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The attachment of an electron-hole droplet to a donor in 
Ge is considered using the density-functional method. We 
find the heat of solution of a donor in a droplet to be 
about 7 meV, and the electron density at the donor to be 
32 times the carrier density in the droplet far from the 
donor. Effects on droplet pinning and recombination are 
discussed. 

The emergence of the density 
functional techniquel, 2 as a practical 
computational method has led to a new 
examination of many fundamental problems 
in the theory of interacting electron 
systems. Successful applications to the 
theory of metal surfaces are probably 
the best known example. 3 Recently 
several groups using the method have 
turned their attention to the simplest 
sort of impurity problem in the theory 
of metals, namely a point charge in a 
jellium background; self-consistent 
electron density distributions have been 
obtained. 

Many obstacles lie between these 
theories and physical tests, however. 
For example the relaxation of a real 
metal lattice to the presence of the 
impurity has not been carefully consid- 
ered, nor are there obvious ways to 
probe the density distribution 
experimentally. We have tried to apply 
similar techniques to a system which is 
much "cleaner" than ordinary metals: 
the electron-hole liquid in Germanium 
in the presence of a donor. For this 
case the condensed valence-band holes 
play the role of the metal lattice: 
their relaxation can be treated in 
exactly the same way as the electron 
system. Also, as we will see below, 
there exist "extra" probes for this 
system, notably the recombination 
radiation line-shape. And, of course, 
the influence of impurities on electron- 
hole liquid properties is of interest in 
i t s  own  r i g h t .  

Our problem is the following: given 
a positive point charge fixed at the 
origin surrounded by electron-hole liquid 
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(EHL) find the self-consistent density 
distribution and binding energy, s We 
neglect effects due to the droplet 
surface: as long as the impurity is more 
than a few screening lengths from the 
surface this is a good approximation. 
(Note that even for small s-drops the 
screening length is a small fraction of 
the drop radius.) 

We must first state precisely what 
we mean by the binding energy. We 
define a quantity fl to be the energy of 
a droplet of N+I electrons, N holes, and 
an impurity charge inside minus the energy 
of a droplet of N electrons, N holes, an 
ionized impurity, and the extra electron, 
all well separated. The heat of solution 
of a neutral donor is: 

H = C - n )  - IEBI  ( 1 )  

where E R is the donor binding energy, fl 
differs-by a constant from the grand 
potential difference due to the donor. 
It is the quantity we minimize in our 
calculations. 

The work is based on the Kohn-Sham 
formulation of density functional theory; 
we use the potential variation technique 
of Rose and Shore. 7 In this method the 
exchange-correlation energy is written in 
the local approximation. Together with 
the Hartree energy we have: 

fll = f[exc(ne'nh) - ¢xc(no'no )]d3r 

- f~n(r)/r d3r 

+ l f 6 n ( r )  ~nCr')/I r - r '  [ ) d 3 r ' d 3 r  

~n  = n e - n h . ( 2 )  
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I n  t h i s  e x p r e s s i o n  n e . h  a r e  t h e  t o t a l  
e l e c t r o n  ( h o l e )  d e n s i t i e s ,  and  t h e  u n i t s  
a r e  s u c h  t h a t  u = ~ = e2/K = 1, where  
i s  t h e  e x c i t o n  mass  and  < t h e  d i e l e c t r i c  
c o n s t a n t s .  The e q u i l i b r i u m  EHL d e n s i t y  
i s  n o = 2 4×10 *~ cm - 3 .  The e x c h a n g e  - 
c o r r e l a t i o n  e n e r g y  p e r  u n i t  v o l u m e ,  e x c ,  
was c a l c u l a t e d  f o r  t h e  Germanium b a n d  
s t r u c t u r e .  The e x c h a n g e  p a r t  i s  e x a c t  
e x c e p t  f o r  n e g l e c t  o f  v a l e n c e - b a n d  wa rp -  
i n g , -  and  t h e  c o r r e l a t i o n  p a r t  i s  t h e  
r e s u l t  o f  an RPA c a l c u l a t i o n  f o r  u n e q u a l  
n e and  n h . 9  

The k i n e t i c  e n e r g y  c o n t r i b u t i o n  to  
k i 

i s :  - ~ f  Fk6i dk+e~Xe * z  = - I ( k )  
£ , i  

h 5 3 
+ ~FXh-fVene d r-fVhnhd e, 

= ~ ( n e , h - n o ) d 3 r  (3) Xe ,h  

Here  t h e  i n d e x  i r u n s  o v e r  t h e  o c c u p i e d  

i i s  t h e  F e r m i  wave v e c t o r ,  and  bands, k F 
i e F the Fermi energy. The functions 

Ve, h are the self-consistent potentials 

felt by the two species and'6i(k) the , £ 

associated scattering phase shifts. In 
the kinetic energy the light holes are 

i 
neglected, and the 6£ come from wave- 

equations involving density of states 
masses. 

A third contribution to ~ comes 
from the fact that the screening charges 
Xe, h corresponds to the transfer of 

charges from distant parts of the drop- 
let; for each charge transferred a 
binding energy (chemical potential) Pe,h 
must be paid: 

n3 = ~e(Xe-l) ~hXh . (4) 

Alternatively, one may regard £3 as the 

Lagrange multiplier term in a grand 
potential. 

Once the functional form of ~ = 
fll + ~2 + f15 is known, the calculational 

procedure is as follows (see ref. 7 for 
more detail): choose a set of trial 
potentials Ve, h. Solve the wave-equation 

for many wave vectors within the Fermi 
seas of both species, and generate the 
densities ne, n h as a sum of squared 

wave functions. The phase shifts are 
also calculated, and all the quantities 
in fl can be numerically generated. The 
true densities are those which minimize 

subject to a constraint of charge 
neutrality. We required that the Friedel 
sum rule give the correct impurity 
charge. 

In practice we followed the 
minimization procedure of ref. 5 for the 
electrons. (This is more rapid than the 

original method of ref. 7): V e was 

chosen at ten points and a potential was 
generated from the associated charge 
density: 

Ve = ~ + ~ e ( n e ) - e ~ ( n e ) - ( ~ e ( n o ) - e ~ ( n o  ) ) '  
(s) 

where  @ i s  t h e  e l e c t r o s t a t i c  p o t e n t i a l .  
The d i f f e r e n c e  b e t w e e n  V was e 
m i n i m i z e d  by v a r y i n g  t h e  c h o s e n  t e n  
v a l u e s .  

The h o l e s  g i v e  a s m a l l  c o n t r i b u t i o n  
to  t h e  f i n a l  fl ( a b o u t  5%): we s i m p l y  u s e d  
a t r i a l  p o t e n t i a l  w i t h  a few p a r a m e t e r s  f o r  
them.  ( B e c a u s e  o f  t h e  weak d e p e n d e n c e  o f  

on n h ,  ou r  r e s u l t s  f o r  n h a r e  p r o b a b l y  

l e s s  r e l i a b l e  t h a n  t h o s e  f o r  n e . )  Our 

t e c h n i q u e  was to  s e t  nhEn o,  l e t  t he  

e l e c t r o n s  r e l a x ,  t h e n  " f r e e z e "  n e and  l e t  

t h e  h o l e s  r e l a x ,  f r e e z e  n h and  so on .  

Our r e s u l t s  f o r  n e ,  h a r e  p l o t t e d  i n  

f i g u r e  i .  Note t he  eno rmous  b u i l d - u p  o f  
e l e c t r o n  d e n s i t y  a t  t h e  o r i g i n :  n e ( 0 )  = 

100 

I0 

~ n h  

.1 , , 3  . .5  .6  .7 .8  

r/aex 

Figure i. Electron and hole densities as a func- 
tion of distance from the donor. Note 
the logarithmic scale, a = 177~ 

ex 

32 n . This is to be expected: near the 
impu~ity the electron density should look 
very much like that of an ordinary donor 
(with a density of states mass). It is 
easy to show that for such a donor n (0) 
would be 29 n . Our value for ~ is e 

O 

-6.2 exciton rydbergs = -16 meV. 
For a donor like Sb which has a 

small central cell correction, our 
results may be directly compared to 
those of Smith 6 for the heat of solution. 
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We find H = 7 meV = 2.7 exciton rydbergs, 
while Smith finds 2.0 exciton rydbergs. 
This difference is also to be expected 
because Smith uses linear response 
theory; in a case like the present one 
with very large charge buildup linear 
response underestimates energies. We 
disagree with Smi th  about the proper 
treatment of central-cell corrections for 
other impurities. All our theory so far 
has been in the effective mass approxi- 
mation. Central cell effects increase 
[EB[, but they should also increase -n 

by about the same amount (cf. the dis- 
cussion of ne(0), above). Thus, H which 

depends on their difference should be 
more or less independent of impurity 
type. 

Evidence for large pinning energies 
of droplets to impurities has been given 
by Westervelt and Black *° who measure a 
lower bound of about 3 meV for the 
activation energy for hopping of droplets 
off of nucleation centers (which are 
probably acceptors or donors). This is 
compatible with our value. 

The EHL recombination radiation may 
be used as a more microscopic probe than 
the heat of solution. The linewidth is 

well known to be e+ h e F e F. However the 

p h a s e  s h i f t s  6~(k)  may be i n t e r p r e t e d  

as  a c h a n g e  i n  t h e  e n e r g y  e £ ( k )  o f  t h e  

l e v e l  w i t h  w a v e v e c t o r  k and  a n g u l a r  
momentum £: 

6 e £ / ~  z = - ~ £ / 2 k R .  (6) 

Here  R i s  t h e  r a d i u s  o f  a s p h e r e  i n  
w h i c h  t h e  p a r t i c l e s  a r e  t a k e n  to  be 
c o n f i n e d .  For  a doped sample  w i t h  many 
i m p u r i t i e s  p e r  d r o p ,  we e s t i m a t e  R as  t h e  
mean distance between impurities: if 
there are i0 Is donors/cm ~, we find at 
the Fermi surface the shift of an £=0 
state to be about 5%. (The phase shift 

6e ( kF  ) o  is a b o u t  .5). A line n a r r o w i n g  

o f  t h i s  o r d e r  has  b e e n  o b s e r v e d  11 and 
has  b e e n  a t t r i b u t e d  t o  a c h a n g e  i n  
d e n s i t y ,  s ' * *  For  £~0 t h e  s h i f t s  a r e  
s m a l l e r ,  so t h a t  a r e d i s t r i b u t i o n  o f  
p o p u l a t i o n  among v a r i o u s  ~ v a l u e s  may 
c a n c e l  t h i s  e f f e c t .  A c o m p l e t e  
i n v e s t i g a t i o n  o f  t h e  e f f e c t  o f  i m p u r i t i e s  
on r e c o m b i n a t i o n  l i n e - s h a p e s  i s  i n  
p r o g r e s s .  ~ 

A c k n o w l e d g e m e n t  - One o f  us  (LMS) would  
l i k e  to  a c k n o w l e d g e  t h e  h o s p i t a l i t y  o f  
t h e  Groupe de P h y s i q u e  des  S o l i d e s  de 
L'ENS in Paris, where this work was begun. 
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