Journal of Organometallic Chemistry, 155 (1978) 131-145
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

> The Crystal and Molecular Structure ō̄Bis (cyclopentadienyldicarbonylchromium) (CrミCr)

M. David Curtis and William M. Butler

Chemistry Department, University of Michigan, Ann Arbor, Michigan 38109 (U.S.A.)
(Received April 5th, 1978)

Abstract

The crystal structure of bis (cyclopentadienyldicarbonylchromium) has been determined by x-ray diffraction. The compound crystalizes in the triclinic system, space group Pī (Clíl No. 2) with unit cell parameters: a, 7.829 (3): b. $14.543(6)$; C, $6.588(2) \AA ; \alpha, 94.67(3) ; B, 110.70(3)$; Y. $104.04^{\circ}(3) ; V, 699.1(4) A^{3} ; Z=2$. There are two independent molecules per unit cell located at the inversion centers at $0,0,0$ and $0,1 / 2,0$. The $\mathrm{Cr}-\mathrm{Cr}$ bond distances are, respectively $2.200(3)$ and $2.230(3)$. thus supporting their formulation as triple bonds. The Cp-Cr-Cr angles in the two molecules are 165.0° and 158.7°, respectively. The structural features are compared with those of $\mathrm{Cp}_{2} \mathrm{MO}_{2}(\mathrm{CO})_{4}$, which has a linear Cp-Mo-Mo-Cp axis; and the differences rationalized in terms of electronic interactions of the Cp-liganc with the orbitals of the M_{2} unit. The differences observed in the structures of the two independent molecules are also related to the proposed bonding model and to packing considerations.

Many compounas with metal-metal multiple bonds have now been structurally characterized. 1-4 most of the compounds so characterized are postulated to contain metal-metal quadruple bonds, although the structures of several compouncs with bond order three have also been reported. 5-8 Most attention has been focused on the metal-metal bond length; but the multiple bonds also exert profound structural effects throughout the molecule. These effects are well recognized in the case of quadruple bonds (viz. the eclipsing of terminal Iigands), but the structural effects of metal-metal triple bonds are not well recognized.

For example, the Mo三Mo triple bond in $\mathrm{CO}_{2} \mathrm{MO}_{2}(\mathrm{CO})_{4}$ causes the Cp-Mo-Mo-Cp axis to be linear ${ }^{8}$, but the $C_{p}-C r-C r-C p\left(C p=C_{5}\right.$ (Me5) axis in the analogous $\mathrm{CP}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ is highly bent (Cr-Cr-Cp $=$ 158.7 7°. Even sos the latter angle is more open than that found in the compound $\mathrm{CP}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}\left(\angle \mathrm{Cr}-\mathrm{Cr}-\mathrm{CP}_{\mathrm{P}}=116.7\right)$. In both triply bonded molecules, $\mathrm{Cp}_{2} \mathrm{MO}_{2}(\mathrm{CO})_{4}$ and $\mathrm{Cp}_{2} \mathrm{Cr}(\mathrm{CO})_{4}$, the carbonyls are bent back over the metal-metal triple bond. The opened $\mathrm{Cp}-\mathrm{Cr}-\mathrm{Cr}$ angle and the seni-bridging position of the carbonyls in $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ were both ascribed to non-bonded repulsions between the methyl groups on the substituted cyclopentadienyl ring and the carbonyl groups. 5 However, the linear Cp-mo-mo axis and the semi-briaging position of the carbonyls in the sterically uncrowded molecule, $\mathrm{CP}_{2} \mathrm{MO}_{2}(\mathrm{CO})_{4}$, caused us to doubt triat non-bonded repulsions were responsible for the unusual features noted in the structure of $\mathrm{Cp}_{2}{ }^{-} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$. Indeed, it could be argued that non-bonded repulsions between the substituent methyl groups and the carbonyls were responsible for the observed bent, rather than linear, $C p-C r-C i$, structure.

In order to better resolve these interpretations, the crystal structure of the unsubstituted, parent compound, $\mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mathrm{CO}_{4}\right.$, was determined.

Table 1. Summary of crystal and intensity collection data.

Crystal dimensions (mm)	$0.129 \times 0.071 \times 0.083$
Space group	P1
a,b,c (\AA)	7.829(3). 16.543 (6). $6.588(2)$
α, β, γ (deg.)	94.67(3). $110.70(3) ; 104.04$ (3)
$v\left(A^{3}\right)$	699.1 (4)
Radiation	MoKa, monochromatized Erom graphite crystal
Takeoff angle	4°
$\mu\left(\mathrm{cm}^{-1}\right)$	16.25
Transmission factors	. 8772-.8953
Scan speed (deg/min)	2-12
Scan range, 2θ	$\mathrm{K} \alpha_{1}-0.8$ to $\mathrm{Kc}_{2}+0.8$
Ratio of background to peak scan time	0.8
Std. reflections	013, 061, $62 \overline{1}$
2θ limit	55°
Total reflections collected	3100
Reflections with $I>3 \sigma(I)$	1216

Experimental and Results

The complex, $\mathrm{CP}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$, was synthesized by refluxing $\mathrm{CP}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}$ in toluene according to the directions of Hackett et al. 9 Recrystallization from hot toluene afforded crystals suitable for diffraction. A crystal was mounted on a Syntex PI diffractometer. A summary of the crystal and intensity collection data is presented in Table l. The crystal was triclinic, and a value of $2=2$ gave a reasonable, calculated density of $1.72 \mathrm{~g} \mathrm{~cm}^{-3}$. The space group $\mathrm{P} \overline{\mathrm{l}}$ was then assumed
and later verified by the successful refinement.
A Patterson ${ }^{10}$ map revealed that the two molecules each lay about two special positions at $0,0,0$ and $0,1 / 2,0$. Thus, one half of each molecuic generates the asymuetric unit and two independent sets of bond distances and angles are obtained. Insertion of the Cr-atom positions from the Patterson map gave $R_{1}=0.30$ and a difference map revealed the non-hyörogen atom positions. Two full matrix refinements of the positional and isotropic thermal parameters gave $R_{1}=0.1260^{10}$ Refinement with all non-hydrogen atoms anisotropic and with anomalous
(Continued on p. -137)

Table 2. Fractional cell coordinates. ${ }^{\text {a }}$

atom	x	y	z
Cr1	0.0938 (2)	0.5700 (1)	0.11021 3)
Cr2	$0.1324(2)$	0.0498 (1)	0.0047 (3)
C1	0.2005 (20)	-0.0171 (9)	$0.2608(23)$
01	0.2681 (11)	-0.0436 (6)	0.4107 (13)
c2	$0.0965(15)$	-0.0746 (8)	-0.1648 (13)
02	0.0971 (10)	-0.1396 (5)	-0.2613(12)
c3	-0.1419(15)	0.5553 (7)	0.1335 (17)
03	-0.2780(10)	0.5563 (5)	0.1609(13)
C4	-0.0237(17)	0.6020 (8)	-0.1733(22)
04	-0.0839 (12)	0.6327 (5)	-0.3250(13)
C5	$0.2150(14)$	0.6922 (8)	$0.3357(20)$
cs	$0.2747(14)$	0.7220 (7)	0.2274 (21)
c7	$0.3808(13)$	0.6617 (8)	0.1871 (19)
C8	0.3910 (14)	0.5976 (8)	0.3350 (19)
C9.	0.2845 (15)	0.6159 (8)	$0.4566(16)$
c10	0.2353 (15)	0.1426 (9)	-0.1970 (19)
c11	$0.3802(17)$	0.1057 (8)	-0.0867(22)
C12	$0.4350(14)$	0.1347 (8)	0.1365 (22)
c13	0.3263 (18)	0.1925 (8)	0.1677 (21)
C14	$0.2030(15)$	0.1993 (8)	-0.0390(28)
H(5)	0.1322 (0)	0.7207 (0)	c. 4489 (0)
H(6)	0.2499 (0)	0.7797 (0)	0.1486 (0)
E (7)	0.4415 (0)	0.6647 (0)	0.0716 (0)
H (8)	$0.4634(0)$	0.5477 (0)	$0.3522(0)$
$\mathrm{H}^{(9)}$	$0.2614(0)$	0.5788 (0)	0.5739 (0)
H(30)	0.7616 (0)	0.1300 (0)	-C.3553 (0)
H(11)	0.4399 (0)	0.0651 (0)	-0.1574 (0)
H (12)	0.5394 (0)	0.1181 (0)	0.2600 (0)
H(13)	$0.3374(0)$	0.2260 (0)	0.3176 (0)
H(14)	$0.1090(0)$	0.2385 (0)	-0.0646(0)

a) Hydrogen atoms numbered according to their bonded carbon. Hyarogen positions were not refined.
Table 3. Anisotropic thermal parameters.

atom ${ }^{\text {a }}$	β_{11}	β_{27},		β_{33}	β_{12}	B_{13}	β_{23}	
Crl	0.0144141	0.00351	1)	0.0255171	-0.00031 2)	0.0075141	-0.0013(2)	
Cr2	0.0165151	0.00451	1)	$0.0330(8)$	-0.00171 21	$0.0107(5)$	$0.0013(2)$	
Cl	U.0369(41)	0.00681	9)	0.0306(48)	$0.0090(16)$	$0.0064(36)$	-0.0003 1261	
01	$0.0234(19)$	0.00901	6)	$0.0254(26)$	0.0051191	$0.0033(18)$	0.00871121	
C2	$0.0274131)$	0.00491	7)	$0.0268(38)$	$0.0083(22)$	0.0072(27)	$0.0030(13)$	
02	0.0293121 .1	0.00321	4)	$0.0384(28)$	0.00281 7)	$0.0172120)$	-0.0021 ${ }^{0.01}$	
C3	$0.0196(27)$	0.00551	7)	$0.0250(36)$	0.00281111	$0.0095(26)$	$0.0012(12)$	
03	$0.0268118)$	0.00721	5)	$0.0439(32)$	0.0032181	$0.0144(20)$	-0.0026(20)	
64	$0.0256(31)$	0.00571	B)	$0.0401(50)$	$0.0067(13)$	$0.0183(34)$	0.00571161	
04	$0.0445(28)$	0.00521	5)	0.02721291	0.0040191	$0.0067(23)$	0.00481101	
C5	$0.0179(27)$	0.00461	71	$0.0365(44)$	0.0016 (11)	$0.0041(28)$	$-0.0033(14)$	
C6	$0.0162(25)$	0.00361	6)	$0.0438(48)$	$0.0012(10)$	$0.0036229\rangle$	0.00491241	
C 7	$0.0107(22)$	0.00551	71	$0.0392(46)$	$0.0036(10)$	$0.0051(28)$	$0.0038(15)$	
C8	$0.0132(23)$	0.00571	71	$0.0332(41)$	$0.0058(10)$	0.0011 (25)	$0.0005124)$	
C^{1}	$0.0184(25)$	0.00591		0.0204 1341	-0.0009111)	-0.0015 24)	$0.0016(13)$	
C10	0.02061298	0.00691	81	$0.0288(41)$	-0.0010(12)	$0.0059(28)$	$0.0060(15)$	
C11	$0.0220(29)$	0.00561	7)	$0.0401(49)$	-0.0000 121	$0.0183(32)$	0.0019 (15)	
C12	$0.0144126)$	0.00541	71	$0.0445(51)$	$0.0014(11)$	-0.0008(28)	0.00812171	
C13	$0.0248(33)$	0.00391	7)	0.03911491	-0.0011(12)	$0.0138(33)$	-0.0021 1141	
C214	$0.0149(27)$	0.00431	71	0.0699 (69)	$0.0028(11)$	$0.0095(37)$	0.00961161	
13(5)	4.68101			.				
H(6)	4.35101						\therefore	
H(7)	3.74101							
H(8)	4.03103							
H(9)	4.8.91 0)							
H(10)	*-3ち(0)						.	
H(L1)	1.831 0)							.
H(12)	$4.6310)$							
H(13)	$4.7010)$							
H(L4)	5.00101		\cdots					

[^0]

Fig. I ORTEP drawing of the $\mathrm{CP}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ molecule located at 0,0,0. Thermal ellipsoids are contoured at the 50% probability level.

Fig. 2 ORTEP drawing of the $\mathrm{CP}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ molecule located at $0,1 / 2,0$. Thermal ellipsoids are contoured at the 50 probability level.
dispersion included for Cr converged in two more cycles at $R_{1}=.067$ and $R_{2}=.074$. A difference map at this stage did not show clear hydrogen peaks although electron density was obvious in the regions expected for the hydrogen atoms. Therefore, H-positions were calculated ${ }^{10}$ with the $C-H$ distance set at $1.0 \AA$ and with B-values set one unit higher than that of the contiguous carbon. These H-atoms were included in the Fourier synthesis but not refined. The structure analysis then converged at $R_{1}=0.060$ and $R_{2}=0.064$. The highest peaks in the final difference map were 0.89 and $0.87 \mathrm{e}^{\circ-3}$ and were shadows around

Table 4. Interatomic Distances and Bond Angles ${ }^{\text {a }}$

Bona	$\underline{I}\left({ }^{\text {A }}\right.$)	Bond	$r(A)$
Crl-Crl*	2.230 (3)	Cr2-CR2 ${ }^{-}$	2.200 (3)
cri-C3	1.868 (11)	Cr2-Cl	1.990 (15)
Crl-C4	1.920 (14)	Cr2-C2	1.950 (11)
CrI-C5	2.190 (10)	Cr2-clo	2.181 (11)
Crı-C6	2.218 (10)	Cr2-C11	2.219 (10)
CrI-C7	$2.172(10)$	Cr2-Cl2	2.200 (10)
Crı-C8	2.187 (10)	Cr2-Cl3	2.173 (10)
Cri-C9	2.178 (10)	Cr2-Cl4	2.179 (10)
cr1..-c3 ${ }^{-}$	2.515 (11)	Cr2 \cdot.. Cl^{\prime}	2.474 (14)
cril.-c4 ${ }^{\text {- }}$	2.530 (12)	Cr2...c2 ${ }^{-}$	2.459(11)
Cr1-Cp ${ }^{\text {b }}$	1.842 (11)	$\mathrm{Cr} 2-\mathrm{Cp}{ }^{\text {b }}$	1.847 (11)
C3-03	1.145 (11)	C1-01	1.093 (12)
C4-04	1.123 (12)	C2-02	1.096 (11)
C5-C6	1.347 (16)	Clo-Cll	1.370 (16)
C6-C7	1.415 (14)	Cl1-Cl2	1.374 (16)
C7-C8	$1.398(14)$	Cl2-Cl3	1.385 (16)
C8-C9	1.397 (14)	Cl3-Cl4	1.391(16)
C9-C5	$1.394(15)$	C14-C10	1.406(17)

Ave. C-C: $1.390 \pm .026$
Ave. Crl-CO: $1.894 \pm .037$
Ave. Crl-CÓ $2.523 \pm .011$
Ave. Crl-Cp: 2.189 $\pm .018$

Ave. $C-C=1.385 \pm .014$
Ave. Cr2-CO = $1.970 \pm .028$
Ave. $\mathrm{Cr} 2-\mathrm{CO}^{-}=2.466 \pm .011$
Ave. Cr2-Cp: $2.190 \pm .019$

Table 4. (continued)

Bonds	Angle ${ }^{\circ}$	Bonds	Ancle ${ }^{\circ}$
Cr1-C3-03	172.6 (9)	Cr2-Cl-01	167.9 (12)
Crl-C4-04	171.1(10)	Cr2-C2-02	171.4 (10)
$\mathrm{Crl}-\mathrm{Crl}-\mathrm{Cp}$	158.7(4)	$\mathrm{Cr}^{2-}-\mathrm{Cr}_{2}-\mathrm{CP}^{\text {b }}$	165.0(4)
Cr1-Cr1-c3	75.2(3)	$\mathrm{Cr}^{2-} \mathrm{Cr} 2-\mathrm{Cl}$	$72.2(4)$
CrI--Crl-C4	74.7 (3)	$\mathrm{Cr}^{2-}-\mathrm{Cr} 2-\mathrm{C} 2$	72.4(3)
cri-crl-c5	$160.7(4)$	$\mathrm{Cr} 2^{-}-\mathrm{Cr} 2-\mathrm{Cl} 0$	$140.2(3)$
CrI-Crl-C6	161.8 (4)	$\mathrm{C}=2^{-}-\mathrm{Cr} 2-\mathrm{ClI}$	158.4(3)
CrI--CrI-C7	136.4 (3)	$\mathrm{Cr}^{2-} \mathrm{Cr} 2-\mathrm{Cl2}$	158.5(3)
Crı-Crl-C8	125.6(3)	$\mathrm{Cr} 2^{\prime-} \mathrm{Cr} 2-\mathrm{Cl} 3$	140.8 (4)
Crı-Crl-C9	135.3 (3)	Cr2--Cr2-C14	132.0 (3)
c3-cri-c4	85.8(5)	Cl-Cr2-C2	83.6 (5)
c5-c6-c7	107.8(1.0)	Cl0-Cll-Cl2	108.9(1.2)
C6-C7-C8	107.7(1.0)	Cll-C12-C13	108.1(1.1)
C7-C8-C9	107.2(0.9)	C12-C13-Cl4	108.0(1.1)
C8-C9-C5	107.5(1.0)	C13-C14-Cl0	107.1(1.0)
C9-C5-C6	109.7(1.1)	C12-C10-C11	107.8(1.0)
Ave. $C-C-C=108.0 \pm 1.0$ Ave. Cil-Crl-CO: 75.0 ± 0.4 Ave. Crl-C-O: 171.8 ± 1.3		Ave. $\mathrm{c}-\mathrm{C}-\mathrm{C}=308.0 \doteq .6$ Ave. $\mathrm{Cr}_{\mathrm{r}} \mathrm{Z}^{-}-\mathrm{Cr} 2-\mathrm{CO}=72.3(5)$	
		Ave. Cr2-C-O:	. 6 ± 2.5

a) Standard deviations from variance-covariance matrix are in parentheses. Standard Deviations reported as " \pm " were computed from the formula, $\sigma=\left(\Sigma(x-\bar{x})^{2} /(n-1)\right)^{1 / 2}$.
b) $C p$ in this table stands for the centroic of the cyclopentadienyl ring.

CrI and Cr2, respectively.* No other significant features were noted.

Transmission factors were calculated ${ }^{10}$ for a variety of

[^1]crystal settings and the small range in values indicated an absorption correction was not required. Standard reflections, measured after every 50 peaks, showed no decrease in intensity.

Atomic positional and temperature parameters are listed in Tables 2 and 3, respectively. Figures 1 and 2 are ORTEP plots of the independent molecules at $0,0,0$ and $0,1 / 2,0$, respectively. Figure 3 is a stereoview of the unit cell contents. Bond distances and angles are collected in Table 4, and Table 5 gives the equations of the least-squares planes containing the metal atoms and two carbonyls in each molecule.

Table 5. Least squares planes containing the metal atoms and carbonyls.

Plane ${ }^{\text {a }}$	Atom	Distance ${ }^{\text {b }}$, $\AA\left(\mathrm{x} 100^{4}\right)$
1	Crı*	- -4
	Crl	-26
	C3	77
	03	-47
2	Crl ${ }^{-}$	8
	CrI	53
	C4	-163
	04	102
3	Cr2 ${ }^{-}$	6
	Cr2	24
	Cl	-82
	01	52
4		
	$\mathrm{Cr} 2$	16
	C2	- 49
	02	31
Equations defining the planes: (1) .0240 x $\div .6426 y-.7658 z$ -4.6714=0; (2) .9207x-.2980y $-.2519 z+2.1640=0$;		
(3) $.3671 x-.7452 y-.5567 z-.0015=0$; (4) $-.2125 x+.4988 y$ $-.8403 z-.0009=0$		

b) Normal distance of atoms to the planes.

Discussion

The structure of the unsubstituted chromium complex $\mathrm{CP}_{2} \mathrm{CI}_{2}(\mathrm{CO})_{4}$ is remarkably similar to the structure of $\left(\mathrm{C}_{5}{ }^{3 \mathrm{e}_{5}}\right)_{2} \mathrm{Cr}(\mathrm{CO})_{4}$ determined earlier. ${ }^{5}$ In fact, the anomolous features noted for the latter compound, and ascribed to steric crowding by the methyl groups, are present to the same or greater extent in the unsubstituted parent. Thus, the opening of the Cr-Cr-Cp angle is the same or greater, cf. 158.7° in the permethyl derivative vs. 158.7° and 165.0° in the two structures determined here. The $\mathrm{Cr}^{-}-\mathrm{Cr}-\mathrm{Co}$ angles, while tending to be smaller in the unsubstituted complex (ave. 73.6 ± 1.5 vs. 76.0 ± 4.3 in $\left.\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}\right)$, are not statistically different, due primarily to the large difference in the two Cr-Cr-CO angles found in the permethyl structure.

Hence, it is clear that these unusual features are the result of electronic effects associated with the Cr=Cr triple

Fig- 3 ORTEP stereovien of unit cell contents.

(a) LINEAR

(b) BENT (135*)

Fig. 4
(a) Interaction of the Cp-ring e_{1}-orbitals with the metal-metal π-system; and (b) with the metal-metal o-system.
bond, and are not due to steric crowding. This view is reinforced by the struciure of the molybdenum compound, $C p_{2} \mathrm{MO}_{2}(\mathrm{CO})_{4}$, in which these anomalies are carried to the extreme. 8

The problem of why the complexes, $\mathrm{Cp}_{2} \mathrm{Cr}_{2} \mathrm{COH}_{4}$ and
$\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ are bent whereas the complex, $\mathrm{CP}_{2} \mathrm{HO}_{2}{ }^{(\mathrm{CO})_{4}}{ }^{\text {r }}$ is "linear" cannot be answered definitively in the absence of reliable MO calculations.

In compounds of the type being considered, the strongest
interaction between the Cp-rings and the metal centers arises from the electron donation from filled e_{1}-orbitals on the ring to vacant d-orbitals on the metal. In the linear structure, the electron donation is to the metal-metal π^{*} orbitals. At a CP-M-M angle, ω, of 135°, the ring e_{1}-orbitals donate e-density into the metal-metal σ^{*}-orbital (see Fig. 4). The interaction of the M_{2} fragment with the cyclopentadienyls will raise the energy of the metal d-orbitals regardless of the Cp-M-M angle. However, in the linear configuration, the $\overline{-}$ system energy is raised higher relative to the σ - The opoosite effect prevails at $\omega=135^{\circ}$; the σ-system is raised relative
to the IT. In other words, as the Cp-M-M angle is decreased from 180°, the metal-metal m-energies will fall and the metalmetal o-energy will rise. The angle, o, at which a minimus occurs will depend on the relative rates of changes in the $\sigma-$ and $\pi-$ bond energies, and these in turn depend on the metalring overlap and the energy separation between the metal and the ring orbitals.

The Cr-Cr bond lengths, $2.230(3)$ and $2.200(3)$, in the two stiructures determined here are significantly shorter than the Cr-Cr distance, 2. $280(2)$, found in the permethyl derivative. The pentamethylcyclopentadienyl ligand should be more electro: donating than the unsubstituted ring, leading to higher populations in those orbitals with a metal-metal anti-bonding component, and increasing the metal-metal distance as observed.

The above model has an interesting applicaition to the differences observed in the two independent structures determined for $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}{ }^{\circ}$ As the angle, ω_{2} decreases Erom 180° toward 135 ${ }^{\circ}$ electron density is shifted from molecular orbitals with a meial-metal π * component to molecular orbitals with a metal-metal σ^{*} component. One could argue that population of the latter molecular orbital would exert a more pronounced weakening (and lengthening) of the metal-metal bond. This is precisely what is observed in the two structures presented here. The molecule with the more open angle, viz. Cr2--Cr2-Cp= 165.0(4) vs. Crl-Crl - Cp $=158.7(4)$, has tise shorter Cr-Cr bonã, viz. 2.200(3) vs. 2.230(3). The differesce in $\mathrm{Cr}-\mathrm{Cr}$ bond lengths, .03A, is some seven times the standard deviation of she difference, $\sigma_{a}=\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{1 / 2}$.

It appears that packing forces are responsible for the distortion of the molecule at $0,1 / 2,0$ relative to the one at 0,0.0. From Fig. 3, it can be seen that the c三rbonyl groups
on the molecule at $0,0,0$ point toward the Cp-rings on the molecule at $0,1 / 2,0$ in a manner which would tend to compress the Crl-Crl-Cp angle. The short intermolecuian contacts, 01-H6 (2.92), OI-H5 (3.39), 02-H5(2.80), and 02-ה゙6(3.00) are all in a direction such that both the angles, $C=1-C r l-C p$ and $\operatorname{Cr} 2^{-}-\mathrm{Cr} 2-\mathrm{CO}$, would be compressed. The contacts, 03-414*(3.17), 04-H14-(3.14), and 04-H13-(3.19), all tend to open the Cr2--Cr2-Cp angle and to compress the CRI-Crl-CO angle. Thus, the differences observed in the two independent structures determined here can be rationalized on the basis of the boncing model presented and the intermolecular forces present in the crystal.

The carbonyl ligands in $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ form an acute $\mathrm{Cr}^{-}-\mathrm{Cr}-\mathrm{CO}$ angle (ave. $=73.6 \pm 1.5$) and form an unsymmetric bridge. If we define the "asymmetry parameter"; α, to be $\left(d_{2}-d_{1}\right) / d_{1}$. where $\mathrm{d}_{2}=$ long M-.C distance, $\mathrm{d}_{1}=$ short M-C distance, then a plot of a vs. θ, the $M-C-0$ angle, gives two smooth curves. 11 One curve has θ essentially invariant with respect to α; and the other curve shows a decrease in θ with aecreasing α The latter behavior is typical of normal bricoing carbonyls, i.e. carbonyls which act as two electron donor ligands. The forner behavior is characteristic of a class of bridging carbonyls which act as incipient 4-electron donors, two electrons being donatea as usual by the co-lone pair and the other two from the co i-bond. The average value of the asymmetry parameter for $\mathrm{CP}_{2} \mathrm{Cr}_{2}{ }^{(C O)}{ }_{4}$ is 0.291. This value, when plotted against the average value of θ gives a point which is clearly on the "4-electron donor curve". Il Hence, we postulate some electron donation from the carbonyl π-orbitals into the Cr-Cr π^{*} orbitals. A similar interaction of the carbonyls with the Mo三Mo triple bond has been postulated for $\mathrm{Cp}_{2} \mathrm{MO}_{2}$ (CO) $_{4}$.

Two of the Cr-Cr-CO angles in $\mathrm{CP}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}$ are also quite acute (ave $=71.2^{\circ}$) 13 However, the esymmetry parameter, 13 $\alpha=0.728$ is considerably larger and a plot of α vs 0 lies in the terminal con-region as expected. 11

It is interesting to note that the chemical reactivities of $\mathrm{Cp}_{2} \mathrm{Cr}_{2} \mathrm{CO}_{4}$ and $\mathrm{CP}_{2} \mathrm{MO}_{2}(\mathrm{CO})_{4}$ also differ markedy. While the latter reacts with many soft nucleophiles and acetylenes 8,14 to yield well-defined products, the former either yielas intractable mixtures? or, in the case of acetylenes, fails to react at RH. 12 These differences in chemical reactivity of the metal-metal triple bonds may also be related to the same factors which are responsible for the different structures of the chromium and molybdenum derivatives, and further work is in progress to elucidate this point.

Acknowledgements. The authors thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support.

References and Notes

1. F. A. Cotton, Rev. Chem. Soc., 4 (1975) 27.
2. F. A. Cotton, Accts. Chem. Res., 2 (1969) 240.
3. M. C. Baird, Prog. Inorg. Chem., 9 (1968) 1.
4. F. A. Cotion, M. Extine, and L. D. Gage, Inorg. Chem., 17 (1978) 172, and the following two papers therein.
5. J. Potenzza, P. Giordano, D. Mastropaolo, and A. Efraty, Inorg: Chem., 13 (1974) 2540.
6. E. Euq, W. Mowat, A. Shortland, A. C Skopski, and G. Wilkinson, Chem. Commun. (1971) 1079.
7. (a) M. H. Chisholm, F. A. Cotton, B. A. Frenz, W. W. Reichert, L. W. Shive, and B. R. Stults, J. Am. Chem. Soc., 98 (1976) 4469; (b) M. H. Chisholm, F. A. Cotton, M. Extine, and B. R. Stults, ibid., 98 (1976) 4477 and 4486 ; (c) M. H. Chisholm, F. A. Cotton, M. Extine, M. Millar, and B. R. Stults, Inorg. Chem.. 15 (1976) 2244; (d) M. H. Chisholm, F. A. Cotton, M. Extine, and B. R. Stults, ibid., 15 (1976) 2252, anc ibid., 16 (1977) 603; (e) M. H. Chisholm, F. A. Cȯ亡on, M. W. Extine, and w. พ. Reichert, J. Am. Chem. Soc., 100 (i978) 153; (f) F. A. Cotton and M. Millar, ibid., 99 (1977) 7886.
8. R. J. Klingler, W. M. Butler, and M. D. Curtis, J. Am. Chem. Soc., 97 (1975) 3535.
9. D. Hackett, P. S. O'Neill, and A. R. Manning, J. Cher. Soc. Dalton, (1974) 1625.
10. Computations were carried out on an Amaahl 470 computer. Computer programs used during the structural analysis mere syicor (data reduction by W. Schmonsees), FORDAP (Fourier synthesis by z. Zalkin ORFLS (full-matrix, least-squares refinement by Busing, Martin, and Levy), ORFFE (distances, angles, and their esd's by Busing, Martin, and Levy), ORTEP (Thermal ellipsoic ărawings by C. K. Johnson), HATOMS (Hydrogen atom positions by A. Zalkin), and planes (Least-squares planes by D. M. Blow), ABSORB (Tenpleton and Templeton using the algorithon of DeLauny and Tonoa).
11. R. J. Klingler, W. M. Butler, and M. D.-Curtis, J. Am. Chem. Soc., in press.
12. M. D. Curtis, unpublished results.
13. Calculated from the data given by R. D. Adams, D. E. Collins, and F. A. Cotton, J. Am. Chem. Soc., 96 (1974) 749.
14. M. D. Curtis and R. J. Klingler, submitted for publication.

[^0]: a) Hydrocton atoms numbered according to the bonded carbon. Nydrogen parameters were not refined.
 $k^{2} \beta$
 N
 $\stackrel{\sim}{\sim}$
 -

 $$
 \left.\left.2 h k \beta_{12}+2 h \ell \beta_{13}+2 k \ell \beta_{23}\right)\right]
 $$

 2

[^1]: *ine table of structure factors has been deposited as NAPS Document No. 03267 (seven pages) . Order from ASIS/NAPS, c/o Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, N.Y. 10017. A copy may be secured by citing the document number, remitting $\$ 6.00$ for photocopies or $\$ 4.00$ for microfiche. Advance payment is required. Make checks payable to Microfiche Publications.

