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I. INTRODUCTION 

We consider here abstract operational equations of the form 

Ex+aAx = Nx, (1) 

where E: D(E) -+ Y, B(E) C X, N: X + Y, A: X+ Y are operators, E linear, 
not necessarily bounded, N and A continuous, not necessarily linear, X, Y 
Banach spaces over the reals, 01 a real parameter. 

In any application E may be a linear differential operator in some domain 
G C E*, v 3 1, with linear homogeneous boundary conditions. 

We consider the case in which Ex = 0 has a nontrivial set X0 = ker E 
of solutions; in other words, the equation Ex + hx = 0 has X = 0 as an 
eigenvalue. We assume, however, that X,, is finite dimensional, thus, 1 < 
dim ker E < 00. On the continuous operator A: X+ Y we assume that it maps 
bounded sets of X into bounded sets of Y. 

On the continuous operator N: X+ Y we assume that it satisfies certain 
hypotheses in the large which represent an abstract extension of those of the 
Landesman and Lazer and analogous theorems. The hypotheses on N guarantee 
the existence of solutions to the equation at resonance Ex = Nx. 

In the present paper we prove, in terms of the alternative method and the 
Schauder fixed point theorem, that the same assumptions on N actually have a 
stronger implication, Namely, under such assumption, there are numbers 
01,, > 0, C > 0 such that, for every real ol with 1 ti / < tiO , the equation Ex + 
ol Ax = Nx has at least a solution x E X with 11 x /I < C (existence of solutions 
across a point of resonance). In other words, the parameter 01 is allowed to go 
through the point of resonance OL = 0, and yet uniformly bounded solutions x 
of (1) can be guaranteed. 

This phenomenon has physical significance. For the case of periodic solutions 

* This research was partially supported by AFOSR Research Project 71-2122 at the 
University of Michigan. 

43 
0022-0396/78/0281-O043$02.00/0 

Copyright 0 1978 by Academic Press, Inc. 
All riehts of renrodurtion in xnv form WC~RIPA 



44 LAMBERTO CESARI 

of ordinary differential systems with forcing terms of given period T = 2,7/w, 
our statements may imply the existence of uniformly bounded periodic solutions 
of the same period T (entrainement of frequency). Even in this situation, the 
results are new since they are proved under sole qualitative hypotheses on N 
and A. 

We discuss problem (1) here under assumptions which do not imply self- 
adjointness. (For a discussion of the same problems for the sole selfadjoint 
case see Cesari [6]). Applications of the theorems of the present paper to the 
ordinary differential equations taken into consideration by Lazer and Leach [20] 
are made briefly at the end of this paper (Sect. 5). Applications to the partial 
differential equations taken into consideration by Landesman and Lazer [19], 
Williams [20], and De Figueiredo [lo-121, are made in [5]. 

An existence theorem at resonance (a = 0) for the bounded case and self- 
adjoint problems (11 Nx jl < I,, , X = Y a Hilbert space) has been proved by the 
author and Kannan in [8] in terms of the Schauder fixed point theorem, and 
the same statement has been proved by Kannan and McKenna [18], the latter 
in connection with his thesis at Michigan, by the alternative method and the 
Leray-Schauder topological degree argument. The same combination of the 
alternative method and the Leray-Schauder argument could equivalently be 
used also in the proof of the theorems of the present paper. We prefer to use 
here an argument, based on Schauder’s fixed point theorem, which is closer to 
the original arguments of Landesman and Lazer, and of Williams. 

2. NOTATIONS AND MAIN ASSUMPTIONS 

Let X, Y be Banach spaces over the reals, and let // x IIx , jl y IIr denote the 
norms in X and Y, respectively. 

Let P: X+ X, Q: Y---f Y be projection operators (i.e., linear, bounded, and 
idempotent), with ranges and null spaces 

%(P) = PX = x0 ) kerP=%(I---)=(I-P)X=X,, 

s(Q) = QY = Yo , ker Q = %(I - Q) = (I - Q)Y = yr . 

Let E: B(E) -+ Y be a linear operator with domain II)(E) C X and let us assume 
that 

ker E = X,, = PX, s(E) = Yr = (I - Q)Y, 1 < m = dim X0 < co. 

Then E, as a linear operator from CD(E) n XI into Yr is one-one and onto, so 
that the partial inverse N: Yr + a(E) n X, exists as a linear operator. We 
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assume that H is a bounded linear compact operator, and that the usual axioms 
of [3] hold: 

(k,) H(I - Q)E = I - P; (k,) EP = QE; (k3) EH(I - Q) = I - Q. 

We have depicted here a situation which is rather typical for a large class of 
differential systems, nonnecessarily selfadjoint, in the alternative method 
(cf. [3-7, 151). 

Let A: X-t Y be a continuous operator, not necessarily linear, for which 
we only assume that A is bounded, that is, A maps bounded sets into bounded 
sets, or equivalently j/ Ax jj < w (11 x 1~) f or all x E X and some given monotone 
nondecreasing function w(l) 3 0, 0 < 5 < + co. 

Let N: X-t Y be a continuous operator, not necessarily linear, and let 
us consider the equation 

Ex+aAx = Nx, x E 9(E). (2) 

As we know from [3], this equation is equivalent to the system of auxiliary and 
bifurcation equations 

x = Px + H(I - Q)[-a Ax + Nx], (3) 

Q(Ex+ciAx-Nx) =O. (4) 

Having assumed ker E = X0 , the bifurcation equation (4) reduces to 
Q[-a Ax + Nx] = 0. Also, for x * = Px, the auxiliary equation (3) takes the 
form x = x* + H(I - Q)[-ti Ax + Nx]. 

We shall now further assume that Y is a space of linear operators on X so 
that the operation (y, x), Y x X + R is defined, is linear both in x and y, 
and we assume that /(y, x)1 < K 11 y IIy /I x Ilx for some constant K and all x E X, 
y E Y. We can always choose norms in X and in Y, or we can always choose 
the linear operator (y, x}, in such a way that K = 1. 

The following examples are of interest. Here G denotes a bounded domain 
in any t-space RY, t = (tr ,..., t,), v 3 1. 

(a) X = Y = L,(G), I(y, x)1 = 1 so y(t) x(t) dt I < 11 y /I /I x Ii, with usual 
norms in L, . 

(b) X = L,(G) with La-norm jl x 11, Y = L,(G) with norm IIy Ijm, and 

then KY, +I = I(meas G)P JG r(t) ~(4 dt I < II Y /lm II x Il. 
(c) X = L,(G) with usual norm 11 x /Ia; , Y = L,(G) with norm I/y //oo , 

and then again KY, x>l = Ihas W1 .f~ Y@> x(t) dt I < II Y Ilm II x Ilm . 
(d) X = H”(G) with usual Sobolev norm // x/l,, Y = L,(G), and then 

l<r,+l =I.LyWW4 ~ll~llIl~ll~ll~lill~ll~. 
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Note that whenever XC Y and X,, C Y,, , then for the elements x of the 
finite-dimensional space X0 the norms in X and in Y are equivalent, that is, 
their quotient is bounded above and below (in X0). 

We shall use below the following notations, with X and Y Banach spaces 
and norms I/ x lIx , 11 y lly . The indication X or Y will be omitted when the 
meaning is clear. Let w = (wl ,..., w,) be an arbitrary basis for the finite- 
dimensional space X0 = ker E = PX, 1 < m = dim ker E < co. By (y, w) 
we shall denote the m-vector (y, w,>, i = l,..., m. For x* E X,, we have x* = 
Cy ciwi , or briefly x* = cw, c = (cl ,..., cm) E Rm, and there are constants 
0 < y’ < y < 00, such that y’ 1 c 1 < 11 cw 11 < y I c 1, where I I is the Euclidean 
norm in R”. 

We shall now assume that the operation (y, x) from X x Y into the reals 
has the following property (v). For y E Y we have y E ‘%? = Y1 , that is, 
Qy = 0, if and only if (Qy, x*) = 0 for all x* E X0, that is, if and only if 
(Qy, wi) = 0, i = l,..., m, or (Qy, wj = 0. 

System (3), (4) of the auxiliary and bifurcation equations can now be written 
in the form x = cw + H(I- Q)[-ti Ax + Nx], and (Q[-a Ax + Nx], w)=O. 

Let k, = II P II, k’ = II 1 - P II, so that II Px II < 4, II x II, ll(I - P>x II < 
K’ 11 x /j for all x E X. Analogously, let x = 11 Q 11, x’ = I/ I - Q I/, so that 11 Qy // < 
x 11 y I/, il(1- Q)y 11 < x’ /I y 11 for all y E Y. Also, let L = I/ HIi, and note that 
there is a constant p > 0 such that (y, w) = d, that is, (y, wi) = di , 
i = I,..., m, d = (dI ,..., d,), Y E Y, implies I d I < P II Y II. 

Whenever X and Y are Hilbert spaces (as in cases (a) and (b) above), and P 
and Q are orthogonal projections, then Fz, .= k’ = x = x’ = 1. If X is a Hilbert 
space and w = (wl ,..., w,) is orthonormal in X, then y = y’ = 1. If X = Y 
are Hilbert and (wl ,..., w,) orthonormal, then p = 1. 

Note that, if X* denotes the dual of X, then the linear operation (z, x), x E X, 
is defined for all z E X*, and we may have Y C X*. 

3. EXISTENCE THEOREMS AT RESONANCE 

(a) The Case of N Bounded 

THEOREM 1 (existence at resonance). Let X, Y be Banach spaces, let E, H, 
P, Q satisfy (k&, let N: X+ Y be a continuous operator, let X,, = ker E be 
jinite-dimensional, let H be linear, bounded and compact, and (y, x) be de$ned 
such that l(y, x)1 < 11 y jj II x 11 and satisfying (r). If (B,) there is a constant 
J0 > 0 such that 11 Nx I/ < Jo for all x E X; and if (NJ there is a constant R, > 0 
such that (Q Nx, x*) < 0 [or (Q Nx, x*) > 0] for all x E X, x* E X0 with 
Px = x*, II x* /j 3 R, , 11 x - x* II <Lx’JO, then equation Ex = Nx has at 
least a solution x E a(E) C X. 
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Proof. Let us assume we always have (Q Nx, x*> < 0. We take now positive 
numbers RI , R, , R, S, 77 satisfying the relations 

R, d R, < R, < R < S, 0 < 71 < yR,/2, R, < y’RR, , 

YR +-kilo < S, 4 + pxJo G R, 
(5) 

and we consider the transformation T: (x, c) - (a E) defined by 

T:%=cw+H(I-Q)Nx, c=c+g@,c), 

6% 4 E a = [(x, 4 I x E X, c E R”, II x II < S, I c I d RI, 
(6) 

where x* = cw = cy ciwi = P%, i* = cw = xy ciwi , c, c E R*“, and g(%, c) = 

(g1 v*.*, &J is explicitely given below. Note that 

“*=x*+g(~,c)w=x*+~g,w,. 
1 

Here, for 0 < 1 c ) < R, we take g(%, c) = (Q Nz, w). 
For R, < j c I < R, we take 

g(5 c> = [(Q N% x*> - 7 II 8 N~Ill(2xJo~ I c I>+ 

For R, < / c I < R, we take 

(7) 

g(% c> = XQ W w> + (1 - W<Q N% x*> - rl II Q N~lll(2xJo~ I c I)h 
2 = c + XQ NT, w> + (1 - WQ N% x*> - rl II Q Wll(2xJ,,y I c I)-% 
h = (4 - R,)-l (4 - I c I), O<X<l. 

For any (x, c) E 6, we have P3 = cw = x*, and jl X--X* [[ = [[ H(I-Q) NX [I< 
Lx’],, . Hence, for I c j > RI, and consequently 11 x* I\ = II cw jl 3 y’R, 3 R, , 
by (N,) we have (Q Nz, x*) < 0. 

From (6) we see that we have c = c, or g* = x*, if and only if g(a, c) = 0. 
ForIcI,<R,wehaveg=OifandonlyifQNz=O.ForR,<IcI,<R 
we have (Q N%, x*) - TJ 1) Q N%lj < --7) II Q NZ 11, c # 0, and again g, as given 
by (7), is zero if and only if Q NT = 0. For R, < 1 c 1 < R, , we have 

g(%, c)c = 2 g,ci = X<Q A%, x*) + (1 - A)[{& N%, x*) 
i=l 

- 71 II Q WllG’xJor I c I)-’ I c I’> 

where h > 0,l -A > 0, (Q Nz, x*) < 0, (Q Ns, X*)-V Ij Q Nz]/ < -7 )I Q N$lj, 
1 c I2 > 0. Thus, g(%, c)c < 0 for Q NZ # 0; g(5, c)c = 0 for Q NZ = 0, that is, 
g = 0 if and only if Q Ng = 0. Thus, in any case F = c if and only if g = 0, 
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and g = 0 if and only if Q N3 = 0. We conclude that (x, c) E (r is a fixed 
point of T if and only if x, x* = Px satisfy the relations x = cw + 
H(I - Q) Nx, Q Nx = 0, that is, the auxiliary and bifurcation equations for 
Ex = Nx. Thus, (x, c) E 6 is a fixed point of T if and only if x is a solution of 
Ex = Nx. 

Let us prove that T maps K into itself. First, for (x, c) E 6 we have x* = cw, 

II x* II = II cw II < Y I c I < YR and 

II 2 II G II cw II + II WI - Q) Nx II < YR + Lx’-&, < S. 

ForIcI<R,wehave?=c+g(%,c)=c+(QN%,w);hence 

For R, < I c 1 < R we have 

c = (1 + [(Q N*, x*> - rl II Q NW2xJor I c I)-% = flc, 

where .A is the number in braces, (Q NT, x*) < 0, I(Q N%, x*)1 ,( xJOr j c i, 
118 N%ll < xJo, I c / > R, > R, , 71/2yR, < l/4, and l/4 = 1 - l/2 - l/4 < 
A < 1. Thus F is a point on the segment between c and c/4 in R”, and / C / < 

ICI <R. 
ForR,<c<R,wehaveO<h<l, 

c = AC + XQ N.% w> + (1 - 4U + [<Q N% x*> - rl II Q N~lll(2x.L~ I c iO-% 

and 

IFI ,cWcl +hI<QN%w>l +(l -h)l{ )cl 

< h I c I + ~xlo + (1 - 4 I c I = vxh + I c I d ~xJo + 4 G R. 

We have proved that T: 6 --f 6. 
Let us prove that T is compact. For this we consider any (bounded) sequence 

kk ! CJ, R = 1, 2 ,...) of points of 6. Then the sequence Nx, is bounded, actually 
1) Nx, /I < Js , /I .a2 Ij = jj H(I - Q) Nxk /j <Lx’J,, , and since His compact, there 
is a subsequence, say still [k], so that zk is convergent in X. Certainly ck , 

&k 9 k - c ) - 4 are bounded sequences, j ck j < R, 1 dk 1 < R, both ck and dk 
in R”, a finite-dimensional space. Thus, we can extract the subsequence, say 
still [k], so that ck , dk are convergent in Rm, and then 3% = ckw + zk , & = 
clc + dk are convergent in S and R”, respectively. We have proved that T is 
compact. 

By Schauder’s fixed point theorem T: 0: - Cs. has at least one fixed point 
(x, c) = T(x, c) in 6. Theorem 1 is thereby proved. 



NONLINEAR OSCILLATIONS 49 

(b) The Case of Limited Growth of N 

For the case of limited growth of N, we need consider a suitable monotone 
nondecreasing function +4(c) 3 0, 0 ,< 5 < +co, and assume that // NX 11 ,( 
+(I] x 11) for all x E X. On 4(t) we could simply require that $(5)/t + 0 as 4 + co. 
Actually, it is of some advantage to require less on 4. 

We need the constant R, > 0 which appears in the condition (Nd) below. 
Let ui , CJ~ , (J be arbitrary constants, 0 < ui < ua < cr < min[l, y-l], and let 
us consider numbers 

A, 3 max[l, (y’)-ll, Xl < min[(Lx’)-l(l - F), (PX)-~(U - 4 ’ 

The only requirement we need for the monotone function 4 is that there is a 
constant S satisfying 

s2C4J,, w>/s G 4 * 03) 

Thus, if $(5)/t + 0 as 5 + +co, then certainly such a constant S can be 
determined. 

For instance, if // NX j/ < J,, + /i /I x Ilk for all x E X and some constants 

Jo 2 0, h > 0, 0 < k < 1, then 6(l) = 1, + Id”, NY5 - 0 as 5 - + 03, 
and the constant S can be found. 

If [j Nx (1 < Jb + I1 (1 x (Ik for all x E X and constants Jo >, 0, J1 > 0 and 
K 3 1, then +(<) = Jo + J1ck and +(&‘)/[ does not approach zero as 5 + + co. 
However, a constant S satisfying (8) can be found provided JI is sufficiently 
small. Indeed, it is enough we take 

S 3 max[o;’ h,R, , 2 ],,A;‘], JI < 2-l X,S1-k. 

since then q%(S)/S = J&l + JISk-l ,< A,/2 + A,/2 = A1 . 

THEOREM I* (existence at resonance). Under the same general hypotheses as 
in Theorem 1, let $({) > 0, 4(t) > 0, 0 < 5 < + CO, be monotone nondecreasing 
functions. Let us assume that (II,) j/ Nx /j < +(I1 x 11) for all x E X, and that (N+) 
(Q Nx, x*) < 0 [or (Q Nx, x*) > 0] for all x E X, x* E X,, with Px = x*, 
I’ x* II >, 4, , II x - x* II < # (II x II). L e us assume further that there is a number t 
S > 0;’ &,R, with 0 < +(S)/S < A1 , and 

LX’W) < wq-l Y’UlS). (9) 

Then, the equation Ex = Nx has at least a solution x E a(E) C X with jl x I/ ,< S. 

For instance, if we take I/ so that Lx’+(<) = #(k&‘uJ), then relation (NJ is 
required to hold for I/ x - x* /I < Lx’+(h, 11 x 11) with X, = (u&l&, , relation 
(9) is trivially satisfied for all S, and all we require on q5 is that there is some S 
satisfying (8). For instance, in the case 4(c) = J,, + JIck, 0 < lz < 1, this 
choice of I/ would yield #(c) = Lx’JO + L~‘J~((r’)-‘h~u;‘r)“. 
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If we require (NJ to hold for I/ x - x* jj < #([I x* II), then (9) shall be replaced 

by 
LX’W) G #(Y’%S). (9)’ 

If we choose # so thatLx’$(LJ = $(y’urc) f or all 5, then relation (NJ is required 
to hold for jl x - x* /I <LX’& /j x II*) with ha = a;‘(~‘)-~, relation (9)’ is 
trivially satisfied, and all we require on 4 again is that there is some S satisfying 

(8). 

Proof. By repeating the proof of Theorem 1, we need determine the positive 
constants R, , R, , R, S, 7 in such a way that 

R, ,( R, < R, < R < S, 0 < 17 < yR,/2, R, < y’R, , (10) 

YR + Lx’4(S) < S, R, + PXW) < R (11) 

the last two relations being equivalent to 

YRIS + Lx’d(WS < 1, &IS + PxKWS < RIS. 

First we take R, = urS, R, = a,S, R = US and thus R, < R, < R < S. 
Now S > o;r h,R, implies S 3 a;‘R,, , S > a;‘(y’)-lR, , RI = a,S 3 R, , 
y’R, = y’orS > R, . By taking any 0 < 7 < yR,/2, we have satisfied relations 
(10). We have now R, < R, < R, < R < S, and 

rR/S + Lx’#(S)/S < ~0 + Lx’4 < ~0 + (1 - ~0) = 1, 

G/S + px4(S)/S < uz + PX& < 02 + (g - d = 0 = R/S. 

Thus, relations (11) are also satisfied. 
Now we can proceed as in the proof of Theorem 1 where we replace every- 

where C(S) for Jo . Attention should be made to what occurs for (x, c) E C with 
R, < / c / < R. First, P% = cw = x*, and from (9) we have 

11 4 - x* 1) = 11 H(I - Q) Nx (1 <Lx’+(s) < #(k;l y’ups). 

Hence, from y’ / c I < I/ cw I( = 11 x* (I < y I c I, II x* I/ = II PZll < k, II 211, we 
see that, for R, < c < R we have 

and by (N4) also (Q AZ, x*) < 0. Th e remaining of the proof of Theorem 1 
remains now unchanged with the sole replacement of 4(S) for J,, . 

If (NJ holds for 11 x - x* [I ,( #(II x* I\), then from (9)’ we have, for 

RR, < I c I < R 

II 5 - X* Ii < P(r’ulS) = #(Y’&) < HY’ I c I) G ~+(ll x* II). 
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4. EXISTENCE THEOREMS ACROSS A POINT OF RESONANCE 

THEOREM 2. (existence across a point of resonance). Under the same general 
assumptions of Theorem 1, and A: X + Y a continuous bounded operator, if 
(B,,) there is a constant Jo > 0 such that Ij Nx /I -< Jo for all x E X; and ;f (NC) 
there are constants R,, 3 0, E > 0, K > Lx’Jo such that (Q Nx, x*> < --E I] x* // 
[or (Q Nx, x*) > E Ij x* Ii] for all x E X, x* E X0 with Px = x*, j/ x* 11 > R,, , 
I/ x - x* I/ < K, then there are also constants 01~ > 0, C > 0 such that, for every 
real a! with 1 01 I < 01~) equation Ex + 01 Ax = Nx has at least a solution x E 
D(E) C X with // x 11 < C. 

THEOREM 3 (existence across a point of resonance). Under the same general 
assumptions of Theorem 2, if (Bk) there are constants Jo > 0, J1 > 0, 0 < k < 1, 
such that 11 Nx // < Jo + JI 11 x Ilk for all x E X; and if (N,,) there are constants 
R, 3 0, E > 0, K,, > Lx’ Jo , KI > Lx’ J,((y’)-lk,y,-l)L such that (Q Nx, x*) < 
--E jj x* Ijl+k [or always (Q Nx, x*) > E // x* jI1+“] for all x E X, x* E X,, with 
Px = x*, 11 x* Ij > R, , Ij x - x* ]I < K,, + KI /I x 11”; then, there are also 
constants a,, > 0, C > 0 such that, for every real 01 with I ol ] < 01~ , equation 
Ex + 01 Ax = Nx has at least a solution x E 3(E) C X with j/ x jl < C. 

Both Theorems 2 and 3 are actually particular cases of a unique statement 
which contains also other cases of interest. Thus, by proving only Theorem 4 
we give only one proof, instead of two separate and very similar ones. 

Let R, 2 0 denote the constant which will appear in the assumption (NJ 
below. Let or, era , 0 be arbitrary constants, 0 < (or < cr2 < (T < min[l, y-l], 
and let us consider two other positive constants 

A, >, max[l, (r’)-lk,], A, < min[(Lx’)-l(l - yo), (&-l(u - ~a)]. 

THEOREM 4 (existence across a point of resonance). Under the same general 
assumptions of Theorem 2, let q%(t), #,(c), I#(<) > 0, 0 ,< [ < +a~, be monotone 
nondecreasing functions, both dI and II, positive for 5 > R, . Let us assume that 

(&J IINx II <d(llxII) for all VEX; and that (NJ (QNx, x*> < -91(llx*II) 
[or (Q Nx, x*) > +l(lj x* II)] for all x E X, x* E X0 with Px = x*, j/ x* 11 3 RO, 
/I x - X* // < #(II x II). Let US assume further that there is a constant S > o;l &,R, 
with 0 < C(S)/S < & , and 

Lx’+(S) < WG1 ~‘43. (12) 

Then, there is coo > 0 such that, for every real ) 01 I < o10 , the equation Ex + 01 Ax= 
Nx has at least a solution x E D(E) C X with I/ x 11 < S. 

The same occurs even if (Nd) holds with 11 x - x* Ij <#(/I x* 11) and (12) is 
replaced by 

Lx’9w < tw40 WY 
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Proof. The proof is similar to the ones for Theorems 1 and 1”. First we 
need determine constants R, , R, , R, S in such a way that 

R, d R, < R, < R < S, R, < Y’% , R, d y’k,lR, , (13) 

YR + Lx’+(S) < S, (14) 

R, + PxRS> < R, (1% 

~~‘44‘3 < WC Y’W (16) 

We take here R, = a,S, R, = aaS, R = US, and then R, < R, < R < S. Now 
S > 0;’ h,R, and k, 3 1 imply S > o;‘R, , S 3 C&I’)-lR, , S >, a;‘(y’)-lk,R,, 
and finally R, = a,S > R, , y’R, = y’a,S > R, , y’k;‘R, = y’k$o,S 3 R, . 
Thus relations (13) are satisfied. Since $(S)/S < A, we have, as in the proof of 
Theorem 1 *, 

YRIS + Lx’$(S)/S -=c YQ + (1 - ~0) = I, 

&IS + px+(S)/S -=c 02 + (u - 4 = u = R/S, 

and relations (14), (15) are satisfied. Finally (16) is identical to (12). 
Now we can determine 01,, > 0 sufficiently small so that the following relations 

also hold: 

yR + L,y’$(S) + Lx’q,w(S) < S, (17) 

4 + PXW) + PXQSW G 4 (18) 

Lx’#(S) + Lx’w@) < WC Y’&), (19) 

CG,XYR~S) -=c MY’RI). (20) 

Let T: (x, c) + (%, F), or C -+ X x Rm, denote the transformation defined by 

T:%=cw+H(L-Q)mx, c=c+g(%,c), 

(x, 4 E 6 = [(x, c) I x E X, c E R”, II x II d S, I c I < RI, 
(21) 

where Nx = --01 Ax + Nx, where x* = cw = CT ciwi = P%, f* = Cw = 
xy &wi , c, E E R”, andg(%, c) = (g, ,..., g,) is explicitely given below. Note that 

E* =x”+g(z,c)w =x*+Fg,w,. 
1 

Here,forOdIcI~R,wetakeg(~,c)=:(Qm~,w).ForR,9(c(~Rwe 
take 

g(% c) = <Q-, x*> v, with 7 = ()cyR(~~,,ow(S) + 4(S)))-l. 
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For R, < 1 c 1 < R, we take 

g(x; c) = X(Q i%, w) + (1 - A) (Q kc, x*) 77c, 
2 = c + h{Q i%, w) + (1 - A) (Q Ii%, x*> ?c, 

A = (4 - &)-’ (4 - I c I), O<h<l. 

For any (x, c) E 6, we have P% = cw = x*, and 

/I%-x*/I =llH(I-Q)NxI[ 

= !I ff(I - Q) [-a Ax + Nxlll < Lx’(q&) + C(S)). 

Since /I x* 11 = Ij cw IJ < y J c 1 < yR, by (17) we have 1) 3)J < yR + Lx’((yow(S) + 
(b(S))~S.ForR,~[clIR,wehavellx*II=~Jcw~l~~’)c13y’R13R~, 
I! x* 11 = // P%ll < koIJ 311. Hence, by using (12), (19), we also have 

Thus, (Q IV.?, x*) < --&(I[ x* I/), and by using (20) also 

(QNs, x*) = (Q(-a Ax), x*> + (Q N3c; x*) 

< xw4S) YR - A(11 x* II) 
G XWJW YR - G’R,) < 0; 

hence, (&lo%, x*) < 0 for every R, < / c j < R. From (21) we see that E = c, 
X* = x* if and only ifg(5, c) = 0. For R, < / c / < R we have (Qm%, x*) < 0 
and hence g # 0. For RI < ) c ) < R, we have 

g(2, C)C = f$ giCi = X(Q i%‘Z~ X*) + (1 - h)(Q .N3, x”) 17 I c 12, 

where h > 0, 1 - X > 0, (Q i%, x*> < 0 and again g # 0. Thus a fixed point 
(x, c) for T may occur only for / c / ,< R, , and Q lFix = 0. 

Let us prove that T maps 6 into itself. First, for (x, c) E CC we have x* = cw, 
jj x* jj = (1 cw 11 < y j c I < yR, and by using (17) also 

II .T II < II cw II + II H(I - Q) ~‘Tx II < yR + -Ww@) + Lx’+(S) < S. 

For I 5 j < R, we have by using (18) 

I c I < I c I + KQ % w>l < R, + PXW-@) + PXW) < R. 

For R, < j c J .< R we have 

c = (1 + (Q I@ x*)v}c = AC, 
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where A denotes the number in braces, <Qfl%, x*) < 0 and 

7 I<Q -, x*>l G 7x(010459 + 4(S)) YR = 1. 

Thus 0 < A < 1, c is on the segment from the origin to c, and 1 5 1 < j c I. 
ForRr <(~(<R~wehaveO<h<l, 

c = Xc + X(Q i%, w) + (1 - A) {I + (Q %, x*)7}c, 

and by using (18) also 

I f I G x I c I + PXbcdS) + WN + (1 - 4 I c I 

< R, + PX(WJ(S) + 4(S)) d R. 

We have proved that T: (L -+ (5. maps (5 into itself. The proof of the compactness 
of T is the same as for Theorem 1. Since E is convex and closed in X x Rm, by 
Schauder’s fixed point theorem we conclude that there is at least one fixed point 
(x, c) = T(x, c) in 6. Theorem 4 is thereby proved. 

It remains to show that the conditions of Theorem 4 can be easily satisfied, 
and that in particular they are satisfied in the situations of Theorems 2 and 3, 
and in other relevant cases. 

For the sake of simplicity, we shall consider below only the first one of the 
two alternatives in assumption (iv,&. 

(a) First, let us prove that if (BJ and NJ of Theorem 4 hold with + 
satisfying 4(t)/{ + 0 as 5 + +co, with an arbitrary &(?J as stated, and any I/J 
satisfying 

then all conditions of Theorem 4 hold. 
Indeed, inequality (22) implies that relation (12) holds for all S. Thus, it 

is enough to determine S in such a way that S 3 &A,, R, and 0 < $(S)/S < A,. 

(b) Let us assume that (B,) and (NJ hold, that is, the conditions of 
Theorem 2. Let us prove that the conditions of Theorem 3 hold. 

Here we have 

for some constants E > 0 and K,, > Lx/J,, . Then relation (22) reduces here to 

Lx’Jo -=c Ko 3 which is satisfied by hypothesis. Since $(t;)l{ = JoIt + 0 as 
5 -+ + CO, we have only to determine S 3 a$ h,R, satisfying Jo/S < A, . 

(c) Let us assume that (BJ and (N,,) hold, that is, the conditions of 
Theorem 3. Let us prove that the conditions of Theorem 4 hold. 

First we note that Kl > Lx’J,((y’)-1 K,,y,)“; hence, there is some number 
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(pi , 0 < c1 < y,, = min[l, y-l], so close to 3/s , so that we also have K1 > 
Lx’J1((y’)-%,a;‘)“. We then take constants us , u so that 0 < u1 < us < u (,3/s = 
min[l, y-l], and we take A,, , A, accordingly as stated. 

Here we have 

+a = Jo + JlC”, Jll 3 0, Jl > 0, 0 < k < 1, 
&(5) = EP+k, E > 0, 
W) = 4, + Kd”, 4, >&Jo, Kl > Lx’J,((~‘)-~ k,~,~)“. 

Now relation (22) reduces to 

Ko + KJ” > NJ,, + JhT’b;‘5)“1, 

and this is true for every 5 2 0 since K, > Lx’Js and Kl > Lx’J~((/-~ K,u;‘)~. 
Thus, (12) is true for every S. Here $(5)/c -+ 0 as 5 + +co, and all we have to 
do is to determine S 2 a;lA,R,, satisfying +(S)/S < Ai . 

(d) Let us assume that a relation (BJ holds with $({) = J,, + J,Sk for 
constants K > 1, Ja > 0 fixed, and Jl sufficiently small, and that (N4) holds with 
Cl([) = l 5 and 4(l) = K, > Lx’ J0 . Let us prove that for Jl > 0 sufficiently 
small, all conditions of Theorem 4 hold. Indeed we take S so that 
S > u;~A,,R, and Jo/S < A, . Then we can determine J1 > 0 so small that we 
also have 4(S)/S = J,,/S + JISk-l < X, . 

Remark. In Theorems 2, 3, 4 the term 01 Ax, (with A: X-+ Y, Ij Ax 11 < 
~(11 x II), w monotone nondecreasing), could be replaced by A,x, A, : X-t Y, 
depending on a vector valued a, (with 11 A,x // < w(cx, I/ x II), w(01, 1) monotone 
nondecreasing in <, W(OL, 5) -+ 0 as (Y + 0 uniformly in any [0, 51. 

5. NONLINEAR OSCILLATIONS 

We consider here the ordinary differential equation 

xn + vi% + qT(t, x) = p(t) + h(x), (23) 

where x is a scalar, m is an integer, g, p, h are continuous functions, and g, p 
are 2rr-periodic in t. This is a stronger form of the Lazer and Leach theorem: 

5(i) If I h(x)1 < Mfor all real x and some constant M, and if there are constants 
c < d, C < D such that h(x) < C for x < c, and h(x) > D for x > d, and 
(A2 + B2)1/2 < 2(D - C), where A = Jrp(t) cos mt dt, B = jrp(t) sin mt dt, 
then there are constants cyO > 0, A > 0 such that, for every 1 011 < 01~ , Eq. (23) 
has at least a 27r-periodic solution z(t) --co < t < +co, with j x(t)1 < A. The 
roles of the inequalities h(x) < C, h(x) > D could be exchanged. 
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Proof. We shall write (23) in the form Ex + 01 Ax = Nx, where E is the 
differential operator Ex = x” + m2x, with boundary conditions x(0) = x(27r), 
x’(0) = x’(27r), and where Ax = g(t, x(t)), Nx = p(t) + h(x(t)). Let X denote 
the space of all 2rr-periodic functions x(t) which are continuous in (-cc, + oo), 
and absolutely continuous (AC) in [0, 27~1 with derivative x’ EL,[O, 2n]. Thus X 
is a Sobolev space H1, a Hilbert space, with usual inner product, and norm 

!I x Ill , or II x IL . Let B(E) C X denote the set of all functions x E X which are 
continuous in (-cc, +cc) and AC in [0,27;1 together with x’, and with x” E 
L,[O, 27r3. Let Y = L,[O, 27~1 with usual inner product and square norm 1~ y /I, 
the functions y E Y extended to (- co, + cc) by 2n-periodicity. Because of the 
continuity hypotheses on h and g we see that A: X + Y, N: X -+ Y, and that A 
and N are continuous as operators from X into Y. Moreover E: 9(E) + Y. 
ForxEY,yEYwetake(y,x) =Jry(t)x(t)dt,sothati(y,x)i <IIxIlliyI/< 
11 x II1 II y 11. Let X0, Y,, be the spaces spanned by cos mt, sin mt, and P, Q be the 
usual projections of X and Y onto X,, , Y,, , and let Xi = (I - P)X, Yl = 
(I - Q)Y. Here Q is an orthogonal projection, Y -+ Y; hence // Q // = )I I- Q )/ = 1 
(or x = x’ = 1). Every element y E Yi has the Fourier representation 

y(t) = (1/2)q, + 1 (ak cos kt + b, sin kt), 
lC>l,k#WZ 

and we define H: Yi -+ D(E) n Xi by taking 

Hy = (l/2m2)a, + c (m2 - k2)-l (ak cos kt + 6, sin kt). 
lr>l .k#m 

Thus, H is a bounded map from Yi into Hz, hence, a compact map from Yi 
into Xi . Let L = jl H 11. We should note here that in X the two norms are 
equivalent 

II x III = II X!/ + II X’ iI7 II x Ii; = II x’ II + Sup I W. t 

In the finite-dimensional subspace X,, the norms II x jji , Ij x 11; and /j x // are of 
course equivalent. 

Because of the boundedness of h: R1 - Rl we see that II Nx 11 < J,, for some 
constant J,, and all x E X. Moreover, if we define the constant p by taking 

2cL = T-‘/~[~(D - C) - (A2 + BZ)“2], 

then N has the relevant property: (Nx, x*) < -p I/ x* /I (square norm), for all 
x E X, x* = Px, with I/ x* /I 2 R, and (/ x - x* [Ix < K, for suitable constants 
R, and K, . Namely, if we take an arbitrary constant K,, > Lx’Jo, then 
I] x - x* I/r < K, implies I x(t) - x*(t)/ <L, , for some constant L, which 
depends on K,, but not on x, or x*. Then, an argument similar to the one of 
Lazer’s and Leach’s proof shows that we can determine R, so that the relations 
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above hold (see, e.g., [5] for details). Statement 5(i) is now a corollary of Theorem 
2. 

Remark. In statement 5(i) we could as well assume only that p E L,[O, 27r]. 
We could also assume that h(t, x) is a function R2 - R1 which is 2+periodic 
in t, continuous in x for a.a. t, measurable in t for every k, satisfying h(t, s) < C 
for all t and s < c; h(t, s) > D for all t and s 2 d, and also satisfying 

for all t, s, si , ss real with 1 sr - s2 / < 7, 1 si 1, 1 sa 1 < 5, where H, HI EL,[O, 2~1, 
and ~(7, 5) - 0 as T, --, 0 uniformly for 5 in any [0, [,I. Analogously, we could 
assume that g(t, x, x’) is a function R3 - RI which is 2n-periodic in t, continuous 
in (x, x’) for a.a. t, measurable in t for every (x, x’), satisfying 

I gk s, 4 < G,(t) + $(I s I> G,(t) + I u I G&h 

1 g(t> $1 , ~1) - g(t, sz , 4 < +I, 5) G(t) + I ~1 - ~2 I G(t)> 

for all f, sl: s,,u,,u,realwith/s,--s,I <q, Isi\, /saI ,({,andoasabove, 
and where G, , G, , G, E L,[O, 2~1. Indeed, under these hypotheses, the operators 
Ax = g(t, x(t), x’(t)) and Nx = p(t) + h(t, x(t)) map X into Y, and are con- 
tinuous as maps from X into Y. 

For instance the equations 

(4 x” + x + x2 sin t = cos t + 2 arctan x, (with A = B = ST, D = 312, 
C = -3/2); 

(b) ~~+x+/3x’+~~~=cost+2arctanx+e-~~,~ol],]/?]small; 

(c) x* + x + qJ(t)x” + pp(t) x’ - cos t + 2 arctan(x + sin t) + e&, I 011, - 
( /3 ( small, y(t) = t-li3 for 0 < t < 27r, ~(t + 2~) = p)(t); 

all satisfy the conditions above and have therefore 2rr-periodic solutions. 
Statement 5(i) will be extended elsewhere to arbitrary differential operators 

Ex = x(n) + al(t)x(“-l) + ... + a,(t)+ a, ,..., a,, continuous and 2n-periodic, 
for which the homogeneous equation Ex = 0 possesses nontrivial 2?r-periodic 
solutions. 
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