or =" inferenc

5. For each NE,-deripation I, there ave Dy and Dy such that

[ (D) for o suitcble linear funciion

lowing diagram:
L, DY &DE
A 518 //\ S.L}S A 5115

#

w0y O pyiero
">U(Df 0) P D;}Hy

WSOy Sy sl

B g
MY DFO

5

i3, th é\ )

w1 == ZZ lhsbﬂ +3

+1 §_y 9,
13 $(DF™) and by 5.1.9 I, is

Tt WO B
1 such that WL f»’.‘;?;-‘ .

. as follows;

b
2

§ By a more refined “unification” algorithe 2

piaced by 2y
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ola

AL

x Pr= Ei(m <))
Py =(Pluny)

anc IO,

Wi(R, xR, (wx0)

in
s
N0

B, (w) — B, (a(uo)) B, (un)
R, (ufuw}d) Dy, v}

hm(P)<
D=y
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By Proposition 1.3.4 and Lemma 5.2.2.

5.5, The sequenmial case

3

#.0.0., We consider formulae A, B, C, ... of second-order lcgic built up from
{ea

11

ndividval ierms, relation parameters {cslled “relation symbols™ in
velation (b@».ma) variables X, Y, Z,. -, A,
the relation constant ) We
oV cmmus and distine-
we  define

calculus O of

& °§Gﬂ ). ¥t consists of the nees — I, —F, 1, '“ﬁ {called “¥I” in
 (calied “VE in Section 3),

tn any assumption, and

order logic with equal

&




v SubR T g iR

() Subl Subl A =Subi™ T Subl A, and
i) Subl Sub? A =Sub? Subl A,

6.2. Existence of upper bound for speed-up by N,

2

$.2.0. An No-derivation is said to be normal # i satisfies (1) (b

G.2.2. Lemmpa,

¥ Fis a finite set of first-
any nommal No-derivation of A from Flis

. By induction over the length of 2

&.2.3. Consider th
rawitz 3@, Sect

i AL
A}
7
=
2,
=k
> {TIAY
£
e
-

v o onr T
w*a&ar: L JV;;E..) 1N

8.2.4. Two N,-derivations _'Y,1 and [, are
a2 oogurrences

‘vﬂ{’@r«;ﬂ, oe

W

h thie calcelled ass ~3;;=is_mx CCHTEENCES,
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£.2.8, Lemeon. (2) Lengtk i3 a property of
(b) There are only finitely méuy =-types of length <n.
(c) ¥D,=D, and Fl immediately redvces to I, ther there is a D, =D st D,

wnediarely reduces to iy,

- (‘}yy}ys

Straightforward,

We extend the immediate Ieduc{bﬁiiy relation and the Teducﬁb‘ii‘;y relation
pes as follows; Dy/= immuyed. I/= =4there I8 a D,= 12, 5.6, Dy imm
, eand Dy /= > D [==; there are Dz s D -y such that /= imm. red.
- for Isi=s=n-—1

Prope:itian. Suppose that > is well-founded (as a relation on N,

&
derivations) then there is a funciion m such thar Fin A= MRS A for firsi-order A.

ot ¥

Proef, For eich No-derivation D, there are only finitely *ﬁem 3, such that I,
=d. 7. (the exact number is not ﬁ}fsg by what we have caid so far abowt
vations; in particular, the relation term 7 in 6.1.2 is not unigucly
i YXA{X) and A(?} although there are only finitely many pos-
hus there ave only fin'tely many D,/ such that D/ imra. ved.
thons, ti;en it is well-founded on

a B3 /= of length<=nr s.t. D,/=== D, /=]

uilt up from proposific
propositional var %a“bﬁe;zs X, "fa.”, Z, R “', ~->, 1V (n-
1t zmxmr over ruth va hie:,l The mﬂcq of NI are ‘Imse of

em of .7\/, s notions

For each N~

romy D perform the following operations (in the order

of a pseudo-ier .
rrence of VO- - - ﬁ Oy L

y X (in such a ¥
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(i) replace Yx throughout by ¥
quaniifier,
(ivy replace YY by

5,

X according to the corve:

230, Propesitiem. IF > restricied to NP-derivations is
well-founded.

Prooi. Le

62,15, Let M3 Vs
follows eamy from & ;_‘,sfﬂilﬁ}i B GI ?xawm u
derivations i3 prove that > ig
map w frﬁm Ni-derivations to A,
w3},

-derivations sat

6.2.32, Lot R=4AX X — X and et A"

{propusitional) guantifiers in A to B We ﬂeﬁﬂe
B{A) as follows (MN{A) ie a derivation of RA

FIY e

and RU for U occarring in A); N{{U =4

and N¥X A(X)) =4

sf ”{R}(; ’“;}K ;\\ :
™ “"“‘:i/ﬂl(;{)} @(’?’EA(’




R. Switman

6
where (BLY s the set of all uncaneslled occurrences of BU 25 an assumption in
MALLN.

iy is the set af all uncancelled occurrences of RUJ

. Suppose that (RU
[ the set of uncancelled assumption occurrences (RERY in %u"""”N(A{ U is

defined by (BBR)=Subl  (BL), then N{A(B)) =

N{B)
Yy

}

the obvious way as 2

14, We now define the map w; w is {0 be regarded

2.1
i~1 map from the formula occurrences of D inte those of w{ld}).

wi{Ay=4 A%
w commutes with (1) ¢

Do w{l)
A A

—1 R

A M{A 1A

BEBL ﬂg}ﬂ.@‘ﬂ in

ed occurrences of
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w{l}} and the set of wncancelled asvrmwﬂ'w:"
1ed by (RER)="58ubl"(

N(B)
{(RB®)

B

Sub wi{l)
tE)

Proot. By inductor. on th (I7) using 6.2.13.

¢

©.2.16. Lensug. Suppose that (A) is a set of uncancelled assumption ot
in D, and (A%)=w"{A)}, then

D, wibD)
(A)S (A%)
D, w(B,)

$.2.27. If D, is a2 rveduction of D, then there ¥ a funciion J, de
obvious way and upiguely determined by I3

occursing, If I imm. red, D~
the one for the corresponding reduction
no ‘ng be unigu }y determined by Iy

is such a § for I3,

a f, such é%

W <
w{EL) for which

Eﬁi i .z~ea§.fﬂz.
e shall make

tronger cond
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I 17
Ta ved. Dy w(lD ) > will,)

e
(_[Z\ A
/j" (5;1\’}
5 Dy
1 w Wil
B p,” B :
B, D B* A D red.
- £z fa /: R }xbi ‘
- L e /ER
Fad
‘ B =23
w{i,) .
s E;\Z
{4 R} A%y
4 & (A}
W(Dl} 8.2,16 In’
s i

e E i, ved.

AL

BIJ] .- AL
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of ~8e6

o proo

s 1

Bound:

3

a5

f/
L
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Wi

(X N{§X AN

N{E)
AEW

XA




L
—
-1 AR

:{R)
b N(A(D))

E%},?

I
i

J

—A{B®

A EF®
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re (Y X A {)""’-“ w9 X ALK, (RU) is the set of all uncancelled oc-
currences of RIJ as an assumption in N(A{L)), and (BB®) = Sub™ (RU).

6.2.19, Praposition. There i a function m st Hir A= BB A for first-order A.

6.3. Lower bound for speed-up by N,

50, Let F be the following set of formulae

the univer: g recursion sguations fo ceursive
functions {with fonction aymbnis by h,) sufficient to define the Kleene T-
pradicate quamiﬁeﬁue, and

el
joe
=
Yo+
=
G
2
(4
o
o
sy
!
[l
1
=
=+
.
o
P
<
[y
bl

&

Wy ooy e
¥ X *m¥1 Pl
i

for and ko m-ary.
et

— K}y s (KO (Fy{ Xy — Hay
provably recursive in second-or
i M,-derivetions of formulae o {
and let the conclugion of wik) be W} {(Wx s

y Peane
.8, ) of

function of seco

2

is ar MNo-devivation of &F — ¢y

aecovid-ordey F
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arithmetic p such thas i i the Gédel nuwber of an & -devivas

{&F — — ¥y T, m, v)}, then > Tk e, wli)).

w,;

off. Formaliz *éif:‘ of the inversion an SIS T

definition of a valuation functon for clo

G55, Prag . Suppose that for firgt- mder A M A
revably recursive function of second-~order Peano arithwme

Proef, By 5.3.1 theye is 2 provably recu
arithimstic g such that there is an §,-de va?:

tength<gl{m{{{wk), k})). Let i{kw—dtp(}{'a

sat wike) I8 an J,-d

provably recursive then so & v+ 1. Let &, be sued
of “r+1 is total recursive” from F {for any index
Tlky), iy, v{ko)) so by the usual properties of the T-p

ulae, Aisaj

Lemme. If Fis a finite set of first-ceder
is a norinal NE,-derivation of A from F, then I3 is an NE,-d

8

Al
i

duction on 1k (D).

- O . S, L
> 2dd 1o the reduciicns of 6.2,

3]

F.d85 W

provided that D

Yx Alx,a) a3k
x 464, B)
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cends fu W, or Wx Alx, b) is the premiss of ¥, E, and

D, D, D,
YR AKX et a&h YX AKX a) &,
P et
=

YH AKX D) AU, ay =
AU E)
""A(}s )

rmvﬁd i that ”, ends In Vol or YX A b) & the premiss of V,E. The
) : reducibility relation is denoted “>7

The method of this section will he the same as that of Section 6.2, We shall be

somewhat less explicit than in that section

3

$.4.3. The notion of isomorphism between NME.-derivations Is defined as in 6.2.4

i

which we shall simulate NE,.

e proposition-constani E¥ and the
g‘ﬁi of as a subsystemn of NE, by identifying E*

=
o
ko

NE -derivation D there is an WES-derivation D?

2 map w from | rivations to arions (where
by ””;e mo{“mi snal co nsum% FEY such tha‘f 2 '}3:? w2y

3ot

We Qcﬁnf‘ certain auxillisry

from assumpiions o
curring  in A);, S, RU, S(L)=4R

unP}

R
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and

(VX ALK

A(URE = AU

where (RU) is the set of all uncancelled occurrences of

S(ALY).

neelled ocons

i {REJ) is the ser of all uncancel

PERICHS

$.4.7. Lemma, Suppose 11g
as an agspmption in S(A(L)) and the ser of uncans e
(RE®) in SubB S(A{UY) is defined by (RE®)=Sut

;W i\: 9 b 16“73::5{3

2. Wm i i ‘im: he qzap W

Y

2L
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where (R} is the set of all wicancelled ocourrences of RU as an assumption in
w{il}.
i w3

YXAXK) . (IXAOR

A(B)  RB o A®P S®)
A(BR

sef of all uncancelled occuivences u,f RU
et 0;? uncancelled awzsmp;wﬂ ocourrences

7

R} = Gubll™ (RL), then wi8uby Q}=

ree

ndection on 1 {2} using 6.4.7.

> w{ I3 )= wi{l)

tron
o
e
L&
M,}

irat bwo cases are just Hke cases 1 and 2 of 6.2.18

i
i"”?(f‘i,/—ﬁ» 2%
RPN A w{lD3) yed,
5
A AR
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where (Ti{A — B)%) = w'(—({4 — B)).

Case

i

-

(X Aa: D) (-

. ved,

)
=

[
N




e

&

>t

AR

>

£

N
[ —
s
|
-

¥

{1y

ot

.4, 10

Ry
¥

%A
wi{i3)
3 )i

X

Y

{

.
5

.
£y

ase 3

e

i

i

wi(l

w

£

(A~ By

(A~ B3R

=

ot

B3
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Bour

A B

Case 4

w

SV ALK

imm. red.

3

Ny

{1

J

&
3

RU 4

R

w

G
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There is a function m such that M A

6.5, Lower bound for reed-up by WE,

: E
thes m is not @ provably recursive function of second-order Peano

Suppose that for finite sets of equaiions F VF M

Wilo.g assume that m{0)=0 and m{n)<m{n+1). I m is 2 provably
tecursive function of second-order Pean ri Eame tic by [21, Ssction 8] thers is a
inite set of equations F such that

N H

F (with principal function symbol h),

i f‘%‘](nb} where N =44
Fm‘ what follows we refer the reaécl Hol!

’”(X{) — (Y y{(Xy — Xy} — Xx

ction 1.3.1. Now VF™ xz “t’”x{Nx —
that WFHEE f("T0) =0 s0

1 1.5.1 mn? < m{i(n}) which is

!x

. He

Hee

false E'}z ﬂ“sc,ien; v 3 rge n.
6.6, Proof-search in N and WE,

There are furctions my, iy such that

{w /5532 equality),

o (individuals) and O (ruth values)

., Wet I8 a type {n-ary relations
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- T, i 8 term of ty
Ao—e By i A(UY) is a term of ,
is a term of type O, then AXY ---
(374, ooy Wy A formula s fust

i w=o¢ we write u for U™
superscripts when no confusion

AW AN
"’f"‘;l PN ?Anl’} i8

7.2.3. The notion of sirnultaneo

T, T, T
53‘ b U=,T:
ub i
Ul A A T ) [ .

Tl“ ’!'ﬂ
Sub  Cc=maC;
v U

 comrnules with the

.
A ;s KA, G X)T e D= 3 b A(i}

al yules for tvpe theory) consis

\m<m o i
7. 8.4, The calonlus N

A(U™)

(o
S NG

provided that L7 does not occur in any assumption,

YW % ;}g

Tt

FLE TN
i)

{
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LB The caleudus NE, (natural rules for type theory with equalitv) consists of

P{,’, i{}g{:ﬁzer with the axiom and rule of sguality,

7.2, Non-existence of bounds for proof-search

¥ (natural rules for bigher type propositional calculus) result from N,
e type 0. It is well-known that N¥ is complete; we shall show that
netion m sach that for propositional (pussibly higher type) formulae
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f is 1o fu
A, i A s valid, then HEfbl 4

7.2.2. Let w be a propositional type. We define a propositional structure M{w) =
(Bk(, LML) as ’mi]ewa, My =yitrue, falsel; M=q power set of M., i
vt w lnm—»u-; BOWe Ua); M, s=arpower set of M, X - XM

{wi Wy

the notation “M(w) S,,..., 8 FAUY, ..., Y)Y hes the
cbvious meaning. We denote by “Tug,.. . the value of T in M(w), o

V), o, T, FALL IS MW, . FAL ., T

Prool, By induction on @ - 1h{w)+lh (A{ .., 1)) where w' is the type of T.
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Lemma 7.2.3. )

125, Lot «»=
VAN Ly NE «»{21~54}<‘> 2 Zn )

vosition. There is ne function m such

midh{An A
pptaiad 4

Praof, SBuppose that for earh w of the form (-0 <) we hine
then for some such w of length 2w 43 there is 2 w' s.t. w=={- - {{y
W"ﬂlﬁf (w}. Thus by Proposition 7.2.4 M{wE—Inf{w) w
false

7.3. Non-existence of bounds |
7.3.5. Let N§ be N, together with FXT,; v that there s ao &
m such that for quantifier-free A, Hix A

mg. Suppose that Tt is an Ni-de
subformula of A, such tha

(1) neither minor premiss of an instance
(2} B does not ocour in £, then A s

Proof. By induction on 1h (D).

g nend 2
Frogf. Lemma 7.3,
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recursive funcion m such that H A is valid in all
lm()h (A”ﬁ‘

{6) 1Is there a recursive functior m such that if A is valid in all Henkin
ith equality, then FggRian
: a recursive function m such that {or first-order formulae A, M A
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function m such that for first-order formulac
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