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A Theorem on Single-Peaked Preference Functions in One Dimension 
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With simple stimuli like amount of sugar in coffee or grade expectations in courses, 
the preference orders of individuals can be represented by single-peaked functions of 
an underlying ordering. When stimuli are more complex, as in candidates for office or 
automobiles, there is usually no natural ordering underlying the stimuli, and hence the 
preference orders cannot be single-peaked functions in one dimension. 

Is the existence of an underlying ordering necessary and sufficient to ensure that all 
preference orders will be single-peaked and if not, just what further conditions must be 
met? An understanding of the precise mathematical conditions will be useful in the 
interpretation of preferential choice data and will show experimenters how to essentially 
guarantee that all subjects will be single-peaked. 

The theorem presented here is essential to an understanding of the intimate relation 
between single-peaked functions and preferential choice behavior and deals with the 
general case of options which may differ in more than two components. The application 
of the theorem to the special cases of options which differ in only one or two components 
has been extensively developed and has appeared elsewhere (Coombs & Avrunin, 1977). 

Given a set of options S, we will assume that each attribute of the options in S which 
is relevant to the decision process, whether it be a physical, psychological, or social 
attribute, can be expressed in terms of a numerical scale. We can then represent each 
option in S as a vector, each component of which corresponds to a particular attribute 
of the options. Thus we can regard S as a subset of IF for some n depending on S and 
the decision process (the latter determines what attributes are relevant). 

We assume that on each component of lP there is a proper utility function defined 
as follows. 

DEFINITION. A proper utzlity function has second derivative everywhere negative. 
If the function is monotone-increasing with the component we call it a “good” or 

attractive attribute, and if it is monotone-decreasing we call it a “bad” or unattractive 
attribute. These are the classical marginally decreasing utility functions of economics. 

Among the components relevant to the decision process for a particular set of options, 
some will be good and some will be bad, or all will be good or all will be bad. In the 
first case of some good attributes and some bad, the context of the decision is an approach- 
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avoidance conflict, the other two cases are respectively referred to as an approach- 
approach conflict and an avoidance-avoidance conflict. 

Single-peakedness in one dimension is defined only with respect to a given ordering 
of the options, as follows: 

DEFINITION. A preference function is single-peaked in one dimension if A < B < C 
implies that the preference ordering is neither A >2, C >D B nor C >2, A >= B, i.e., 
the intermediate option is never least preferred. 

Given a preference function and any set of options, we may order the options in such 
a way as to make the preference function single-peaked; consequently, we need to define 
an ordering independently of the preference function. But there is no natural ordering 
of a general set of options in the multiattribute case, so we restrict our attention to 
special sets of options which we will call efficient sets. We define the concept of an 
efficient set in such a way as to ensure the existence of a &dimensional single-peaked 

preference function over the set in the presence of proper utility functions and under 
a very general rule of composition for the preference function, defined subsequently. 

DEFINITION. An approach-avoidance ejkient set in n dimensions (n > 2) is a subset S 

of LQ” together with a partition of the integers, 1,2,..., tt into two nonempty subsets I1 
and I, , such that the following conditions are satisfied: 

(1) For any pair (xr ,..., xA) and (yr ,...,m) in S, (i) xi < yi for some i i f f  xi < yi 
for all j = l,..., rz and (ii) xI < yi for some i E I1 , i f f  xj < yj for some j E Is . 

(2) For each triple (3cr ,..., x,), (yr ,..., yJ, (zr ,..., z,) in S with x1 < y1 < .zl , 
there exists a c > 0 such that 

for all i E I1 , 

for all j E 1, . 

In an approach-avoidance efficient set, we think of the components indexed by elements 

of I1 as the “good” components and those indexed by I, as the “bad” components. 
If  the options of S have attributes with both good and bad aspects, we can imbed S in a 
higher-dimensional space to achieve this. 

The first condition in the definition is an extension of the property of Pareto optimality 
in n dimensions. A natural extension of Pareto optimality merely ensures nondomination 
of one option by another. This extension goes further: it ensures that the ordering on 
all components is the same so any one may be used to define an ordering on the options, 
and also ensures that if one option is better than another on a good component it will 
be worse than the other on a bad component. The second condition asserts the existence 
of a constant c > 0 with the property that the largest proportionate increment in the 
good components is no greater than c and the smallest proportionate increment in any 
bad component is no less than c. 

This notion of efficiency implies that the options lie on the boundary of their convex 
hull but is actually a stronger condition in IJV for n > 3. 
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We may reduce the other two cases to an approach-avoidance conflict as follows: 

DEFINITION. An approach-approach eficient set in n dimensions (n > 2) is a subset S 
of R” together with a partition of the integers 1,2,..., n into two nonempty subsets II 
and I, so that, if we set ti equal to 1 or -1 according as i is in I1 or lz , the set 
{(%X1 >-**, %P,) I (x1 ,“.> x,) E S} with I1 and I2 is an approach-avoidance efficient set. 

Thus, an approach-approach efficient set satisfies the conditions: 

(1) for any pair (x1 ,..., x,) and (yr ,..., y,J in S, (i) xi < yi for some i E I1 , iff 
xi < yi for all j E 1r , and xk > yk for all K E I, , while xi 3 yi for some i E Ia iff xj < yj 
for all j E I1 and So > yk for all k E I? , and (ii) x3 < yi for some i E I1 iff xj > yi for some 
jE&. 

(2) for each triple (x1 ,..., x,), (yr ,..., m), (x1 ,..., zn) in S with xi < yi < zi for 
some (and hence all) i E I1 , there exists c > 0 so that c(yj - xj) > zj - yj for all 
j = l,..., n. 

Heuristically, an approach-approach efficient set with three attributes, all desirable, 
is one in which two of the attributes must increase (decrease) together in the same rank 
order over the options and the third must decrease (increase) in the reverse order. This is 
the property of Pareto optimality and creates the conflict between more of one good(s) 
at the cost of less of another good(s). The existence of a c > 0 has exactly the same 
interpretation as given for the definition of an approach-avoidance set. Of course, if all 
the attributes are desirable, the semantics of I1 and I, are different. Increases on attributes 
represented by components in 1r are necessarily accompanied by decreases on attributes 
represented by components in I, . 

DEFINITION. i3n avoidance-avoidance eficient set in n dimensions (n > 2) is, similarly, 
a subset S of IWn together with a partition of the integers 1,2,..., n into two nonempty 
subsets I1 and I, so that, if we set Si equal to -1 or +l according as i is in I, or I, , the 

set Wlx~ ,..., hLXZ’,)I(X1,~~~, x,J E S} with 1; and I, is an approach-avoidance efficient set. 
Thus an avoidance-avoidance efficient set satisfies exactly the same conditions as an 

approach-approach efficient set except for the semantics associated with I1 and I2 . 
Suppose that E = (S, I1 , I,) is an approach-avoidance efficient set with I1 the set of 

components representing attractive attributes of the options of S and with I, the set of 
components representing unattractive attributes, or that E is an approach-approach 
or avoidance-avoidance efficient set. Then if +1 ,..., & are proper utility functions, it is 
clear from the definitions that the set {($r(x,),..., c&(x~)) 1 (x1 ,..., xn) E S>, together with 
I1 and I2 , is an efficient set of the same type as E. In other words, efficiency is preserved 
under this kind of transformation induced by the proper utility functions. 

We now introduce a composition rule for the preference function. 

DEFINITION. We say that a function F: W ---f R is a proper preference function for 
a set of options S C [w” if: 
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(1) all its first-order partial derivatives aF/au, exist, where the tli are the coordinate 
functions, 

(2) xj < yj for all j and xi < yi implies 

when the ith component represents an attractive attribute, 

(3) .vj < yi for all j and xi < yi implies 

when the ith component represents an unattractive attribute. 
So, if the partial derivatives of a preference function form a set of proper utility func- 

tions, then the function is a proper preference function. Another way of putting it is 
that a proper preference function is marginally decreasing in every component inde- 
pendent of increases in any other component. For example, if q$ ,..., 4, are proper 
utility functions and a, ,..., a, are positive real numbers, then F(x, ,..., x,) = C,“=, U$d 
is a proper preference function. 

The property of single-peakedness is preserved under strictly increasing transforma- 
tions of a preference function, but of course, all such transformations of a preference 
function need not be proper preference functions. Given any preference function G, 
we show in the theorem below that if there exists one strictly increasing transformation, 
g, for which the preference function g 0 G is proper, then G is single-peaked on an 
efficient set and all preference functions generated from it by strictly increasing trans- 
formation are, of course, single-peaked. 

THEOREM. Suppose that E = (S, I1 , I,) is an approach-avoidance eficient set in 
n dimensions with I1 the set of components representing attractive attributes of the options 
of S and with I2 the set of components representing unattractive attributes, or that E is an 
approach-approach or avoidance-avoidance eflcient set. If G: IL!” -+ R is a function such 
that for some strictly increasing g: R + R, F = g o G is a proper preference function for S, 
then G is single-peaked on E with respect to the ordering by values on the components of 
either I, or I, . 

Proof. We will give the proof only for the case where E is an approach-avoidance 
efficient set. The arguments in the other cases are similar. 

Since g preserves order it suffices to prove that F is single-peaked on E. To simplify 
the notation, assume Ir = (l,..., m} and I, = {m + l,..., n]. Suppose (x1 ,..., x,) and 
(Yl ,.“> m) and (xl ,..., z,) are options in S with x, < yr < a, (in this case the orderings 
are the same on each component), and F(xl ,..., x,) > F(y, ,...,y,J. We will show 
F(Y, ,..., YJ > F(z, ,..., 4. 
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By repeated application of the mean value theorem, we find that 

F(Y, >..., Y,J = F(x, ,..-, x9%) + C aF (Yl ,***9 Yi-1 P 4 9 Xi+l ,***s x~) 
ieI, aui 

where ak is some number between xk and yK for k = l,..., n and the U, are the coordinate 
functions. 

Since F( y1 ,.. ., yn) < F(x, ,.,., x,), we know that the sum of the two terms involving 
partial derivatives is negative. 

In the same fashion, we get 

F(z, >a..> ~1 = F(Y, >.--, YJ + C $ (21 >.-., zi-1 , bi , yr+l ,..., yn) 
iEI, 

* tzf - Yf) + ,s g Czl 3*-*3 zj-l 3 bj , Yj+l s***v Yn) * (zj - yj), 

I 

where b, is some number between yn and zk for k = l,..., n. For REIN , we know 
yf - Xi > C(Zi - yf) where c > 0 because E is an e5cient set and, since b, > ai , we 
know 

so we have 

Similarly, we have 

so 



266 COOMBS AND AVRUNIN 

must also be negative, and thus, 

F(Y, >.a., m) > F(z, ,a..> 4, 

and F is single-peaked on E as claimed. Q.E.D. 

If the set S is not efficient, it is easy to construct a proper preference function which 
is not single-peaked on S even if S is Pareto optimal. Thus, although some proper 
preference functions may be single-peaked on a nonefficient set, the property of efficiency 
is necessary and sufficient to ensure that all proper preference functions be single-peaked. 

In summary, given that individuals have proper preference functions, then a necessary 
and sufficient condition for all preference functions to be single-peaked is that the set 
of options be an efficient set. If the options are complex in the sense of differing on three 
or more components, then a necessary and sufficient condition for an efficient set is 
that the options be same-ordered (or reversed) on all components, and that the propor- 
tionate changes on any good component can never overcome the proportionate changes 
in any bad component so that the coordinates of the options on any two components, 
one a good one and the other a bad one, will be an efficient set in two dimensions. 

In the case that the options differ in only one component, the set is inevitably efficient, 
and all preference orders will be single-peaked under proper preference functions. If 
the options differ in exactly two dimensions, then nondomination (Pareto optimality) will 
ensure that the options are same-ordered (or reversed) on both components, and hence, 
approximates an efficient set and “most” preference functions will be single-peaked. 
If the options differ on three or more components, an efficient set would have to be 
contrived; otherwise, preference orders will not necessarily be single-peaked. 

This theorem shows experimenters how they can ensure that subjects’ preference 
orders will be single-peaked over a set of complex stimuli, for example, in the study of 
psychological risk where gambles or lotteries can vary in several dimensions. These 
results also have implications for multidimensional unfolding and for conflict resolution, 
as discussed elsewhere (Coombs & Avrunin, 1977). 
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