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We present a detailed study of the bare pomeron graph in two-dimensional QCD in the 
1IN c approximation. The absence of a new singularity unrelated to quark parameters is 
derived. The "cylinder" graph is shown to induce renormalization of the vertex and inter- 
cept associated with quark andti-quark exchange in the vacuum channel. 

1. Introduction 

Quantum chromodynamics (QCD), the theory of  colored quarks interacting via 
colored gauge fields, may be the fundamental theory of  strong interactions. Some 
time ago, its asymptotic freedom at short distances was demonstrated [1 ]. Although 
there are qualitative affirmations of  the theory in the pattern of  scaling violations 
observed in deep inelastic lepton scattering, it remains to be demonstrated that the 
precise, quantitative predictions of  the theory for the asymptotic behavior are cor- 
rect [2]. More seriously from a theoretical point of view, it has not been proved 
that quarks and gluons are confined in color singlet bound states. Finally, it is not 
known whether the spectrum of  such states actually agree with the observed hadron 
spectrum. 

Considering the theory in two space-time dimensions, ' t  Hooft showed how the 
properties of  its solution might be obtained [3]. In many ways, this two-dimen- 
sional model is trivial compared to the QCD in four dimensions. Since the model is 
superrenormalizable, its asymptotic freedom is demonstrable by power counting. 
Because there are no transverse dimensions, the dynamical degrees of freedom 
associated with gluons can be gauged away. And since the Coulomb potential is 
linear, confinement occurs already in lowest order. 

Nevertheless, the model is not  without interest, since it can be used to study 

* This work was supported under the auspices of the Division of Physical Research of the 
US Energy Research and Development Administration. 
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some prototypical of asymptotically free gauge theories with confinement [4]. 
Its structure resembles parton models [5], and it is interesting to inquire whether 
those properties of parton models which are not derivable from the short-distance 
structure of an asymptotically free field theory actually survive. In addition, one 
can gain some insight into the paradox of parton models which suppose that 
quarks interact weakly but are confined. Interactions with currents have been 
studied from this point of view [4,6]. It is also interesting to consider properties 
of meson scattering in the model, not only to see how quarks are confined, but 
also because of its resemblance to dual models [7,9]. In ref. [9], we have sum- 
marized some of the properties obtained so far. Elsewhere [10], we present details 
concerning Regge behavior. Here, we would like to elaborate on the absence of the 
bare pomeron [8,9] and the present details concerning the breaking of exchange 
degeneracy via vertex and intercept renormalizations due to the twisted loop or 
cylinder graph [I 1 ]. 

A related, extremely interesting subject which we will not touch on here is 
the relation between this field theory and the string model of hadrons [12] * 

In the next section, we review qualitatively the results obtained previously and 
summarize results to be derived in this paper. In sect. 3, we present the detailed 
justification of the results on the pomeron and Regge-like renormalizations. Sect. 4 
concludes with a brief summary and suggestions for future investigations. 

2. Meson scattering in (QCD)2 

Following ' t  Hooft [7], we perform an expansion of Feynman graphs in 1IN c for 
fixed g2N c, where g is the gauge coupling constant and Nc is the number of  colors. 
To leading order, the theory is described by non-interacting, color-singlet, mesonic 
bound states of a quark-antiquark pair. In two dimensions, we may choose gauges 
(e.g. A_ = 0) in which the gluon field has no self-coupling, but represents a Coulomb 
potential acting between quarks. The "radial" excitations in the potential produce 
a meson spectrum with masses p2 (n --- 1,2, ...) which, for high excitations, behaves 
like a linear "trajectory" 

112 ~ a ' n ,  as n ~ oo. (1) 

The scattering of these bound states appears first in order 1~No. To this order, all 
the Feynman diagrams for two-body scattering are planar diagrams with no internal 
quark loops. These may be classified according to the three cyclicly inequivalent 
planar graphs as (st), (ut), or (su) diagrams, in a language familiar from the Veneziano 
model [14]. For example, all the graphs contributing to the (ut) diagram are depicted 
in fig. 1. These graphs pictorially resemble the Harari-Rosner duality diagrams [3] ; 
it will be seen that the resemblance is not just superficial. The full amplitude A is 

* For an intriguing marriage of (QCD) 2 with a string in four dimensions, see Tye [13]. 
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b m ~  2 + + 

(a) (b) (c) 

Fig. 1. The (ut) amplitude to leading order in 1/N in a gauge without self-coupled gluons (a) No 
quark rescattering, (b) s-channel rescattering and (c) t-channel rescattering. 

the sum of (st), (ut), and (su) graphs. Its imaginary part is given by a sum over 
mesonic resonances in the s-channel. At the same time, the leading asymptotic 
behavior for forward scattering is power-behaved and given by 

A(s )  --, ( ( - s )  ~b~ + ( - u )  ~bd) ~ ' , . ~ m  • (2) 

The parameter exba is additive in the exchanged quarks b, d (fig. 1) and is given by 

~b0 = - %  - ~ ,  (3)  

where fl is determined by the renormalized quark mass m 2 according to 

rr/3 i cot rr/3 i = - m  2 , (i = b, d) ,  (4) 

This behavior reflects the fact, emphasized by Feynman [5], that mesons scatter by 
exchanging their wee constituents - in this case the slow moving valence quarks. 
The high energy behavior expressed by eq.'(2) corresponds to what, in four dimen- 
sions, would be called Regge asymptotic behavior, governed by Regge-pole exchan- 
ges in the t-channel which factorize and are strongly exchange degenerate. We add 
that, from the view point of hadron unitarity, there are no quark discontinuities 
of the amplitude. Indeed, the quark discontinuities of fig. la are cancelled by 
similar contributions to figs. lb and lc [10]. 

The lowest order contributions to the class of planar diagrams having two 
quark boundaries and no handles (usually identified with the "bare" pomeron 
[7,14] appears in order 1/N 2 . (See fig. 2.) Trusting by now that the imaginary part 
will be given by a sum over mesonic intermediate states, we will calculate this by 
actually performing the sum: 

ImP  = ~ ]  IA12-.nm(S)l 2 Ohm(s).  (5) 
/~,/'1 

Here P denotes the bare pomeron amplitude; A 12~nm(S), the (ut) amplitude 
depicted in fig. 1 ; and Pnm, the phase-space factor proportional, in two dimensions, 
to X -1/2 (s, #~, #~) ,  where X is the triangular function. Although the sum includes 
only two-body-intermediate states to this order in 1/No we must remember that 
the spectrum of states extends to infinity. Consequently, as s increases, the number 
of channels open also increases. 
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(8) 

2 

(b) 

(c) 
Fig. 2. Three equivalent representations of the bare pomeron graph: (a) planar gaph with two 
quark boundaries, (b) cylinder or tube showing gluonic exchanges in the t-channel, (c) twisted 
loop displaying mesonic intermediate states. (The many T-matrix insertions possible have been 
suppressed.) 

We are primarily intersted in the question of  whether, by unitarity,  the high 
energy of Im P is dominated by a new power whose exponent is independent of 
quark parameters. To gain some insight into how a "bare"  pomeron might emerge, 
consider the following argument: there is a scaling amplitude to find a quark of  mo- 
mentum fraction x t (x2)  in meson 1 (2). The quark from meson 1 binds with the 
anti-quark meson 2 to form meson/a n with/ /2 n = x l (1  - x2)s. Similarly,/a2 m 
= x2(1 - xl)s. Suppose there were a scaling amplitude for this to occur, 

A12--,nm(S)-+A(xb x2) as s ~ o0. (6) 

One can easily show that 

2 2 Pnm "~f d/and/amPnm(S) o: $ ~ x t d x 2  , 
ntn 

(7) 

SO 

Im pcc s f d x 1  dx 2 JZ(x1, x2)l 2 . (8) 
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Fig. 3. Rcgge renormalizations of the cylinder graph. (a) Vertex renorma]ization of (dd) ex- 
change. (b) Intercept renormafization: Mixing between (bb) and (dd) e×changes. 

Thus, i fA 12~nm(S) scaled in this region of phase space, there would emerge from 
the unitarity sum a new power, unrelated to quark parameters, corresponding to 
intercept one! As we shall discuss in the next section, the result of the detailed 
calculation is that, although each time-ordered contribution scales as described 
above, terms conspire in pairs to cancel and we find that Im P receives a contribu- 
tion from this region of phase space which vanishes at least as fast as s -1. 

It is also interesting to see whether exchange degeneracy is broken by 
renormalization of "vacuum" Regge exchanges by the cylinder graph. Contrary to 
the result on the pomeron, we find that other regions of phase space behave more 
or less as expected. The region where one intermediate mass, say ~trn, becomes 
large but where the other mass,/an, stays finite (or vice versa) leads to a vertex 
renormalization of the planar graph. (See fig. 3a.) The corresponding behavior of 
the amplitude A 12~nm($) is (//2) -t~. This contribution leads to Im P "" s -2t3 and 
so breaks strong exchange degeneracy of the "vacuum" exchanges. 

Next we study the region of phase space in which both intermediate masses 
become large but such that P =/an 2112m/s remains finite. Experience with the dual 
model leads us to expect this to give rise to renormalization of the intercepts in 
the vacuum channel. (See fig. 3b.) The corresponding asymptotic behavior of 
A 12--,rim(s) is ~2m)-t3b(/a2n)-t~d. For ~b ~ j3d, this corresponds to mixing between 
the two trajectories. When/3 a =/3 b =/3 it gives Im P "~ s -2t~ In s which is, as usual, 
interpretable as the first term in an expansion of an intercept shift. Thus, weak 
exchange degeneracy is also broken in the vacuum channel. We turn now to the 
detailed calculation of all these effects. 
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3. Mathematical details 

This section consists of  a detailed treatment of  the scattering process; its outline 
is as follows. First, we will cast the full amplitude into a form amenable to investi- 
gation in all regions of phase space. The main result obtained is eq. (21). Next, the 
asymptotic energy dependence is studied in the various kinematic regions of physical 
interest, in particular, in the limit of  Regge behavior and associated renormalizations 
and in the pomeron limit. In each case for illustrative purposes, we single out a 
particular term for which the detailed analysis is presented. 

3.1. Calculation of  the (ut) amplitude 

Following 't Hooft  [3], we work with light-cone coordinates, p~ = x/~21- (p ° + pX), 
with metric tensor g++ = g__  = 0, g_÷ = 1. In addition, we choose the light-cone gauge 
A_  = 0. Because this gauge is not parity-invariant, the symmetry between right and 
left movers is destroyed. However, this is the only gauge in which the solution has 
been explicitly worked out. In this gauge, it turns out that all quantities studied 
depend ultimately on the (Lorentz-invariant) ratios of  the minus components of the 
various momenta.  These may then be evaluated in the center-of-mass frame where 
we have chosen: 

Pl = (El, P) ,  Pn = (En, P') ,  (9) 

P2 = (E2, -P)  , Pm = (Em, -P')  . (10) 

We shall use notation and conventions employed earlier [15]. For those unfamiliar 
with this work, we summarize the basic results in an appendix. We begin with the 
exact calculation of the (ut) planar diagram, fig. 1, whose square gives Im P. The 
first diagram, fig. la, has only free quarks as intermediate states. Whatever contribu- 
tion they give to the u-channel discontinuity must be cancelled by other, similar con- 
tributions so that the imaginary part can be expressed solely in terms of mesonic 
intermediate states. This cancellation will be demonstrated shortly. The amplitude 
corresponding to fig. 1 a is 

TA - - i (N/N)  4 N  4 r d 2 k  = 2 ~J ~ S ( k  - pl)l-'l(k, pl)  S(k) Pn(k, Pn) S(k - Pn) 

x r (k - q, p2) S(k - q) I"m(k - -  q, Pro), (I 1) 

where q = Pl  - Pm is the u-channel momentum.  The amplitude for fig. lb is 

/ 1r\4 2 6 r  d2k d21 S'k 
TI3. = ~ x / ~  N 2 2 ~ 2 ~  (2--~n)2 ( - q )  r m ( k - q ,  pm) S ( k - p l ) l " l ( k ,  pl)S(k) 

X T(k_, l_; q) S(l) rn( l ,p , )  S(I - p , )  r2( l  - q, P2) S(l - q ) .  (12) 
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The amplitude for fig. 1 c is 

( X / ~ ) 4  2 6 r d 2 k  d21 
T c = N 2 J ( ~ ) 2  (27r)2 S(k - p l) F l(k, P 1) S(k) £n(k, Pn) S ( k -  Pn) 

X T(k - Pn, l - Pn ;A) S(l - Pn) F2 (l - q, P2) S(l - q) Pm (l - l ,  Pro) S ( l -  p 1), 

(13) 

where A = p 1 - Pn is the t-channel momentum.  
Since the only dependence on the plus components of  the loop momenta  enters 

via the propagators, whose exact form is known, the integration over these compo- 
nents may be explicitly performed. This b.rings the "covariant" amplitudes above 
into a sum of  "t ime"-ordered diagrams as in old-fashioned perturbation theory. To 
illustrate, consider the plus-integration in the amplitude TB: 

IB =fdk+ S(k - q )  S(k - p , )  s(k) f dt+ s(t) S(t- Pn) sq q). (14) 

These integrations may be easily performed by contour integration yielding 

in O ( q _ < k _ < p l _ )  O ( O < k _ < q _ )  

IB - A E ( p l , k )  AE(Prn, k - q )  - AE(q,k)  

in O ( q _ < l  < P n - )  0 ( 0 < /  < q _ )  (15) 
AE(Pn, l) AE(p 2, l - q )  AE(q,l) ' 

where the "energy denominator"  in each case is the function 

r 2 m 2 m 2 
AE(r, s) - (16) 

r r - s  s 

For notational simplicity, we have suppressed possible differences in the masses for 
quarks of  different flavors. We shall restore this dependence in our final formulas. 
When this result, eq. (15) is inserted back into TB, we get a sum of four x_  ordered 
terms depicted in fig. 4. Similarly, one can perform the plus-integrations in T A and 
Te leading to diagrams depicted in fig. 5 and fig. 6. (The names assigned the various 
time-ordered amplitudes in figs. 4 - 6  will be useful later.) The corresponding for- 
mulas are not very illuminating, depending as they do on energy denominators 
and proper vertices, both of  which are gauge dependent. The energy denominators 
are also misleading, their vanishing represents free quark singularities which eventu- 
ally must not occur. As discussed previously [15 ], these quark singularities are can- 
celled by zeros in the proper vertices through relations such as 

ri(p;r) = -AE(r ,p )  dpi(P_/r_) , 0 < p _ / r _  < 1 . (17) 

When p _ / r _  ~(0,1) ,  we may use eq. (A.6) to write it in terms of an integral over 
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k J I:~ )~ ) ~n 

(Bll) 

> i ) ,",-)-. n 

(B=z) 

Fig. 4. "Old-fashioned" perturbation theory diagrams for TB: B 11( 0 < k_, l_ < q_); 
B12 (0 < k _  <q_;q_ <l_ <pn_);B21(q_ <k_ < P l - ,  0 <1_ <q_);B22(q_ <k_ < P I - ,  
q_ < 1_ < Pn) (The dashed line represents the quark-antiquark T-matrix; all quark propagators 
are understood to be fully dressed.) 

the wave function ¢i. Such formulas have the advantage of eliminating any gauge 
dependence, since the wave function ¢i(x) is gauge invariant [15]. In general, the 
T-matrix is also gauge-dependent, so it is useful to display the gauge dependence 
explicitly. For this purpose, it  is useful to note eqs. (A.7) and (A.9). For 
k_/r_ E (0,1) is is easy to show that 

T(k_, l_ ; r) = AE(k,r) 1 f i  do G(x, v; r2) (18) iV 

. r _  o (Y - 0 ) 2  ' 

where x = k_/r_, y = l_/r_. If, in addition, y E (0,1), one can show that 

N T ( k _ , l _ ; r ) = A E ( k , r ) ~ ( k _  - l _ ) - A E ( k , r ) A E ( l , r ) G ( x , y ; r Z ) .  (19) 
7r 

The ~-function arises because of the long-range force. In practice, it has the effect 
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(A z) 

2 
(Aa) 

Fig. 5. "Old-fashioned" perturbation theory diagrams for TA: A 1(0 < k_ < q_); 
A2( q_ < k _  <¢n_);A3(Pn_ < k _  <Pl- ) -  

of cancelling contributions from "disconnected" diagrams such as fig. la. For ex- 
ample, the 6-function contribution to the amplitude corresponding to BI l precisely 
cancels the corresponding time-ordered contribution from TA, namely A 1. Quark 
intermediate states are thereby eliminated, as expected in a theory of confinement. 
Indeed, one can show that A2 is cancelled by the 6-fimction pieces coming from 

B22 plus CIL;A3, by C22. 
The second term in eq. (19) above supplies two additional inverse energy 

denominators necessary to cancel any quark singularities remaining. Combining 
all these operations leads to fairly compact expressions. For example, one can 
write 

1 

4 .  ffff ayduao r~m(U) ~ (__xq_/p,_) A 1 + Bl 1 = ~ q - P 2 - P m -  L(up.,_ + (1 - x ) q _ )  2 
0 

G(x ", 2", ~n ( ,Yq- /Pn-)  q~2(U) 7 
X 'Y  q )~(op2_ + (1 - y)q_)~] " (20) 

Notice that this amplitude is purely real, as expected. All integrations run from 0 to 
t. The amplitude is free of any quark singularities and is manifestly Lorentz invari- 
ant and gauge invariant. 
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(C.) 

(Cl2) 

(C2~1 

( C22} 
Fig. 6. "Old-fashioned" perturbaffon theory diagrams for Tc: C 11(0 < k_ < Pn-, q -  < l_ < Pn-); 
C12(0 < k_ < Pn-, Pn- < l_ < Pl - ) ;  C21(Pn- < k_ < Pl -, q -  < l_ < Pn-): C22(Pn- < k_, 
< P l - ) .  

The same procedure, applied to all diagrams, when added together yields the 
complete result: 

[q+op2 \  .~ [q+upm~ 

A 12~nm(S) = p 2 p ~ f f d . d o  [~,  t--Ti---,) - ~1 ~ T )  ] 
L (op2 - Upm) 2 -1 

• [q + up2\ /upn\-I 

• [ q  + UPn] ~m(U ) + ['['a L X 1 / ~ 1 ]J  X 

X Idpn(~n) -@n[-:-~n-)J'/q+P2V'~'lld~] (~-7)xq - ~ P l ( ~ ) !  

(P2O + q(1 - y))2 (Pro u + q(1 - x))  2 
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+ A2p p,,ffffdxdydudo G(x, y; 73 

X \ Prn ] 
(5y  + P2(1 -- O)) 2 (~C + pn(1 -- U)) 2 (21) 

All momenta appearing in the formula refer to their minus components, i.e., q/Pl 
= q - / P  1-; all integrals run over (0,1). Here U = q2,~ T = A~.2 

The first term in the expression above comes from T A and the Born term of TB; 
the second, from TA and the Born term of To. The third term comes from the rest 
of T B; the fourth, of Tc. The diagrammatic interpretation of each of these terms is 
represented in fig. 7. In order to avoid having quark and gluon lines crossing each 
other, we have drawn figs. 7 in a planar fashion. However, one should understand 
that, like figs. 4 - 6 ,  they refer to particular x_ ordered contributions and that the 
Coulomb potential is "instantaneous" in x_.  No confusion can arise from this when 
one recalls that all quark and antiquark constituents have their minus components 
of momenta restricted so that the arguments of all mesonic wave function lie in the 
interval (0,1). The relative minus signs between pairs of terms can be understood 
by observing that they differ by the coupling of a gluon to a quark or to an anti- 
quark in a color singlet meson. The minus sign reflects the opposite color charge 
carried by the quark and the antiquark. Within the class of A_ = 0 gauges, one can 
easily show that the piece of TA contributing to the first term and the Born contri- 
bution of TB are not separately gauge invariant. Only when combined as in the first 
term do they give a gauge-invariant quantity and, in so doing, remove the infrared 
singularity. (An analogous remark applies to the second term.) the third and fourth 
terms differ in this regard, since there is no infrared singularity within the region 
of integration. For example, each of the four contributions to the third term ap- 
pears to be gauge invariant. 

Looking at the diagrams corresponding to each piece of eq. (21), one can easily 
develop heuristic rules for writing down the form of the final answer directly. We 
will not pause here to discuss them but will pass on to the study of the asymptotic 
behavior of this amplitude. Note that in the case meson 1 is massless, the wave 
function ¢1(x) is constant for any x leading thus by virtue of eq. (21) to a zero 
scattering amplitude. This demonstrates one aspect of the decoupling of zero-mass 
mesons conjectured by Callen et al. [4]. Proving the decoupling of a zero-mass 
left-moving meson (2) seems much more complicated in this gauge. 

3.2. Asymptotic behavior o f  the scattering amplitude 

In this section, we discuss the high energy behavior of the (ut) amplitude, eq. 
(21), in various kinemtical limits. We are especially interested in its contributions 
to Im P eq, (5), so we shall also need to know the behavior of the phase space fac- 
tor. In table 1, we summarize the values of the minus components of all the rele- 
vant momenta and the triangular function ;~(s,/an 2 ,/a~). 
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(a) 

2 m 

(b) 

2 m 

2 

111 m - -  

(c) 

I " - r~ 

4- 

2 2 

2 2 
m ill 

(d) 
Fig. 7. Diagrammatic representation of each of the integrals in (ut) amplitude, eq. (21). (The 
wavy line denote gluon exchange. To avoid confusion because of lines crossing, we have not 
drawn (c) and (d) in "time"-ordered form even though the gluon exchange occurs instantaneously.) 

3.2.1. The "Regge" limit 
The h igh  energy  behav io r  o f  the  (ut)- ampl i t ude  for  f ixed masses /a  n , / a  m cor- 

r e sponds  to a Regge l imi t  and  is expec t ed  to  behave  as s a as s ~ ~ .  It  t u rns  o u t  

t h a t  every t e r m  in eq. (21)  gives the  same resul t ,  so we will i l lus t ra te  the  fea ture  
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of the calculation by presenting the details for two terms. 
Referring to table 1, we note that P2 -  and Pro- both tend to zero as 1/x/s. 

This, in turn, implies that the dominant contribution to each of  the integrals in 
eq. (21) comes for every gluon exchange denominator becoming O(s-I) .  For ex- 
ample, in the first term, we face (up2 - U p m )  2 .m (Old 2 --  UtaL)2/S. The arguments 
o f ¢  1 and $n tend to 1, i.e., the quark emitted by meson 1 and absorbed by meson 
n carries all the momentum of the mesons. Recalling that 

sab(x) --> kab(1 -- x) #b as x --> 1 , (22) 

the asymptotic behavior of  the first integral is 

/~2~t2 - - . 
2 ms f fdudok]b  -s 

s - 2 

X ka~I ( ( 1 - : ) / / 2 , )  ad ¢2(v )¢m(u )  

= s-~b-~d (kaiFk a-8) (l.t2U2)::dudo (b2(o) ~bm(U) 

× [(//2 - o/a2) ob - ((1 - u)/~Zm) #b] 
(v/a 2 _ u/a~)2 ((1 - o)/a~) t3d. (23) 

Note that the power is, as expected, related to the (wee) quarks b and d exchanged 
between mesons 1 and m and between mesons 2 and n, respectively. Notice that the 
dependence of  the coefficient of  the power (Regge residue) on mesons I and 2 is 
entirely given by the factors vab t.ad in the first curly bracket. 

'~ 1 ' ~ n  

The analysis of  the third and fourth terms is slightly more complicated. Consider, 
e.g., the third integral. Because P2 and Pm tend to zero, the dominant regions of  
integration are x and y near 1. To this end, let 

q(1 -- X) =-- Prnf; 

q(1 -- y )  - P2r/.  (24) 

Once again, the arguments o f  41 and ~n tend to one. Noting also that U ~ - s ,  we 
must use the scaling relation for Green functions, 

G - - ,  1 - - ; s  ,g(a , /3) .  
S S $- -~  oo 

Then the asymptotic behavior of  the third term is 

s- b-'d { ,iOd ,Zb ffffdudod dn dpm(U) (o) 
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X g - ( ~ P 2 '  r /P2)[  "(1 ar 7"/)fld(7/+--(lv) 2 --vfld_] I(1 + ~ f l d -  (1 ~-  ~ U~- 2 -- U)#b-]} . (26) 

g(a, 13),g_(Ct,/3) are the scaling functions defined in eqs. (A.10), (A.11). 
So it goes with each integral. In every term the dependence on mesons 1 and n 

of  the Regge residue is expressed by kalbk aa. Thus, not only does each term exhibit 
t-channel factorization but so does their sum. By parity invariance, the full sum 
must be proportional to 

s -#b -#d  k~ b k ad k~ d k ~ .  (27) 

(At this point we must admit that we have not succeeded in showing that the 
proportionality constant is non-zero.) As is frequently the case in the A _  = 0 gauge, 
parity relations are not trivial and we have not at tempted to demonstrate this final 
form directly from the integrals above. At this level in the 1/Nc expansion we have 
etablished that one can build pairs of  signaturized amplitudes, looking exactly like 
strongly exchange-degenerate Regge exchanges. If eq, (27) is indeed an equality, 
one has also shown that the leading Regge exchanges have cr  = + (the equivalent of  
charge conjugation times signature) if eq. (27) is just a proportionality relation 
and a different one holds for the (s, t) diagram one can construct also cr  = - 1  
exchanges * 

One may be interested in the non-leading.behavior as well, but this is difficult 
to discuss without knowing precisely the rate for which the wave functions ap- 
proach k(1 - x) # as x ~ 1. Naive consideration of  the individual integrals suggests 
the presence of negative integer powers, but whether these powers actually survive 
or are cancelled is an open question. 

The contribution to Im P of  this region of phase space is s 2a -  1, reminiscent of  
the AFS cut [16]. Whether the sum over states n, m leads to a non-zero coefficient 
is an especially interesting question also left unanswered here. Later, we shall 
return to Regge renormalization effects, but after this warm-up, we turn to the 
primary subject of  this paper. 

3.2.2. The "pomeron " limit 
As discussed earlier in sect. 2, we want to consider the region of phase space 

where both  p 2  and p2 are of  order s, say p2 = as p2 m = ~ .  The parameters ~ and/3 
are related to the momentum fractions of  the q~ pairs in mesons 1 and 2 according 
to a = xl (1  - x2) and/3 = x2(1 - x 0 .  Accordingly, the allowed values o f  a and/3 
are most simply specified by noting that Xl, x2 E (0,1). The kinematics of  this 
limit is given by table 1, where we see that a principal difference from the Regge 
limit is that Pro- is O(~/s) instead of  O(1/x~).  Consider the first integral in eq. (21). 
The dominant region comes from u -~ 0; to this end, we define upm - ~P2. Now, 
even though the arguments of  en and ern tend to end points, both  wave functions, 

* We wish to thank Y. Eylon for discussions related to this point. 
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in fact, scale [(A.10) and (A.11)]: 

 m(U) = ) t-72-m ) '  (28a) 

dpn(q\~/+oP2~ =~n (1 -~P2 ( I - v ) )  ... (_)n q~d (/a2p2,__~__n (1--0))  . (28b) 

Now consider meson 1. The arguments of both terms tend to the same fixed value, 
viz. x 1 =Pm/Pl (note 0 < Xl < 1); hence, unlike the Regge limit, the terms cancel. 
Therefore, provided the remaining integrations are finite, the scaling asymptotic 
behavior has decoupled. Altogether we get 

~ Pm o (v  - n)  

X (=)n Oc(l~2np' (1 =u))  ¢,(u) • (29) 
\ Pn 

The integral over r/is seen to converge at ~. Convergence at 77 = 0 is somewhat less 
obvious. Letting v = ~?z, we find that the integrand behaves as ~/2oc-I and so is 
integrable at r/-- 0. The next term in the expansion comes from 

n ,  Pm a 1 ¢c(~P2 (1-v))Oa(U) 
CT --m ,) fdo (3o) 

o o v - ~  

The integral over rl is of the form 

dz sin z 
Z 

at the upper limit and, hence, is convergent. Since P2/Pl = O(s-l), we find the 
asymptotic behavior to be nominally s-1. (We say nominally since we have not 
proved the coefficient is non-zero.) 

All the other integrals may be treated in a similar fashion with the same sort of 
cancellation occurring by pairs. Is there a simple physical reason for the cancella- 
tion? Noting again the vanishing of the gluon propagator, we infer that the cancella- 
tion reflects the sum of a quark's light-like color charge Q_ with an antiquark's 
opposite color charge. 

Finally we note that we have also calculated the contribution to the unitarity 
sum coming from high mass production by the (s, t) diagram mechanism, in that 
case even in each time-ordering no new singularity unrelated to quark parameters 
is built up. 

We turn next to regions of phase space responsible for Regge intercept and 
vertex renormalizations. 
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3.2.3. Regge renormalizations 
(a) Vertex renormalization. Consider the region in which Il2 m becomes large, say 

Il2 m = N,  but Il2 n stays finite (fig. 2a). We anticipate that this should lead to a vertex 
renormalization of  the (dd) trajectory, thereby breaking strong exchange degener- 
acy. Proceeding in a manner analogous to the pomeron discussion above, we find a 
cancellation occurs in the first three integrals, so that these do not cause a breaking 
in the leading trajectory. However, the fourth integral appears to give a Regge power, 
which can be seen as follows: Referring to the kinematics in table 1, it is easy to see 
that the leading asymptotic behavior of  the amplitude, eq. (21), comes f o r y  ~ 1 
and o fixed. To this end, let y A _  = r/p2_. Then one finds 

ffffdxdududo 0 (x. o.(.) 
Pn 

X F ¢¢(II~(1 +V))-¢(ii~v)l¢'(Pn +XPm~ . [upn~ 
P, ] -O ,~ - -~ f }  (31) 

Inserting the definititm of  the Green function G and using ~t(x) ~ k~bx ~a as x ~ 0, 
we can write 

Pm 
, , , , d x _ ,  dudv + 1-- v ~  ] 

Pn 1 Ill "t" [J . . . .  \--'~m / L (17 

t 
X ~)l(X) ~)n(U) Pl  ] \ Pl ] (32) 

Since P2-/Pm- ~x s -1, we see that this is proportional to s -fla. When squared, this 
gives a contribution to Im Pcx s-2fld, which we interpret as a renormalization of  the 
vertex for the exchange of  dd quarks. 

2 finite, we expect to find a contribution to If  we had instead let Iln 2 -- ~ and Ilm 
Im P ~x s-2~b, which would renormalize the vertex for (bb-) exchange. It is a simple 
(by now) calculation to show that this is indeed the case. The lack of  manifest 
parity invariance reveals itself in an amusing way: Whereas in the previous calcula- 
tion, only one of  the form integrals survived in the limit, in this case we find all 
four terms in the amplitude eq. (21) yield the same power s -~d . We have no explana- 
tion for this and, in fact, have not been demonstrated that the vertex given, e.g., by 
eq. (31) is non-zero. We also have not been able to show that the renormr.lized 
singularity factorizes. 

(b) Intercept renormalization. Our experience with multiperipheral or dual 
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models leads us to suspect that an intercept renormalization may come from the 
region of  phase space for which both/~2 and/12 increase as s grows, but such that 

2 2 p = Idnldm/S remaining finite (fig. 2b). The rather complicated kinematics of this 
limit are summarized in table 1. Proceeding to analyze each integral, we again find 
that the first three cancel but the fourth survives to give the result anticipated. For 
simplicity, one may choose the symmetric case where/~2 and/~2 are O(x/s). Again, 
we set y A _  = ~P2- but unlike the vertex renormalization above, we have 
A- /Pn-  ~ O, so we must let u ~ 1. Thus, we set (1 - U)Pn- =- ~A_. One can easily 
check that, in this limit, T = A 2 ~ --p. Not only does Crn scale, but also t~n scales, 
and we find 

_ k d ~  
~] '~, f f f fdxdyd~do(V2n]a~ Cz(V)[ -~¢(u2(1 +r/))-q~c(/~2o) "] (--)nk~b 1 p2 + p \ P m  / [_ (r/+ 1 - 0) 2 J 

X ch(x ) q~d(p~)[((1--X)Pm/pl) ¢b - ( ( l+~)pm/P l )C lb  t (33) 
(x + ~)~ 

This is proportional to 

P2 ~fld (pmtflb a: (/.t2)_fld (/d2)_flb 

which is the result sought for. 

4. Summary 

In this paper, we have shown that, unlike the dual resonance model, the cylinder 
graph in (QCD)2 does not lead to a new singularity which one might want to identi- 
fy with a bare pomeron. It might happen that, inclusion of  quark-antiquark pairs 
(the "sea") in higher orders could generate a new singularity. It seems likely that 
the absence of  this new singularity to order 1IN 2 is related to the absence of  
gluonic degrees of  freedom and gluonic bound states ("glueballs") in two space- 
time dimensions. If  so, an analogous calculation in (QCD)4 ought to yield a bare 
pomeron. The attempts to derive the bare pomeron in (QCD) are at a preliminary 
stage. Low [17] and Nussinov [18] have introduced schemes in which the pomeron 
indeed appears as a singularity at one. Gunion and Soper [19] have summed a cer- 
tain class of  diagrams in QCD to obtain the Low-Nussinov type results, they also 
obtain a decoupling of  the bare pomeron at D = 2 for reasons similar to those we 
address *. Recently Veneziano [20] has presented a unified approach to QCD and 
the topological expansion. The bare pomeron he discusses coincides with the one 
we had set out to calculate in this paper in (QCD)2, it seems to us that the bare 

* While their results are much nearer to the desired ones, we think that the interest in our work 
[8,9] is that we derive the properties of high energy diffractive scattering in a well-defined 
field theory which is both asymptotically free and confining. 
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pomeron he describes in (QCD)4 is the one whose properties should be pursued. 
However, in the context of the topological expansion, it has been conjectured [21 ] 
that no new singularity results from the cylinder graph, in which case, the situation 
would more nearly resemble our two-dimensional calculation. 

Two technical improvements on our method seem feasible and desirable. It 
would be a considerable increase in efficiency if the asymptotic limits could be 
extracted without decomposing the covariant amplitudes into a sum of "t ime" 
-ordered amplitudes. We have done this for the virtual Compton amplitude [22] 
and believe it is possible in general by introducing Sudakov variables. 

Secondly, it would be useful if parity invariance were made manifest, even at 
the expense of Lorentz invariance. To this end, it would be useful to solve the 
theory in the A 1 = 0 (Coulomb) gauge. In this gauge, parity is manifest and the 
language of Feynman's discussion [5] should be transcribable almost verbatim. 
As Feynman showed, the infinite momentum frame may restore simplicity even 
though Lorentz invariance is not manifest. However, in this regard, we must note 
that there are puzzling questions of consistency in axial gauges [23]. 

Finally, it may be of considerable theoretical interest if one could solve the 
model in a covariant gauge or any gauge in which the self-coupling of gluons is 
non-zero. One could even hope to get some insight into the four-dimensional 
confinement problem. 

We especially wish to acknowledge S. Nussinov, We also thank W. Bardeen, 
R. Brower, G.F. Chew, J. Ellis, Y. Eylon, J. Gunion, A. Mueller and G. Veneziano 
for stimulating discussions and correspondence. 

Appendix A 

Review o f  Feynman rules and previous results 

The Feynman rules and results have been summarized elsewhere [1 ]. We recall 
that, in the A_ = 0 gauge with light-cone-quantization, the Coulomb gluon exchange 
may be characterized by a "propagator" 

1 l I (  1 l 1 
k2 = + _ 2 k _ + i e )  ~ ( k _ - i e )  2 " (A.1) 

The exact, dressed quark propagator is 

SR(P) - P-7+  + (mg /2p_)  7 -  + mo 
p2 _ m 2 (A.2) 

The renormalized mass is related to the bare quark mass m 0 by m 2 = m 2 - g2N/lr. 
We take units where g2N/n = 1. As before, because S(p) always enters a calculation 
sandwiched between 7 -  matrices, it is useful to define 7-SR(P)3 ' -  = 2S(p)3'_ 

S(P) = [ p+ - mZ ] - l  (A.3) 



4 4 0  M.B. Einhorn, E. Rabinovici /Bare pomeron graph 

The proper vertex for the meson-quark-antiquark is denoted by Fn(p, r), where 
r(p) is the momentum of the meson (quark). In fact, in the light-cone gauge, this 
has the form 

r . (p,  r) =--1 Pn(X) , (A.4) 
r _  

where x = p_/r_ .  For 0 ~< x < 1, this is simply related to bound state wave func- 
tion ¢n(X) by 

l r . (x)=- 2. m a -  (~n(X). 
x 1 - x A  

(A.5) 

The proper vertex is defined for all x by the integral 

1 dy ~.Cv) 
r.(x) = f o ~-  - x-~" ' (g.6) 

where, for 0 ~< x ~< 1, we take the principal value prescription. In this region, com- 
bining these two equations gives 't Hooft's bound state equation. The T-matrix for 
quark-antiquark scattering in the color singlet channel is given by 

~r 1 ~ 3-,(.(x)r.(v) 
T(k_, l_;r)  = N ( k _  - / _ ) 2  - N r ~  "-~ r 2 - la2n ' (A.7) 

where x = k_/r_ ,y  = l_/r_ are the momentum ratios for the initial and final quarks. 
A number of other relations are useful: Defining, as before, the Green function 

G(x, y; r 2) = ~ #~n(x)¢n('V) 
r 2 2 ' (A.8) 

n - -  ]-I n 

we may also write the T-matrix as 
1 

1 dudo_G(u_, v_;r z) / (A.9) 
T(k_, I_ ; r) = N---~-_ (x -- y)2 o j j o  ( u -  x) 2 ( v -  y)2j" 

The Green function G(x, y, r 2) obeys the scaling relation (25) where g (a,/3) is given 
by 

1 
/ d?~ eb(ax) ed(~k) (A.IO) 

g(a, A3) = ~-~ X -  1 +i~ 
O 

In eq. (25) we have defined g(a, ~) for a fixed real ratio a/~ as an analytic function 
of a with a cut for positive, real a. In particular we define 

g_(a ,  fl) = g ( - a ,  - /3) .  (A.11) 

Finally in the course of calculations we rely on some scaling properties of the 
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wave function, i,e. 

where for ~ > 0 the scaling function is the solution of the equation 

1 - ~a(~)  ; f (r~ - ~)2 • 
o 

441 

(A.12) 
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