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This paper uses the theory of Markov processes to derive stochastic models for a single open biochemical 
system at steady state under 3 sets of assumptions. The system is a one substrate, one product reaction. Each 
set of assumptions re:mlts in a separate solution for the probability functions. A system of linear equations in the 
probability function as well as an equivalent differential equation in its generating function are derived. The 
assumption of no flux leads to the first (exact) solution of the linear equations. The form agrees with that of the 
closed systems. Making assumptions that simplify the system to model active transport results in the second 
(exact) solution to the linear equations. Assuming the presence of a large number of molecules in the system 
facilitates obtaining the third (approximate) solution to the differential equations. 

1. Introduct ion 

Biochemical systems, often studied as 
closed systems in the lab, exist as open sys- 
tems in nature. The validity of the inference 
about in vivo enzyme action from closed 
system studies depends on the degree of 
equivalence between the systems. In vivo and 
in vitro systems do not always behave identi- 
cally (Stuart and Branscomb, 1971). More 
realistic inference results from using in vivo 
data and an open system model. 

Deterministic models predominate among 
studies of open :~ystems, as well as closed 
systems. Complexities in their development 
lead to approaches using systems theory 
(Mesarovic, 1968; Savageau, 1969a, b) and 
computer models (Garfinkel, 1965) to predict 
quantitative behavior. Crossover plots 
(Chance et al., 1958; Williamson, 1970) pro- 
vide a method for locating regulatory sites 
in a pathway. None of these approaches 
incorporate random fluctuations and varia- 
tion in the concentrations of the reactants. 
Only stochastic raodels allow for variation. 

This paper presents a stochastic treatment 
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of  the open biochemical system defined by 
the model: 

ql kx k3 r l 
~-S S + E ~ C ~ P + E  P ~  (1) 
q2 k2 k4 r 2 

S, E, C and P represent free substrate, free 
enzyme, enzyme-substrate (or enzyme-pro- 
duct)  transition complex and free product,  
respectively. Substrate and product  enter the 
system at constant rates (ql and r2); they 
leave at rates proportional to the concen- 
tration of  each (q2s and rlp). The small 
letters, s, p, c and  e, symbolize concentrations 
of  the reactants represented by  corresponding 
large letters. The system disallows the removal 
of  enzyme and complex. Therefore, 

e + c = E t (2) 

where E t is the total quant i ty  of  enzyme 
present. Within the system, a reversible 
Michaelis-Menten mechanism operates with 
rate constants kl, k2, k3 and k4. 

Other investigators consider stochastic 
models of  open biochemical systems (Smith, 
1971; Smeach and Smith, 1973; Smeach and 
Gold, 1975a, b). Focusing on the problem as 
presented here, Smeach and Smith (1973} 
develop a model  for  active transport of  
substrate into the cell for comparison with a 
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deterministic model. They also employ the 
theory of  Markov processes {Feller, 1968). 

The treatment of the system presented 
here derives the exact probability function for 
2 sets of restrictions on the parameters and an 
approximate probability density function 
for the case without  restrictions. It appears 
very difficult, or impossible, to  obtain a 
solution without  restrictions. The first exact 
solution assumes no net flux through the 
system {qlrl'k'lk'3 = q2r2k2k4).  The result 
takes the same form as the probability 
function for the closed system at equilibrium 
(Hasstedt, 1978). The assumptions for the 
second exact solution, irreversibility and only 
I enzyme molecule, simplify the active trans- 
port model considered by Smeach and Smith 
(1973}. The third case, assuming the presence 
of  a large number of  molecules in the system, 
shows the generating function to be approxi- 
mately that  of  the multivariate normal distri- 
bution. The basic set of equations used for 
each of the 3 cases is derived in the next 
section. 

2. Derivation o f  the equations 

Deriving the joint probability function for 

the concentrations of  the reactants in system 
(1) for each of  the 3 cases assumes: 

(1) s, p, c and e take on integer values only 
{reactant concentrations are expressed in 
molecules). 

(2) Any future state of the system (set of 
values for s, p, c and e) depends only on the 
present state and not  on the history of the 
system (the Markov property). 

(3) The probability of  a conversion from 
one reactant or set of  reactants to another is 
proportional to the concentrations of the 
reactants making the conversion. 

(4) The probability of  more than 1 conver- 
sion in a time 

unit At is o (At) where - ~  
o (At) 

At 
0 a s A t ~  0 

Equation (2) may be rewritten to express e 
in terms of  c. Thus, the 3 concentrations, s, p 
and c, alone describe the state of  the system. 
Each arrow in system (1)represents a conver- 
sion from one reactant or set of  reactants to 
another, and, consequently,  from one state to 
another. Using the assumptions above, all 
possible conversions to the state (s, p, c) and 
their respective probabilities are: 

Conversion Pro bability 

( s -  1 ,p ,c}  -+ (s ,p ,c)  q l A t  +o(At)  

(s + 1,p ,c)  -~ (s ,p ,c)  q2 (s + 1)At + o ( A t )  

(s + 1 , p , c -  1) ~ (s ,p ,c)  k ,  is + 1) (E t - c + 1)At + o ( A t )  

(s - 1 ,p ,c  + 1) ~ (s ,p ,c)  

( s , p -  1,c + 1) ~ (s ,p ,c)  

k2 (c + 1)At +o(At)  

k3 (c + 1)At + o(At) 
(3) 

(s,p + l ,  c - - 1 ) ~  (s ,p ,c)  k4 (p + l )  (Et  -- c + l ) A t  + o ( A t )  

(s,p + 1,c) ~ (s ,p ,c)  rl (p + 1)At + o(At) 

( s , p -  1,c) -> (s ,p ,c)  

( s ,p , c )  -~ ( s ,p , c )  

r2At  + o ( A t )  

1 -- (ql + q2s + k l s  (E t -- c)  + k2c + k3c 

+ k4p (E t -- c) + r~p + r2)At  + o ( A t )  



From the list one obtains the forward 
Kolmogorov equations. (See Hasstedt,  1978 
for details.) Durfiag the steady state phase of  
the reaction (t = ~) ,  the probabilities do not  
change with time. Setting the time derivative 
to zero leaves the system of  linear equations 
in the unknown probabilities: 

(ql  + q2s + klS(E~ -- c) + k2c + k3c  

+ k a p ( E  t - c) + r lp  + r2) P(s, p, c) 

(1-Ss, o)q~P(s-l,p,c) +q2(s+l) 

X P(s + 1,p,  c) + (1 -- ~c, o)k~ (s + 1) 

X (E t -  c + 1) P ( s + l , p , c -  1) 

+ (1 - ~c, e~ ) (1 -- 6s, o)k2 (c + 1) 

× P (s - 1 ,p ,  c + 1) + (1 -- 5c, Et)  

X (1 -- 5p ,  o)k3 (C + 1) P(s, p - -1 , c  + 1) 

+(1- -~ ic ,  o)k4(P + I ) ( E  t - c + 1 )  

× P ( s , p + l , c -  1 ) +  r l ( p + l )  

(4) 

X P(s, p + 1, c) + (1 - 5p,  0)r2 

× P(s, p - 1, c) (s, p, e) E ~2 

where ~i, j is the Kronecker delta, 

l 
l i = j  

~i, i = 0 i C j  

~2= { ( s , p ,  c ) : s = O ,  1 , . . . ,  
p = 0 , 1  . . . .  , c = 0 , 1 , . . . , E  t} 

(5) 

(6) 

and t no longer enters into the probabilities. 
A probabil i ty :function, describing the con- 

centrations of  tJhe reactants in system (1), 
satisfies the equations in (4). Each unknown 
probabil i ty corresponds to  one equation. 
Although one dependency occurs, replacing 
one equation with the requirement that  the 
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probabilities sum to one results in a linearly 
independent  system of  equations. 

An alternative to solving the system of  
linear equations is solving a differential 
equation in the probabili ty generating 
function (pgf) : 

oo Et 
(x, y ,  z )  = Z Y, Z x S y p z  e P(s, p ,  c) 

s = O  p = O  c = O  
= E ( x S y P z  e)  (7) 

where E indicates expectation. Multiplying 
each term in the equations of  (4) by  x S y P z  e 
and summing over ~2 (given in (6)), one 
obtains an equation in ¢ and various deriva- 
tives of  ¢: 

[ql (1 -- x) + r2 (1 -- y ) ]¢  = [q2 (1 -- x) 

÷ Etk~ (z - x)] ~-~ 
~x 

+ [rl (1 -- y )  + E tk4  (z  - y)] ~ ~y 

+ [k2(x - z )  + k3 (y - z)]~z- ~ -  
2 a 

+ k~z (x - z) a-x-az 

(8) 

a2~ 
+ k4z  (y - z )  a y a z "  

The pgf ,  (~, satisfying this equation is the p g f  
for the probabili ty function satisfying the 
linear equations in (4). 

The p g f  (also called the factorial moment  
generating function) has the proper ty  that  its 
(i + j + m)th derivative when x = y = z = 1 is 
given by  

a i + j + m  

a x i a y  j ~ z r n  x = y = z = 1 

= E [ s [ i ] P  [1] c[m ] ] (9) 

i = O ,  1 , . . . , j = O , 1 , . . . , m = O , 1  . . . .  

where the expectat ion of  the right is a facto- 
rial moment  with 

x [  n] = x ( x  - 1 ) . . . ( x - n + l ) , n - - 1 , 2  . . . .  
(~o) 
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for any variable x. Taking derivatives of  (8), 
setting x = y = z = 1 in the resulting equations 
and using (9) to specify terms containing ¢, 
one obtains equations relating the parameters 
to the moments.  The first and second deriva- 
tives yield 9 equations in the means (Ps, Pp, 
Pc), the variances (as 2, ap 2, ac2), the covari- 
ances (PscasOc,  P p c a p a c ,  Pspasqp) and five 
third moments.  The equations resulting from 
the first derivatives are: 

ql + k2Pc = (q2 + kl (E t - Pc)) Ps - ktPscas°c 

r2 + k3pc =~(rl ÷ k4(E t - -Pc) )  Pp --k4PpcapOc 

~ l P s  + k ,Pp)  (Et - p c) (11) 

= (k~+ k3)Pc + klPsc asa c + k4Ppcapa c 
! 

The  equations resulting from the single vari- 
able second derivatives are: 

(q2 + kl (E t - Pc)) ( % 2 _  Ps) 

= (kl  (p ,  - 1) +k2)PscOsOc 

+ k, E [ ( s  - p , )2  (c - Pc ) ]  

(rl + k4 (E t - Pc)) 

X (Op 2 -- pp) = (k4 (Pp -- 1) + k3)PpcapOc 

+ k 4 E [ ( p -  pp)2 ( c - -  Pc)] (12) 

(k2 + k3) (ac  2 -  Pc) + (kiPs + k4pp)Oc 2 

= (k lPsc°s°e  + k4Ppc°p°e)  (Et -- Pc) 

- k l  E [ ( s -  Ps) ( c -  p c )  2] 

-- k4 E[(p - -Up)  ( c -  pc) 2] 

And the equations resulting from the mixed 
second derivatives are: 

(q2 + rl + (hi + k4) (E t - Pc))Psp asap 

= (k ip  s + k2)PpcOpO c + (k4p p + k 3 ) P s c a s a c  

+ (kl + k4) E[(s -- Ps) (P -- Up) (c -- Pc)] 

(q2 + kl (E t - Pc) + kl  (Us--  1) + k2 

+ k3 +k4pp)PscOsac 

= kl (E t - Pc) (as 2 -  Us) + klPsOc 2 

+ k2 (Oc 2 - Pc) + k4 (E t - Pc)Dspas°p 

- k ,  E [ ( s -  Us) 2 ( c -  Pc) ]  + hi  E (13)  

X [ ( s -  Ps) ( c -  pc) 2] -- k4 E [ ( s -  Us) 

X (19 - Up) (c - Pc)] 

(rl + k4 (E t -  Pc) 

+ k4 (Up -- 1) + k2 + k3 +klPs)ppcOpOc 

= k4 (E t - Pc) (ap 2 -  Pp) + k4pp°c 2 

+ k3 (Oc 2 - -Pc )  + kl  (E t - Pc) PspOs°p 

- k4 E[(p - pp)2 (c - Pc)] + k4 

X E[(p - pp) ( c -  pc) 2] 

-- k ,  E [ ( s -  Ps) (19-Up)  ( c -  Pc)]  

Flux in an open system expresses the 
equivalent of  velocity in a closed system. The 
expected flux through each individual step in 
the system is the difference between the 
average forward and backward rates. At 
steady state, each step has the same expected 
flux: 

flUX = ql -- q2Ps 

= k l [ P s ( E t - -  P c ) -  Pscasac ] -  k2Pc 

= k 3 P c -  k 4 [ P p ( E t - P c ) - P p c O p O c ]  

= rip p - r 2 (14) 

The 3 equations in (11) confirm these equi- 
valences. The flux for the whole reaction 
cannot  exceed the maximum forward rate of  
any one step. These bounds are finite for the 
first and third steps, q l and h3E t, respectively, 
Therefore, 

flux ~<min (ql, k3Et). (15) 



The second bound, k3Et, equals Vmax, the 
maximum velocity of  a closed system. 

The next  3 sections use the results derived 
in this section. They solve the linear equations 
in (4) or the differential equation in (8) to 
obtain a probability function for each of  3 
sets of  restrictions imposed on the parameters. 

3. Absence o f  flux 

The first exact probability function applies 
when 

qirlkik3 = q2r2k2kr 4. (16) 

This condition results in flux equal to zero. 
This situation may never occur in nature. It is 
presented here only for comparison with the 
other 2 solutions and as the link between 
closed systems (Hasstedt, 1978) and open 
systems. 

The probability function which satisfies the 
linear eqns. (4) assuming condition (16) is 

P(s,p,c) = exp ['~]-~ 
Lq~ 

q,k,k3- (E_~_tc ) 1 
q2k2k4 s! p! 

X \'-~:/ \q2k2k4] \q ,k ,  + q2k2 )c 

iq q2k2 ) E t -- c 
X (s,p,c)E~2 (17) 

lkl + q:~2 

where ~2 is given in (6). The random variables 
$ and p enter the joint probability function as 
Poisson functions with moments:  

ql qlk,k3 
Ps =%2= . and ~p = a p  2 = ~  (18) 

q2 q2k2k4 

and c enters as a binomial function with 
moments:  

Etq ,k 1 Etq,q 2k 1 ka 
Pc = and Oc 2 = 

qlk+l + q2k2 (qlk, + q:k2) 2 
(19) 
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The random variables, s, p and c, are stocha- 
stically independent and therefore uncor- 
related. The equivalent pgf, satisfying the 
differential equation in (8) when (16) holds, is 

~(x,y,z) = exp (x -- 1) + ~ (y - 1) 
q2k2k4 

(q,k,z + q2k2~ Et 
X ~ 

\ qlk, + q2k2/ 
(20) 

As written, r, and r2 do not  appear in the 
probability function (17) or pgf (20); each 
function can be rewritten, however, using the 
relationship in (16), to include rl and r2 and 
eliminate a different pair of  parameters, Flux 
is found to equal zero, computing it from 
definition (14) and the moments  in (18) and 
(19) 

4. Active transport 

The assumptions for the second solution 
simplify the active transport model con- 
sidered by Smeach and Smith (1973). Their 
model corresponds to system (1) with E t = 1 
and k4 = 0. P represents substrate within the 
cell; they assume it cannot  leave once it enters 
(k4 = 0). They model only one compartment  
of  the cell membrane, containing a single 
enzyme molecule (E t = 1). Here, the addi- 
tional assumption, q2 = k2 = 0, makes the 
system completely irreversible. The joint  
probability function for s and c is derived 
under these conditions; p is summed out  to 
simplify the derivation. 

Letting q2 = h2 = k4 = 0 and E t = 1 in eqns. 
(4) and summing p out,  the system of linear 
equations reduces to 

(q, + k,s(1 - c) + k3c) P(s,c) 

= (1 -- 8s, o)q, P(s-- 1,c) 

+ (1--  5c,o)k,(s + 1) P(s + 1, c - -  1) (21) 

+ (1 -- ~c,,)k3.P(s,c + 1) 

s=O, 1 . . . . .  c=O, 1, 
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where ~i,j is given in (5). This simplification 
facilitates recursive solution of  the equations. 
Using this method shows the joint probability 
function for s and c to be 

ql - -  q l ~  ( q l / k ~ )  + 1 ex I / 
× 2 

i = 0  i ! (s- - i ) !  

X + i + c - -  
[i1 (22) 

s=  0, 1 . . . .  , c = 0, 1, 

where the factorial term x[ n ] is given in (10). 
The 2 random variables are not  stochastically 
independent for this case. The marginal for 
c is again binomial (or Bernoulli since E t = 1) 
with parameter q,/k3 <~ 1, 

P(c)= , c = 0 , 1 . ( 2 3 )  
\k3/  k3 

The pgf which satisfies (8) when y = 1 (p 
summed out) and q2 = k2 = k4 = 0 and Et= 1 
(the conditions for this case) is 

¢(x'l 'z)=exP [ql ( X - - 1 ) ] t k 3  + ql z-- qlx k3 

q,_ )(",/",)"' 
× kk3 - q~ x (25) 

The first part of  the function is the Poisson 
pgf for s; the second is the Bernoulli pgf 
for c if x = 1; the third part is not  a standard 
pgf. (Johnson and Kotz [1969] discuss the 
Poisson and Bernoulli distributions.) 

The flux equals ql {from equation (14) 
with q2 = 0). It must  be less than or equal to  
k3. Equation (15) states that  k3 is an upper 
bound on the flux and the relationship ql/k3 
~< 1 is required for the Bernoulli parameter. 
The previous investigators derive the rate of  
transport of  substrate into the cell (flux) for 
their model. Since their result contains q2 in 
the denominator,  it cannot  be evaluated when 
q2 = 0 to compare with the flux here. 

However, the marginal for s differs from the 
last case and is not,  a standard form. The 
moments  of  the probability function are: 

~,18 

ql (qlkl + k3 2 ) ql 

klk3 (k3 - ql)' I~c = ~'k3 

pSCOSUC 

082 -~ 

Cql ~ 2 

ql (qlkl .+ k3 2) 

klk3 (k3- ql) 

(24) 

ql ( k 3 -  ql) 
UC 2-- 

k3 2 

5. Limiting case 

This section derives a continuous approxi- 
mation to the discrete probability function 
describing system (1) It accomplishes this by 
showing that  the generating function for a 
trivariate normal distribution satisfies the 
differential equation in the limit. The limiting 
form depends on assumptions about the 
magnitudes of  the parameters and the 
moments.  

Converting equation (8), the differential 
equation in the pgf, 

( x , y , z )  = E [xSyPz c ], (26) 

to a differential equation in the standardized 
moment  generating function,  



Ie { s--  #s P - #p 
( t ,v ,w)=E x p l t - -  ev  

o s op 

- t ' W ~ - -  
0 c 

(27) 

and using the  relati.onships in the  3 equa t ions  
in (11)  one  obta ins  

[q:#s (1 -- e~-t/o,) (1 - et/a,) + k2pc 

× ( 1 -  e-W/°c) (et/Os - eW/ap) 

+ k~Ps (Et - Pc) (1 - e-t/os) 

× (e w/ac-  e t~ ~s) + klPscOsac 

× (e t /°s-  eW/Oc) + k4ppcOpO c 

× (e v / ° p - e  w/°p) +k4pp (E t - Pc) 

× (1 - e-V/op) (eW/°c--eV/Op) 

+ rlPp (1 - e - V / o p )  ( 1  - eV/op) 

+ k3#c ( 1 - -  e-wloc)  (eV/Op - eW/Oc)]$ 

= ase-t/°s[q2 ( 1 -  et/a,) + kx 

× (Et - Pc) (eW/Oc_et/os]3~ 
at 

+ Ope-V/°p[rl (1 - eV/op) 

+ k4 (E t -- #c)(  e w l °c -  evlav)]~v (28) 

+ o c[ktpse-t/Os(et/°s--eW/Oc) 

+ k2e-W/Oc (et/%-eW/Oc) 

+ k3e-W/o~ (eV/°v-eW/O~) 

+ k~pe-V/op  (eV/°V-eW/O~)] 

+ k~°s°ce- t /° ' (e t /° ' -eW/%) ~t ~w 

+ k40pOce-V/Ov(e° V-eW/o~), 02, ~ 
Ov aw 
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This is still exact ;  the  solut ion is the  m o m e n t  
generat ing func t ion  for  the  probabi l i ty  
func t ion  satisfying (4) a f te r  s tandardiza t ion .  

The  app rox ima t ion  assumes a sys tem con-  
taining a large n u m b e r  o f  molecules .  Tha t  is, 
s, p and E t must  be large. To at ta in  this, the  
assumpt ion  is m ad e  tha t  M, some measure  o f  
the  n u m b e r  o f  molecules ,  goes to  oo. Then ,  as 
M -* ~ ,  the  zero order  rate cons tan ts  (ql, r : )  
and E t go to  oo, the  first o rder  ra te  cons tants  
(q2, k2, k3, r~) s tay cons tan t  and the  second 
o rde r  rate cons tants  (k l, k4) converge to  zero.  
This implies tha t  the  te rms which are 
b o u n d e d  as M ~ oo are 

ql/M, q:, klM, ks, k3, k~M, rz, 

r2/M and Et/M. 

These assumptions  indicate tha t  all rates o f  
individual steps in the  system are o f  the  same 
order  o f  magni tude .  The  means  and variances 
are assumed to  increase with M and the  th i rd  
m o m e n t s  to  increase more  slowly than  M 2, 
analogous to  d i f fus ion approx imat ions .  The  
assumptions  for  the  m o m e n t s  are 

#s/M, pp /M, pc~M, a s2 /M, 

Op 2/M and a c 2/M 

converge to  cons tants  as M -~ ¢¢ and 

E [ ( s -  #s) 2 ( c -  #c)]/M 2, 

E [ ( p -  #p)2 (c-- Pc)] / M2' 

E [ ( s  - # , )  (c - p c )  2 ] / M  2, 

E[(p- #p)  ( c -  # e ) 2 ] / M  2 

and 

E [ ( s -  #s) ( P -  #p) ( c -  #c)] ]M 2 

converge to  zero  as M -, ~ .  
Taking the  l imit  in the  di f ferent ia l  equa t ion  

given in (28) as M -, oo, results  in the  r educed  
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di f ferent ia l  equa t ion :  
_ _  2 2 _ _  

q2Ps t /as + k ,p  s (Et Pc)t/as 

× 

+ 

+ 

+ 

× 

+ 

× 

+ 

+ 

+ 

(w /o  c - t/Os) 

le2pcW/ac ( t /as  - W/Oc) 

le3pcW/Oc (V/Op - w / a  c) 

k4p p (E t - -  Pc)V/ap  ( w / o  c -- V/Op) 

(29) 
" lppV2/ap  2 ] 

as [ - -  q:t /a  s + kl  (E t - Pc) 

( w l o  c - t los )  a !  
at 

ap[-- rlV/Op + k4 (E t - Pc) 

( w l o  c - VlOp)] a__£ 
~v 

~c[k lPs  ( t los  - w l e c )  

k2 (t/o s -- w/o c) + k3 (vlap -- W/Oc) 

k4gp ( V / O p -  W/Oc)] 3__~_~ 
aw 

The  m o m e n t  genera t ing  func t ion  for  a tr ivari-  
ate n o r m a l  d i s t r ibu t ion ,  

~( t , v ,w)  = e x p [ t : / 2  + v:/2 + w: /2  

w 

+ PsptV + PsctW +PpcVW], (30)  

satisfies this  equa t i on  if 

(q:  + k,  (E t -- Pc)) (as 2 - Ps) 

= (k ,p s + k: )  PscOsOc 

(r, + k4 (E t --Pc)) (ap 2 - Up) (31) 

= (k4Pp  + k3 )PpcOpa  c 

(kiPs + k: + k3 + k 4 p p ) a c  2 

= (k2 + k3)Pc + (klPscasOc + k4PpcapO c) 

X ( E  t - -  Pc) 

and  

(q2 + ki (E t - Pc) + k , P s  + k: + k3 + k4pp) 

× PscOsOc .= .k ,  (E t - Pc) (as 2 - Ps) 

+ (kips +k2)Oc 2 -  k2Pc 

+ k4 (E t - pc)PspOsOp 

(r, + k4  (E t - Pc) + k,Ps + k2 + k3 + k4Pp)  

X P p c O p O c = k 4  ( E  t - -  Pc)  (°p  2 -- Pp)  
(32)  

+ ( k 4 p p + k 3 ) o c  2 -- k3Pc 

+ k,  (E t - pc)PspOsap 

( q 2  + r l  + ( k l  + k 4 )  ( E  t - pc))PspOs(~p 

= (k iPs  + k 2 ) P p c a p O c  + (k4Pp +ka)PscasOc  

The  equa t ions  in (31) and  (32) are the  l imits  
o f  the  equa t ions  in (12)  and  {13). Tak ing  the  
l imit  in the  3 equa t ions  o f  (11)  finishes speci- 
f ica t ion  of  the  re la t ionships  b e t w e e n  the  
m o m e n t s  as 

ql + k:Pc = (q2 + k ,  (E t -- Pc))Ps 

r2 + kapc = (rl + k4 (E t - Pc))Pp 

(kiPs + k4pp) (E t -- Pc) = (k2 + k3)pc 

(33) 

The  9 equa t ions  in (31),  (32)  and  (33) 
con ta in  9 u n k n o w n s .  T h e  func t ions  o f  the  
p a r a m e t e r s  t ha t  sat isfy these  equa t ions  are 
the  m o m e n t s  of  the  t r ivar ia te  n o r m a l  distri- 
bu t ion .  The  equa t ions  in the  means  (33) 
c o r r e s p o n d  exac t ly  to  a de te rmin i s t i c  m o d e l  
o f  sys t em (1). Ro l l e s ton  {1972) def ines  a 
p r o p e r t y  o f  an open  sys tem,  a mass  ac t ion  
ra t io ,  as 

k l k a  P,, 
F = ---5-~ ~ K e q  = - -  

Ps k:k4 
(34) 



(expressed here as its stochastic model 
equivalent). Using this inequality in the 
equations shows that s and c are positively 
correlated and p and c are negatively corre- 
lated. Psp c a n  be either positive or negative. 
Also, from the equations, 

°s 2 ~>/~s and ~Tp 2 ~ pp. 

The variance equals the mean in the Poisson 
distribution (the solution for the no flux 
case), ac 2 exceed,; or is less than the binomial 
variance depending on the magnitudes of  the 
correlations. 

6. Discussion 

Much of  the standard statistical theory 
rests on the assumption that  the random vari- 
ables are normally distributed. Accepting 
this assumption for a biochemical system 
validates the utilization of  known procedures 
for estimation of parameters and testing of  
hypotheses. Therefore, the conclusion that  
the reactants in system (1) approximate 
normality provides the theoretical justifica- 
tion for using standard statistical procedures 
when the assumptions are met. Assuming 
normality also sJimplifies the incorporation 
of  error terms (ailso assumed to be normal). 

The approximate normality of  biochemical 
systems applies generally. Although gene- 
ralization of the method isn't apparent, one 
simply duplicates for other biochemical 
systems the procedures followed in approxi- 
mating this simple system. Then each indi- 
vidual case approximates normality,  
dependent upon similar assumptions. 

The magnitude~s of the rate constants and 
concentrations found in vivo obey the 
assumptions made in the derivation. The 
concentrations and zero order rate constants 
are always large, first order rates intermediate 
and second orde~c rate constants small (all 
when measured in molecules). 

The moments  for this system are extremely 
complicated funclfions of the rate constants 
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and enzyme concentration. Unfortunately,  
for more complicated biochemical systems, 
the complexity of the moments  can only be 
expected to increase. Simplifying approxima- 
tions are needed to derive estimation and 
testing procedures. 
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