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Frequently as a result of experiments in which two isotopes are used one is 
left with a sequence of samples, the ratio of labeling in each sample, and the 
problem of analyzing the ratios. Suppose that the experiments are designed so that 
one expects uniform labeling except for one or two special groups of samples. The 
problem, then, is to find these groups. Because of the variability in the count 
rate from sample to sample, the variance of the ratios differs from sample to 
sample making statistical analysis difficult. Furthermore, there is significant serial 
correlation in the sample disintegrations per minute for each of the isotopes. We 
have found that the serial correlation in the labeling ratio is small and of ques- 
tionable significance in controls but becomes significant when there is a subse- 
quence of samples in which the labeling ratio differs from that in the remainder 
of the gel. We examine the analysis of variance as a test for significant 
deviations in the labeling ratio and suggest a method for plotting deviations of 
labeling ratio from the average background labeling ratio. Finally, we develop a 
method of estimating the mean labeling ratio from the regression of disintegra- 
tions per minute of one isotope on those of the other isotope. This provides 
another way of plotting deviations in labeling ratio in terms of the residuals around 
the line of regression. 

It is often the case in experimental designs which utilize double labeling 
that one step in the protocol results in a sequence of samples. The ratio 
of labeling in each sample can be determined, and the problem becomes 
one of gaining information about the process under consideration from 
the sequence of ratios thus obtained. 

In this paper we examine the problem of analyzing a sequence of ra- 
tios when the experiments are designed so that we can assume a constant 
labeling ratio. The idea behind this type of design, indeed the whole point 
in using double labeling in this situation, is that the experiments are de- 
signed so that the labeling ratio is constant except for one or perhaps a 
few special subsequences of the sample. The problem is to devise a simple, 
uniform method for detecting these special subsequences. 

We first encountered this problem in attempts to label proteins of the 
red cell membrane that might be involved in sugar transport. It is known 
that fluorodinitrobenzene (FDNB) reacts irreversibly with a number of 
groups on proteins. In the course of its reaction with cell membrane pro- 
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teins, glucose transport is inhibited. Cytochalasin B (CB), an inhibitor of 
glucose transport among other things, slows down the inactivation of glu- 
cose transport by FDNB (1,2). We devised a protocol in which a suspen- 
sion of washed human red blood cells was split and one half was reacted 
with [3H]FDNB in the presence of CB while the other half was reacted 
with [14C]FDNB with no CB present. The reaction conditions were 
identical except that the specific activities for the two labels were not the 
same. After the reaction was terminated the two batches were mixed and 
their membranes were isolated and solubilized with sodium dodecyl sul- 
fate (SDS) and were then electrophoresed on polyacrylamide gels (PAGE- 
SDS) (3). The gels were sliced into l- to 2-mm slices thus generating 
a sequence of samples, and each slice was counted with use of a double- 
label counting technique in a scintillation counter. Although the total la- 
beling differs in different slices, we expect that the ratio of 14C to 3H label 
will be constant except where there are proteins whose rate of reaction with 
FDNB was changed by the cytochalasin B. Protocols that use variations 
on this same general idea have been used widely (4-7). 

Although we will examine the analysis of data generated in the ex- 
periments described above, the analysis holds for a variety of experiments 
that use the same idea. Moreover, ours is not the first effort to develop 
a suitable theory; there have been previous attempts to analyze data 
from such experiments that involve labeling with two isotopes (4-7). In 
fact Weisberg’s analysis (5) was the starting point for our work. However, 
none of these previous attempts (4-7) takes into account the fact that not 
only are the estimated disintegrations per minute for the two isotopes in 
a slice correlated, but there is also a serial correlation between nearby 
slices. Our initial attempts suffered from the same deficiencies. 

In what follows we first discuss the two major difficulties encountered 
in the analysis and interpretation of the experiments and then examine two 
approaches to the problem. 

THE PROBLEM AND ITS DIFFICULTIES 

In Fig. 1 we show the standard way of plotting data on the ratio of the 
two labels. These data come from one of our control runs in which there 
was no difference in treatment of the two suspensions, so the ratio of 
labeling should have been constant. In the upper curve are plotted the 
total disintegrations per minute (DPM) in tritium to show how much vari- 
ation there is in the labeling. The lower curve shows the ratio of DPM, 
14U3H. There appears to be a greater variability in the ratio in the first few 
slices which are the ones with the lowest counts. Figure 2 shows another 
such plot but for a preparation which shows differential labeling resulting 
from the effect of CB on the FDNB reaction. The subsequence of slices 
31-41 shows a large change in the labeling ratio, and there is a suggestion 
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FIG. 1. Disintegrations per minute (DPM) in tritium and ‘W3H labeling ratio in a control 
run. Two groups of human red blood cells were reacted with FDNB, one with [‘%Z]FDNB, 
the other with [3H]FDNB, under identical conditions except that DMSO, which was 
used in our cytochalasin B solutions, was present in one of the reactions. The two 
groups were washed, combined, and hemolyzed, and a suspension of the ghosts was 
prepared. The ghosts were dissolved in SDS and run on SDS-PAGE. 

of a deviation in slices 20-27. Usually the experimenter compares the 
experimental result with that in a control run to decide whether the 
deviation in a subsequence is significant, although statistical tests of signif- 
icance are usually not used. In the experiment shown in Fig. 2, the changes 
in labeling ratio in slices 31-41 are unusually prominent. 

The first difficulty in evaluating the significance of any deviations from 
the mean ratio is that the variance of the ratio may vary considerably, 
being high in regions of low total counts and much lower in slices that 
have high count rates. Judgment as to the relative importance of deviations 
in labeling ratio would be aided by transforming to a variate that has 
constant or even nearly constant variance. Furthermore, the variance of 
the ratio of two random variables reduces to an easily usable expression 
only if the standard deviation of the denominator is small in relation to its 
mean value. 

The other difficulty is that of serial correlation in the sequence of DPM 
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FIG. 2. DPM in tritium and i‘W3H labeling ratio. In this case 80 PM cytochalasin B 
(CB) was present in the reaction mixture of the red blood cells (rbc) which were reacted 
with [3H]FDNB, and 2-deoxyglucose was present during the reaction of the rbc which were 
reacted with [%]FDNB. Later it was shown that Zdeoxyglucose has no effect at the concentra- 
tions used and that the same results could be obtained with CB alone. 

in 14C and in 3H. Figure 3 is a plot of the circular serial correlation (8) 
for the DPM in tritium in the control run shown in Fig. 1. The serial cor- 
relations for lags of one and two slices, RI and Rz, are usually signif- 
icant, and one has to go to R3 or R, and occasionally R, before 
the autocorrelation becomes insignificant for controls. It is possible to run 
the experiments so that the correlation is negligible between adjacent 
slices, by putting very little protein on the gels. Then the proteins appear 
as sharp bands, almost like a line spectrum, and if the slices are made 
considerably thicker than the bands, the correlation between adjacent 
slices can be practically eliminated. The difficulty is that when this is done 
the total number of counts per slice decreases markedly, and so the count- 
ing error is greatly increased. In order to obtain high count rates the gels 
are usually “overloaded.” In overloaded gels the bands spread out, and 
adjacent bands may overlap more or less depending on their separation. 
This is the reason for the serial correlation shown in Fig. 3. It is possible 
at times, though more difficult technically, to use large amounts of pro- 
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FIG. 3. Circular serial correlation coefficient, R,, for the H3 DPM in the gel slices of the 
control run shown in Fig. 1 for lags of 0 to 10. The first 41 slices were used because theory 
requires that the number of sequential samples be a prime number [see ref. (8)]. 

teins and so obtain high count rates and still have narrow bands by using 
gel tubes of larger diameter than the standard tubes. 

Figure 4 shows the serial correlation for the 3H DPM for the experi- 
mental run shown in Fig. 2, for the first 31 slices and for the first 47 
slices. Again the serial correlation is significant. Fortunately the serial cor- 
relation decreases markedly in the ratio. Figure 5 shows the serial cor- 
relation for the ratio 14U3H DPM for the control run in the upper panel and 
for the experimental run in the lower panel. Knowing that there are some- 
times problems with stability of the variance of a ratio, one must be more 
circumspect in interpreting Fig. 5. On the face of it, the serial correlation 
is negligible for the first 31 slices but becomes significant when slices 
32-41, those with the marked deviation in ratio, are included. We have 
designed our experiments so as to obtain high DPM due to tritium (the 

FIG. 4. The circular serial correlation coefficient for the H3 DPM in the gel slices of the 
CB experiment shown in Fig. 2. The correlation coefficient was calculated using the first 
31 slices (-0-) and the first 47 slices (-•-). 
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denominator in the ratio) in order to improve stability of the variance of 
the ratio and are inclined to accept Fig. 5 at face value. 

ESTIMATES OF BASIC VARIANCES 

Since we need estimates of the variances of the calculated disinte- 
grations per minute (DPM) of the two isotopes, we will begin by develop- 
ing the theory for tritium (3H) and carbon-14 (‘“C) where two channels 
are used for counting the doubly labeled samples. For other isotopes, the 
formulas for the standard deviations of the DPM may require slight 
modifications. 

In this method of counting, the carbon channel is set so that only 14C is 
counted, the spillover from tritium being negligible. In the tritium channel, 
both tritium and 14C are counted, but with different efficiencies. A dis- 
cussion of the optimization of counting conditions to maximize precision 
of counting doubly labeled samples can be found in Bush’s paper (9). 

We will adopt the following notation: 

Cc Total counts obtained in the carbon channel 
tc Total count time for the sample in the carbon channel 

I 2 3 4 ‘.’ 6 
-0.2- 

-0.4& 

FIG. 5. The circular serial correlation coefficients for the 14C DPM/3H DPM ratio for 
the control run of Fig. 1 (upper graph) and for the CB experiment shown in Fig. 2 (lower 
graph) for the first 31 slices (-0-) and the first 47 slices (-•-). 
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B, Total background count in the carbon channel 
tCB Total time of counting background in the carbon channel 
CT Total counts obtained in the tritium channel 
tT Total count time for the sample in the tritium channel 

BT Total background count in the tritium channel 
t,, Total time of counting background in the tritium channel 
fee Efficiency of counting 14C in the carbon channel 
fTc Efficiency of counting 14C in the tritium channel 
fTT Efficiency of counting 3H in the tritium channel 

The background counts in the two channels are distributed inde- 
pendently of the sample counts in the channels. We may assume that the 
rates of disintegration of 14C and 3H are independent Poisson-distributed 
variables. The estimate of the disintegrations per minute due to 14C 
(DPM,) is calculated from the counts in the carbon channel using Eq. 
[Il. 

111 

The total counts per minute in the tritium channel corrected for back- 
ground (CPM,) is given by Eq. [2]. 

CPM, = CT - 2 
tr fTB 

PI 

CPM, is related to the DPM due to tritium (DPMT) and DPMc by 
Eq. [3]. Solving this equation for DPM, gives Eq. [4]. 

CPM, = &DPMT + &DPMc [31 

DPM 
T  

= CPM, -f~cDpMc 

f T T  
[41 

Since DPMT is a linear combination of the counts in the two channels, 
DPMc and DPM, are correlated. The sample estimates of the variances 
and covariances are given by Eqs. [.5]-[7]. 

[51 

[61 

In the above equations we have treated the efficiencies and the counting 
time as constants. They are of course subject to some error but can be 
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obtained to relatively high accuracy in comparison with the counts in the 
two channels. 

Our experiments are usually designed so that there are more counts 
from 3H than from 14C. Then, because the spillover of 14C into the tritium 
channel is small, the term due to 14C counts in Eqs. [4] and [6] is small. 
The covariance is therefore small in relation to sT2 but it is still an ap- 
preciable fraction, 0.2-0.5, of sc2, and if quenching is high the covariance 
can become 0.8 or more of sc* in absolute value. 

In what follows we use the notation xi for the estimated DPM in slice 
i for the isotope that has the highest overall DPM, and yi for the other. In 
all of our applications x refers to the DPM due to tritium and xi > yi for 
all i. 

THE LABELING RATIO FOR GELS 

(a) The Labeling Ratio and its Variance 

One intuitively obvious way to approach the problem is to look at the 
ratios yi/xl. In fact in the majority of publications on such studies the data 
are reported as labeling ratios without any considerations of statistical 
significance. Unfortunately, we do not have exact simple expressions for 
the variance of the ratio of two correlated random variates. However, if 
the denominator has a sharp distribution, i.e., CL,+ large in comparison 
with 17,~ then a good approximation for the variances of the ratios can 
be obtained. We obtain this by making sure we have high counts in the 
denominator and by counting the slices long enough so that SJX is less than 
0.01 for most gel slices. 

Consider two random variates, X and Y. Let Z = Y/X. Then one can 
show that to second-order terms the mean, pzz, is given by Eq. [8]. The 
variance, to third-order terms, is given by Eq. [9]. 

In these equations pXmyn are the m + n order central moments except 
that as usual tiy and oi are used for pLyz and pXz, respectively. 

Let Zi = vi/xi where xi is the DPM for the isotope which, overall, has 
the smallest ratio of standard deviation to mean value, sJx. Then if the 
DPM in the xi are large enough so that the ni can be considered to 
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have a very peaked distribution, we use the sample estimates s:* for 
o-$ and in so doing retain only the second-order terms from Eq. 191. 

Gi &Ii s;i = - - - 
Xi2 Xi3 

cov (Xi, yJ + Jc s& 
Xi4 

(b) Statistical Testing 

The derivation of rigorous tests of statistical significance of deviations 
is difficult. It is well known that there are difficulties in obtaining 
confidence limits for the ratio of two normally distributed random vari- 
ates (10). On the other hand confidence limits are readily obtained for the 
ratio of two Poisson-distributed random variates, x,/x,, conditional on 
x1 + xz = n being fixed (11,12). Our DPM are derived from Poisson- 
distributed random variates, the direct counts in the two channels of the 
counter. More to the point, our experience with our control gels is that, 
provided we have high count rates and provided that we count our samples 
long enough so that sJx is quite small, the ratios from control gels are 
quite stable. However, rigorous tests are not really needed; the judgment 
of the experienced investigator plays the major role in decisions of ex- 
perimental significance of deviations. For example, the experienced in- 
vestigator is loath to accept a single point with a deviant ratio as signif- 
icant even if a rigorous statistical test were significant because he would 
assume that some accident in handling or counting that slice could have 
intervened. One would be reluctant to come to such a conclusion even 
with two successive points that deviate markedly from the mean. How- 
ever, a sequence of points deviating to one side of the mean, occurring 
in the same location on the gels in replicate studies, is convincing. When 
such a deviation is not found in control gels and when one can demon- 
strate a relation between magnitude of the deviation and magnitude of an 
experimental control variable, one has evidence for a significant effect. For 
example Fig. 6 shows that the magnitude of the deviation in the ratio in 
our studies increases with the concentration of CB. This, with the demon- 
stration that the effect does not occur in appropriate controls, is the evi- 
dence that convinces the investigator of the significance of the effect. 

Our point is that the evidence for the significance of an effect comes 
from the overall experimental design, and that statistical tests on the se- 
quence of gel slices from any one run play a secondary role. None- 
theless, it would help the investigator to have simple approximate tests 
to help him. 

(c) Analysis of Variances 

Since the serial correlation for the ratios in the controls is not signif- 
icant, a rough test would be to divide the gel slices into two groups, those 
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FIG. 6. The r4C DPM/3H DPM ratios from four experiments with different concentrations 
of CB present. The gels were not all of the same length; the deviation in slices 31-41 for 
the gel from the 8.10+ M CB experiment and that in slices 26-34 for the l.lO+ M CB 
experiment occur at the same place in the electrophoretogram. There is little effect on 
the labeling ratio at lo+ M CB, but there is a significant effect at 5. 10W6 M. For the 
experiment at S- 10eB M CB. the experiment was run so that a decrease in ratio is expected 
if CB affects the labeling ratio; there is a decrease in the region where it is expected, 
slices 34-43. 

that deviate considerably from the mean ratio and the remainder, leaving 
out the few slices that show intermediate ratios. The idea is to try to di- 
vide the slices into two groups neither of which shows significant serial 
correlation. For example, for the experiment shown in Fig. 2, slices 32- 
38 could form one group, slices l-30 plus 41-47 the other group. A simple 
rough test would be to use the one-way analysis of variance assuming 
equal variance for the ratios of the slices in each group. The F test using 
the ratio of the mean squares between means to the within-group mean 
square would provide the test. Since the problem does not meet all the 
assumptions for the F test, the test is approximate but one can com- 
pensate for its approximate nature by using fewer degrees of freedom than 
calculated for the two groups. 
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The simplest statistical model for the ratio of the ith slice can be as- 
sumed to be zi = p + (Ye + l i where p is the mean ratio and (Y~ comes 
from a distribution of mean zero and common variance u2; ai represents 
the variation in labeling ratio due to variation in the labeling process. 
Having drawn a sample of ratio p + ai, we then measure it with meas- 
urement error ei which comes from a distribution of mean zero and vari- 
ance vi2 that differs from one slice to another. For this model, we base no 
exact F test on the one-way analysis of variance; however, the above rough 
test is probably adequate. 

(d) Circular Serial Correlation 

Probably the easiest test to use is the standard serial correlation co- 
efficient. We have used the circular serial correlation coefficient because 
it is easy to use computationally and there are exact confidence limits 
available. There are no reasons in the structure of the data to use the 
circular serial correlation coefficient, but for low-order correlation coef- 
ficients the values obtained do not differ significantly from the standard 
serial correlation coefficients. If the controls show no significant serial 
correlation and the experimental run, truncated to exclude the deviant ra- 
tios, shows no significant serial correlation but the full experimental gel 
does show significant serial correlation, one has evidence for a signif- 
icant effect. This is what is shown by Fig. 5. Note that the circular serial 
correlation is not significant in the control run (upper panel) or for the 
first 31 slices of the experimental run. Inclusion of slices 32-47 gives a 
marked serial correlation due to the change in labeling ratio in slices 32-41. 
The calculation of the serial correlation coefficient for lagsj = 1,2, . . . , 
and so on is simple, and the values the coefficient must attain to be signif- 
icant at the 5 and 10% levels are tabulated (8). 

(e) Plotting of Data 

For analysis of the effect of changing one of the experimental variables 
it would be most useful to have a way of quantitating the deviation in the 
region of differential labeling in a way that takes into account the variation 
in errors of the labeling ratio in the slices. For example, it would be 
useful to be able to plot the total deviation in labeling ratio against the 
concentration of cytochalasin B for the data shown in Fig. 6 in terms of 
some normalized variable which takes into account the different errors 
in different slices in one run as well as the difference in errors between 
runs. We have found the following to be useful. If changing an experi- 
mental variable appears to give a shift in labeling ratio of the electro- 
phorogram we calculate the weighted mean ratio for the slices from such 
gels, excluding the slices from the region of differential labeling. Thus we 
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calculate i by Eq. [l l] where it is understood that the index i does not 
include the slices from the region of differential labeling. 

The slices from this region are excluded from the calculation of the 
weighted mean ratio for all gels including the control gels for the experi- 
ment. We then calculate the deviation (zr - 2) for each slice k and 
normalize this by dividing by the estimated standard deviation of 
(zr - Z), Sk, to give a normalized residual, Eq. 1121. 

zk - +? 
f-k = - 

Sk 
u21 

The Variances for& - 2) are given by Eqs. [13] and [ 141 in which n is 
the number of slices used in calculating the mean 2.. 

iI31 

Equation [13] holds if slice k is included in the set used to calculate Z; 
Eq. [14] holds for those slices which come from the region not included 
in the weighted mean. We have used Eqs. [15] and [16] in which the 
variances of Eqs. [13] and [14] have been replaced by the sample estimates, 

2 
sz, . 

s; = s:* 
2s, n 

-m+ <c l/&J2 
j j 

[I51 

[I61 

Equations 1151 and [16] give fairly good estimates of the variances 
4 if one makes a point of obtaining high counts from the slices so that 
~4 are good estimates of a& 

The use of this transformation gives results that are in accord with our 
expectations. For example Fig. 7 shows the data of Fig. 6 replotted in 
terms of the residuals, rk; now there is a more obvious increase in the dif- 
ferential effect on labeling as the concentration of CB is increased. The 
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FIG. 7. Plots of the residuals, ri = (zi - Z)/si, for the ‘W3H labeling ratios shown in 
Fig. 6. For the third curve from the top, CB = 5.10+ M; the sign of the residual has been 
changed so that the expected deviation in the residuals due to the CB effect would be 
in the positive direction. The corresponding regions of the electrophoretograms are 
indicated by the brackets on the abscissas; the slices within these brackets were not 
included in the calculation of the weighted means, i, for their respective gels. 

region of the electrophoretogram corresponding to the region of differen- 
tial labeling in the two highest concentrations of CB is marked on the 
abscissas of each of the plots in Fig. 7. From plots such as Fig. 7, it is 
possible to plot the sum of the residuals in the region of differential label- 
ing against the concentration of CB and thus quantitate the effect of CB. 
The complete results of this study with a discussion of their implication for 
the system transporting glucose in erythrocytes will be published else- 
where (13). 

THE REGRESSION APPROACH 

An interesting approach is to use the regression of DPM due to one 
isotope against the DPM due to the other to estimate the mean labeling 
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ratio and then to examine the residuals. There are some problems in 
developing the theory for estimating parameters because of the serial cor- 
relation, but these may be partly overcome with the proper iterative 
model. The basic model is developed below. 

Suppose we are given a set of n sequentially numbered samples and 
suppose qi and ei are the “true” DPM for the two isotopes, e being the one 
with the higher DPM. Although the extent of labeling might differ for the 
different samples, our basic assumption is that the relative labeling by the 
two isotopes is the same for all samples. The null hypothesis, then, is 
that qi and ti are in the same ratio 5 for all samples, from which comes 
Eq. [17]. 

qj = gj, i =l, . * . ,n 1171 

The true values r)i and [i are never observed because the measured DPM 
contain errors due to random fluctuations in the labeling process and in 
the counting. Thus the measured values of DPM, yi and xi, are related 
to the true values by Eqs. [18] and [19]. 

7jj = yi + Ej [181 
5i = Xj + ej [I91 

Here Ei and ei are random variables with mean zero and variances ~5~ and 
CT?&, respectively. Note that for the counting technique which we are using 
Eqs. [5] and [6], written for the ith sample, give the sample estimates of 
these variances. 

Now suppose we substitute Eqs. [18] and [19] into Eq. [17]. Doing so 
gives us Eq. [20]. 

Yj = <Xi + (&i - Ei) cw 

Thus the model predicts that there is a linear relationship between the 
measured DPM with a superimposed random fluctuation due to the random 
variable [ei - Ei. This variable has mean zero and variance given 
by Eq. [21]. 

U" = <'O$ - 25 COV (Xi, yi) + O$, 1 [211 

The sample estimate si2 for ~i2 can be calculated from Eq. [22], 

s2 = z2sg - 2z cov(.q,yJ + sg, WI 

where z is the estimate of 5 obtained from a least squares fit and s&, 
2 syI, and cov (xi, yi) are given by Eqs. [5], [6], and [7]. The slope z is 

estimated iteratively with a weighted least squares fit using the weights 
Wi = l/Si2* 

If there were no serial correlation it would be simple to find the 
conditional variance of z given x1, x2, . . . , x, and to calculate residuals 



DOUBLE-LABEL EXPERIMENTS: ANALYSIS 33 

around the regression line and to find the sample variance of the 
residual for each point. Note that z is an unbiased estimator of 5 whether 
or not there is serial correlation. However, the presence of serial 
correlation complicates the estimation of the variances. One of the referees 
of a prior draft of this paper suggested that the major effects would be 
captured if we assumed a constant first-order serial correlation and zero 
higher order correlations. The consequences of this assumption are 
developed below. 

Let 6, = (<ei - EJ. Then, we assume Eq. [23]. 

I 
1 

g.2 = - 7 i =j 

Wi 

E[S,Sj] = ( pajaj = -A--, 
( wjwjp* 

i=jkl ~231 

0 , Ii -j( > 1 

Now p and 5 are also interrelated and their estimates, fi and z, have to be 
obtained iteratively. To do this one can obtain an initial estimate z0 without 
weighting and then generate z, and p,. Given the estimates znr and p,, 
z,+~ is obtained from the least squares weighted regression using the 
weights wi = Usi which are calculated with use of z,,, in Eq. [22], and 
pm+I is the serial correlation coefficient of lag 1 for the sequence of 
yi - zmxi, i = 1, . . . , n. With the above assumption it is easy to show 
that the variance of z, conditional on the given values x1, . . . , x,, is 
given by Eq. [24]. 

n-1 

1 
1 (wiwi+l)1’2XiXi+l 

V(zlx,, . . . ) x,) = - 
c wix: + 2p 

i=l 

CC wixi2)2 
~241 

Now consider the deviation around the fitted line at each point, yk, 
Eq. [25], where jk = zyk. The variance of dk is given by Eq. [26]. 

4 = Yk - 9k r-w 

1'; = v(y, - j&l, . . . , x,) 

= m; + x;v(dx,, . . . , x,) - 2x,v[6,(z - ()/xl, . . . , x,] LW 

Here o,$ is given by Eq. [21], V(z/x,, . . . , x,) by Eq. [24], and 
V@k(Z - OlXl, . . . 3 x,)is given by Eq. [27] for k = 2, . . . , n - 1. 

v[sk(z - ~)/XI, . . . > X,] 

= ~Xk-l(wk-I~wk) 1’2 + +‘“kxk + pxk+l(wk+,/wk)1’2 

2 WiXi 
~71 
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Fork = 1, the first term in the numerator is dropped, and for k = n the last 
term is dropped. Using these estimates, with sample variances and the 
iterative estimates z and p substituted one can examine the residuals, 
Eq. [28], as was done for the ratios directly. 

4 Yk - 9k 
rk=-= 

vk [v(Yk -jk/xl, * . . , &)I”” 
W-U 

We have not used this method much because of the large amount of 
computation involved. However, we have found that if we assume p = 0, 
we obtain residual plots for the data shown in Fig. 6 that are similar to the 
residual plots in Fig. 7; the relative values of adjacent points differ 
somewhat, but the overall pattern is the same. We have also found that 
the serial correlation in the sequence yi - z..x~ is much less than that in 
eitheryi orxi so that the assumption of only some small correlation between 
adjacent slices appears to be reasonable. The method deserves further 
exploration. 

DISCUSSION 

The problem of examining a sequence of ratios for deviation from a 
mean value is of considerable importance. Many types of labeling 
experiments with two isotopes are designed so that one expects uniform 
labeling in most fractions except in one or a few subsequences which 
deviate because the experimental treatment causes a change in labeling 
ratio in these samples. The problem is to identify subsequences in which 
the labeling ratio has been changed by the experimental treatment. 

A number of methods for analyzing data from such experiments have 
been proposed. Yund et al. (4) calculated the standard deviations from 
counting statistics and for the ratio of isotope labeling. They wrote 
a program which provided a table of these summary statistics. However, 
their error calculations do not take into account the correlation between 
counts for the two isotopes in each gel. They do not consider tests for 
significant deviations from uniform labeling ratio. Weisberg (5) fitted the 
square roots of the isotope counts by a Iinear regression as in Eq. [29]. 

Y 112 = axll2 + b v91 

He derived this on the assumption that the counts are Poisson- 
distributed random variables. The parameters “a” and “b” are estimated 
by least squares and the deviations, yi If2 - (ciXi”2 + b), calculated; here ~3 
and 6 are least squares estimates of “a” and “b,” respectively. He 
apparently also did not take into account the correlation between xi and yi 
within a slice and did not consider the effects of the serial correlations 
in the Xi and yi on the regression estimates or on statistical tests of devia- 
tion. Mayo1 (6) used the excess counts hYi = yi - xi R,, where R, 
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is the count weighted average ratio for the gel slices other than those in 
the peak that shows an apparent deviation from the general average. This is 
similar in some respects to the regression method but the weights used are 
not the correct weights for calculating the average ratio. Mayo1 does not 
consider the statistical estimation problems. More recently, Smith (7) 
has proposed that the fractional difference Fj, Eq. [30], be used to 
detect variation in the relative labelings by the two isotopes. 
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She also did not take into account the covariance between the two counts 
in one slice or the serial correlations between slices in calculating errors. 

From our examination of data on gel slices it appears that the serial 
correlation is strong in the plot of DPM in each isotope but is either 
not significant or is small in plots of the ratio yi/Xi in controls or in 
subsequences of the experimental gels which show no large deviations 
from the mean ratio. The serial correlation becomes large when a devia- 
tion in ratio appears as in the example shown in Fig. 5. 

The regression approach has many interesting features although the 
iterative computations are more involved than those required in the ratios 
directly. The apparently low serial correlation in the ratios and the fact 
that one can obtain high enough counts to obtain good sample estimates 
of the variances of the errors of measurement in the ratio argue for use of 
the ratio first in looking for significant deviations in labeling ratio. The 
one-way ANOVA as a rough test and the use of serial correlations 
in experimental designs that involve the proper controls, concentration, 
or other dependence of the experimental effect provide simple tests for 
significant deviations in labeling ratios. It is not really obvious that 
any refinements over these are needed for the experimental work involved. 

CONCLUSION 

The tests developed for analysis of deviations in isotope labeling ratios 
in experimental designs which use two isotopes have neglected important 
correlations in the data. 

We derive estimates of the variance of the ratio of DPM of the two 
isotopes and conclude that the one-way ANOVA and serial correlations 
provide useful and simple ways of analyzing data on relative labeling. We 
find that a transformation to residuals of the labeling ratio provides a 
useful way of correlating the extent of change in labeling ratio with 
change in some experimental variable. 

We have also developed the basic theory for a regression model that 
appears to give results similar to those given by the ratio method but 
the computations are more demanding. 



36 JACQUEZ, FOSTER, AND SHANAHAN 

ACKNOWLEDGMENTS 

This work was supported in part by grants CA 06734 and GM 00110 from the NC1 and 
NIH, DHEW. We wish to thank the referees whose suggestions in the review of the first 
draft of this paper helped us to improve the paper considerably. 

REFERENCES 

1. Jung, C. Y. (1974) J. Biol. Chem. 249, 3568-3573. 
2. Lin. S., and Spudich, J. A. (1974) J. Biol. Chem. 249, 5778-5783. 
3. Fairbanks, G., Steck, T. L., and Wallach, D. F. H. (1971) Biochemistry 10,2606-2617. 
4. Yund, M. A., Yund, E. W., and Kafatos, F. D. (1971) Biochem. Biophys. Res. 

Commun. 43, 717-722. 
5. Weisberg, S. (1974) Anal. Biochem. 61, 328-355. 
6. Mayol, R. F. (1975) Mol. Cell. Endocrinol. 2, 133-146. 
7. Smith, K. B. (1976) Anal. Biochem. 76, 16-31. 
8. Bennett, C. A., and Franklin, N. L. (1961) Statistical Analysis in Chemistry and 

the Chemical Industry, New York. 
9. Bush, E. T. (1964) Ana/. Chem. 36, 1082-1089. 

10. Kendall, M. G., and Stuart, A. (1961) The Advanced Theory of Statistics, Vol. 2, 
Sect. 20.34, Griffin, London. 

11. Brownlee, K. A. (1965) Statistical Theory and Methodology in Science and Engineer- 
ing, 2nd Ed., Sect. 3.21, Wiley, New York. 

12. Ederer, F., and Mantel, N. (1974) Amer. J. Epidemiol. 11, 165-157. 
13. Shanahan, M. F., and Jacquez, J. A. (1977) Membrane Biochem., in press. 


