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This paper contains (1) the necessary mathematics for a precise interpretation of M~ssbauer data, and (2) a characterization 
of a spectrometer designed specifically to maximize the information available from these data. The innovative aspeizts of 
this spectrometer are that it provides a known absorber lineshape, that it is quantitative, and that it provides information 
on the vibrational states of the absorber via the second order Doppler shift vs temperature and the total absorption vs 
temperature. The spectrometer allows sample temperature and applied magnetic field to be varied in any combination of 
2-350 K or 0 -6  T, respectively. Simultaneous collection of four data streams allows an accurate representation of the trans- 
mission spectrum. Sophisticated computer treatment with extensive use of least squares fitting procedures and fast Fourier 
transform techniques provides the final output display of sample cross-section vs standardized source velocity. The cross- 
section display is shown to be independent of the thickness of samples with M6ssbauer eptical densities up to 3. In ad- 
dition, we report the method and results of measurements which must precede the operation of the spectrometer: (1) the 
absorption coefficient of iron at 14 keV: (498___ 7)cm -1 , (2) the Debye temperature of our source (57Co in rhodium matrix): 
(361_+20) K, (3) the source lineshape: three Lorentzians with Heisenberg linewidth, a center line with twice the intensity 
of the symmetrically placed outer lines which are spaced 0.055 mm/s  apart, (4) the MtSssbauer effect cross-section for 57Fe: 
(2.4_+ 0.2)× 10-18 cm 2 (5) the Debye temperature of iron (NBS /t 1541): (430_+ 30) K, and (6) the values for the Hamiltonian 
parameters of iron metal (NBS //1541) at 290, 101 and 4.2 K. The precision of the determined Hamiltonian parameters 
is defined in terms of a statistic with a weighted Z 2 distribution. 

1. Introduction 
We have constructed an 57Fe MiSssbauer spec- 

trometer whose final output is M~Sssbauer effect 
cross section vs standardized source-sample rela- 
tive velocity. In order to achieve this result the 
spectrometer collects simultaneously four streams 
of data which are computer treated with extensive 
use of least squares fitting procedures and fast 
Fourier transform techniques. Furthermore, the 
machine has two other important properties: (1) it 
permits the measurement of the source lineshape 
and Debye-Waller factor, and (2) it allows the 
sample temperature and applied magnetic field to 
be varied in any combination of temperatures, 
2-350 K, or fields, 0-6 T, independent of the 
source temperature or field. The chief result of 
this effort is MiSssbauer data with more informa- 
tion content, with greater resolution, and present- 
ed in a form which is potentially directly compar- 
able to other data. 

The need for the machine arose from our pre- 

* Present address: Science Applications Inc., La Jolla, CA 
92038, U.S.A. 

vious research on a group of electron-transport 
proteins containing two iron atoms per molecule 1). 
For example, we found that we could not precisely 
fit the spectra of these samples when the M~Sss- 
bauer Hamiltonian consisted simply of a quadru- 
pole interaction in an applied magnetic field. 
When we failed to fit these spectra by assuming 
a more complicated Hamiltonian, we began to sus- 
pect some inaccuracy in the data. In addition, we 
began work on proteins with four and eight iron 
atoms per molecule; thus our need for more accu- 
rate and precise data. We also felt that improve- 
ments in the quality of biological samples and in 
our ability to handle theoretically the complex 
Hamiltonians from these samples were outstrip- 
ping the capabilities of the spectrometers; thus the 
need to improve the quality of our data and the 
machines which produced them. 

The basic problem of the M~Sssbauer spectro- 
scopist is to fit his data to his simulation program 
output. He may choose to do the fitting with a 
computer, but, for us, the complexity of the re- 
quired Hamiltonians has often prohibited this 
method. Therefore, we fit by trial and error the 
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plotted output of our simulation programs to the 
x - y  data from the spectrometer. Our efforts have 
been directed toward making the x (velocity) and 
y (absorbance or cross-section) coordinates as accu- 
rate as possible. 

In the following we shall describe separately the 
two axes with the component parts and mathe- 
matics necessary for their characterization. For the 
x-axis these consist of: 

1) velocity drive, 
2) Moir6 fringe interferometer, 
3) "zero-position" control circuit, 
4) "zero-position" monitor circuit, 
5) time channel, 
6) "cosine broadening" correction, 
7) 2nd-order relativistic Doppler shift correc- 

tion. 
For the y-axis these consist of: 

1) sigtial channel [i.e., gas proportional counter, 
counting electronics, and corrections for pile- 
up, deadtime and background. A detailed 

description is not within the scope of this 
paper, but is presented separately:')], 

2) solid angle correction, 
3) removal of source lineshape effect, 
4) removal of the blackness effect, 
5) Debye-Waller factor determination, 
6) source lineshape determination. 

Finally, we shall present some of the output of the 
machine which pertains to source and absorber 
standardization. 

2.  O v e r a l l  c h a r a c t e r i s t i c s  
The general features of the dewar portion of this 

spectrometer are shown in fig. 1. The dewar plus 
superconducting solenoid and associated electron- 
ics was purchased from American Magnetics, 
Inc. 3), who also built the solenoid and accessories. 
The dewar (Model CT-70) was manufactured by 
Cryogenic Associates 4) with the exception of the 
solenoid bobbin which serves also as the lower 
and inner walls of the liquid helium chamber. The 
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Fig. 1. Dewar geometry.  
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solenoid is a triplex configuration which provides 
simultaneously: a field maximum of up to 6.5 T at 
the sample position, a short field null (less than 
0.1 T) at the source position, and a long field null 
(less than 0.1 T) over the counter volume. The 
solenoid also has the following accessories: (1) the 
triplex coil has a removable set of  vapor-cooled 
current leads and a persistent mode switch at the 
top of the solenoid; (2) in the solenoid, there is 
another winding, also with removable leads, which 
provides fields up to 500 G to null any remnant 
field present When the triplex coil is not in use; 
(3) inside the solenoid, there is a winding which 
measures the field intensity from the triplex coil. 
Coarse temperature variation is accomplished by 
varying the amount of  liquid helium into the sam- 
ple chamber via a throttling valve at the bottom 
of the liquid helium chamber. In turn, the thrott- 
ling valve is manually controlled at the top of the 

dewar. Sample temperature control is effected elec- 
tronically by a heater and sensor arrangement in 
the sample holder. Sample access is through the 
top of the sample chamber. The drive mechanism 
(fig. 2), which is outside the dewar, can be lifted 
and with it the drive extension and the entire 
sample holder are also removed. 

We have used machineable tungsten for the col- 
limators to provide an additional safety margin 
when the drive is outside the dewar and to elimi- 
nate radiation reaching the counter by any other 
route than through the sample. The gamma-ray 
beam is collimated at the bottom of the sample 
such that the beam does not impinge on any met- 
al surface of the counter or the dewar. The ma- 
chineable tungsten "can" around the source has 
two additional functions. Due to the proximity of  
the source and sample, the tungsten "can" 
around the source provides needed thermal resis- 
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TABLE l 

System specifications. 

Upper bound of scan range 200 mm/s  
Lower bound of scan range 1.5 mm/s  
IN use rate 0.3 l /h 
IN capacity 7 1 
IHe use rate 0.3 I/h 
IHe capacity 10 1 
Maximum solenoid field intensity 6.5 T 
Current at maximum field 62.5 A 
Moire fringe grating frequency 2000 lines/in. 
Temperature stability at sample and source 0.1 K 
Dwell time per channel 5 ms 
Count rate with 35 mCi source 20 kHz 
Time to collect 100 000 counts 

per channel for normal biological sample 
Optimum amount of sample 

21 min 
2/zmol S7Fe 

tance to isolate the two heaters. Inside the "can" ,  
there is a polyethylene bucket which excludes liq- 
uid hellium from the source when the sample 
chamber contains liquid helium. The presence of 
liquid helium at the source has two detrimental 
effects: (1) since the source moves during a veloc- 
ity sweep, it creates a non-trivial change in the 

non-resonant scattering cross section as a function 
of source position, and (2) since it is necessary to 
hold the source temperature above 5 K to avoid 
magnetic splitting in the source, the presence of  
the liquid near the source would result in constant 
boiling at its surface. A carbon resistor-thermistor 
pair is mounted immediately behind the source to 
monitor the temperature of  the source. We show 
the overall system performance specifications in 
table 1. 

3. The " x - a x i s "  
The main part of the drive (enclosed in dashed 

lines in fig. 3) is a Ranger Instruments s) velocity 
drive (Model MS/VT-700) operated in the constant 
acceleration, flyback mode. 

We synchronize the analyzer [Model 
NS900/NS458, Northern Scientific6)] to the drive 
by convening the binary address to a very precise 
voltage; this voltage, in turn, becomes the refer- 
ence ramp in the velocity drive servo system (see 
fig. 3). We note in passing that although the mul- 
tichannel analyzer provides an analog representa- 
tion of the horizontal axis, we were forced to use 
the seven most significant bits in a 12-bit digi- 
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ta.l/analOg converter in order to bring the precision 
of this ramp to a level which is comparable to the 
precisions of the other parts of the spectrometer. 

In order to measure the relative position 
changes of source to absorber during a velocity 
sweep, the Ranger drive incorporates a Moir6 
fringe interferometer into the housing of the drive 
motor. The Ranger drive electronically derives a 
pulse output from the interferometer whose fre- 
quency is eight ,times the rate at which fringes 
pass a stationary point. This pulse output is stored 
in the second subgroup of the analyzer. 

In order to maintain a known relative position 
between source and collimator, we have mounted 
a position transducer at the top of the drive. We 
derive the average of the extremes of the position 
output and sum it into the source drive servo loop 
with a sample and hold circuit. In this way we add 
a correction to the sweep which is constant during 
any one sweep. In addition, we also generate a 
pulse whenever the position transducer output 
crosses "zero".  The pulse is collected in the 
fourth subgroup of the analyzer in order to pro- 
vide a record of the drive stability and to identify 
the channels which correspond to zero position. 
From these channel numbers and the velocity out- 
put one can calculate the absolute source collima- 
tor distance corresponding to each channel. 

Since the information which describes the posi- 
tion of the drive at any channel is contained in 
the second and fourth subgroups of the analyzer, 
we need only measure the time duration of any 
channel in order to determine the velocity at any 
channel. A pulse output from a crystal controlled 
oscillator is multiplexed into channel 258 of the 
analyzer. We show the performance specifications 
of the velocity drive in table 1. The details of the 
electronics can be found in the thesis 7) of Chu 
Tzu Wu. 

The raw data which characterizes the motion of 
the source must be corrected in two ways before 
one can properly define the " x "  or velocity axis of 
the spectrometer. The corrections applied by the 
computer program are described in the following 
paragraphs. The first correction is for the effect of 
cosine broadening. Cosine broadening is the de- 
scriptive term for the difference between source- 
absorber velocity and average Doppler velocity 
when the source and absorber are not assumed to 
be points. The Doppler velocity is equal to the 
component of the source velocity, o, along the di- 
rection of the gamma ray. Therefore, the average 

where the 
scribed by 

D(R) = --~ 

value of the Doppler velocity is equal to o(cos a), 
when 0 is the angle of the source motion to the 
gamma-ray. When the source is finite, a closed 
form calculation of (cos 0) is impossible. However, 
a good approximation can be derived by integrat- 
ing the power series expansion of cos 0. Hence, 

a 2 + b  2 
(cos0)  = 1 4--d.2------- l--r/, (1) 

where a is the source radius, b is the collimator 
radius and d is the source-to-collimator distance. 
Although d changes during a sweep of the spec- 
trometer, these changes are so small that (cos 0) 
can be assumed to be constant: for our machine, 
r/ equals 7.7x 10 -4. 

The final correction made to the velocity data is 
that from the second order relativistic Doppler 
shift. By correcting the energy of the emitted gam- 
ma ray for time dilation of its frame relative to the 
stationary absorber frame, we can write the follow- 
ing expression for the energy of the emitted gam- 
ma in the absorber frame: ( < <  
e = E, 1 + 1 - 5 7 } '  (2) 

where E~ is the energy of the nuclear transition; 
v is the source velocity (caused by the source 
mover), (v 2) results from the "thermal." velocity of 
the emitting nucleus. The correction from thermal 
effects is called the second-order relativistic Dop- 
pler shift, although it 'is not the second order shift 
due to the drive velocity (the second-order shift 
from the drive velocity is negligible). A similar 
correction must be made for the thermal motion 
of the absorbing nucleus. 

Since the major contribution to (v3 in this term 
is nuclear vibrational motion, we can derive an ap- 
proximate expression for (v 2) from the Debye mod- 
el for solids. The expression used by us for the 
temperature dependence of the velocity shift from 
second-order Doppler shift is: 

- (v  z)  _ - 3 k T  D (OD__'~, (3) 
Av(T)  

2 c 2 mc 

Debye function ts) is adequately de- 

30 1 
.~1-- ~ 1-6 - exp( -nR)  {(nR) 3 + 3(nR)2+ 

+ 6 nR + 6}]. (4) 

The validity of the above expression is depen- 
dent on two assumptions: (1) that the Debye mod- 
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et for solids is appropriate to the sample and (2) 
that the expression for internal energy from the 
Debye model is a valid representation for this 
measurement which is performed at constant pres- 
sure rather than at constant volume. Since our 
equation for the " thermal"  Doppler shift implies 
these restraints, we use it primarily as a definition 
for the parameter, 0o, rather than as a theoretical 
derivation of the shift from the Debye model. 

The temperature dependence in this expression 
necessitates the definition of a standard isomer 
shift. While we recognize that our definition is 
somewhat arbitrary, we feel it is a good compro- 
mise between (1) a method for separating the pa- 
rameters belonging to the sample from those 
which are a property of the measuring system, and 
(2) a lack in the theory describing the phonon 
spectra of .solids. In other words, we are able to 
separate the second-order Doppler shift from our 
own isomer shift values. Therefore we can be 
much more sensitive to temperature dependencies 
in the isomer shift which reflect real changes in 
bonding than we could previously. In addition, we 
can report the value of 00 as a measured parame- 
ter. However, the cost of this procedure is that we 
have begun a system which requires that we mea- 
sure the 0D for our source and each of the absorb- 
ers. 

Our standard reference material is iron-foil 
(NBS# 1541) at 298 K. The isomer shift of this ma- 
terial is defined as the velocity zero of the spec- 
trometer: The following equations show the way 
that our standardization is accomplished. 

~i(T, T') = ~abs(T) + AVabs(r ) - -  fisou(T') - Avsou(r'). 
(5) 

A relative isomer shift, 6 (T, T'), can be defined in 
this way for an absorber at temperature, T, and a 
source at temperature, T'. In order to specify a 
standard isomer shift we measure the isomer shift 
of Fe (NBS# 1541), 6Fe, with both the source and 
iron foil at 298 K. Finally, we define the standard 
isomer shift, 6stand, as the directly measured iso- 
mer shift, 6(T, T') with absorber temperature, T, 
and sample temperature, T', corrected for the iso- 
mer shift of NBS# 1541 and corrected to a source 
and sample temperature of 298 K. 

fistand = fi(T, T') - ~SFe + AYahs(298) -- AYahs(T) - 

- A Vsoa(298 ) + Avsn,,(T'). (6) 

Thus this "standard" isomer shift will be identical 

to that made with both sample and source at room 
temperature quoted relative to iron foil. 

4. The "y-axis" 
The design considerations encountered in the 

construction of the gas counter and associated 
electronics for the signal channel are described in 
a separate paper2). It is sufficient to mention that 
the counter was a locally constructed, argon filled, 
end-on illumination, proportional gas counter and 
that all the electronics following the counter are 
manufactured by Ortec8). Tail pulses formed by 
the charge sensitive preamp at the counter follow 
two different pathways to the analyzer: (1) the 
"slow channel" has a 1/~s delay-line shaping am- 
plifier and a timing single channel analyzer, (2) the 
"fast channel" has a 200 ns shaping amplifier and 
a threshold discriminator set to a voltage corre- 
sponding to a gamma-ray energy around 2 keV. 
Pulses from the discriminators of the slow and 
fast channels are collected in the first and third 
subgroups of the analyzer respectively (fig. 1). 

The slow channel data is corrected for pileup er- 
rors by the fast channel data via the following ex- 
pression: 

I - -  / s l o w  

1 - -  r"  least ( 7 )  

where 1, /slow and /Fast a r e  the corrected, slow and 
fast count rates, respectively, and r is an effective 
counting loss time for the slow channel (1.1 as). 
Justification for this correction is provided in the 
paper z) which deals with the signal channel. Note 
that both the fast and slow channels contain the 
M6ssbauer spectrum. Therefore. the pileup correc- 
tion is not constant and will depend on the par- 
ticular shape of the M~Sssbauer spectrum. Failure 
to make a "dynamic"  pileup correction of this 
kind can result in a severe distortion of the Moss- 
bauer spectrum, especially in instruments with 
high incident count rates at the detector. 

The gamma-ray beam collimator which defines 
the beam at the counter is located at the sample 
(see fig. 3). The motion of the source relative to 
the sample creates a dependence of the beam solid 
angle on the channel number. Corrections for 
changing solid angle take many forms among 
M6ssbauer laboratories; however, the solid angle 
correction performed by us has some positive 
qualities worth mentioning. By collimating at the 
sample, we minimize the possibility that an in- 
homogeneity in the sample can cause a depen- 
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dence of the cross-section on solid angle. In addi- 
tion, the "zero position" regulator maintains a 
well-defined distance between the source and col- 
limator so that by using the information in sub- 
groups two and four in the analyzer, we can make 
the solid angle correction with the following ex- 
pression: 

4rt - 4 ' (8) 

where 1-2/47r is the fractional solid angle, e is the 
ratio of the collirfiator radius to the source--colli- 
mator distance. 

By checking on whether this expression actually 
removes the solid angle effect, we have a means 
of verifying that the beam is not being collimated 
elsewhere in the system. For example, if the coun- 
ter's physical dimensions are such that the solid 
angle effect modifies the effective length of the 
counter, a very complex problem is created in try- 
ing to remove the dependence of counter absorp- 
tion on solid angle. This type of problem occurs 
only when the efficiency of the counting gas is 
marginal, so that a sizeable fraction of the radia- 
tion can escape through the counter side walls as 
in our situation using argon as a counting gas. 

The previous sections on the "y-axis" have 
dealt with the problem of correctly representing 
the counting data as those from a transmission 
spectrometer. In the following sections, we deal 
with the problem of converting this information to 
a measurement of sample absorption. 

We define the interaction between the gamma- 
ray beam and sample as follows: 

l(v) = Io(1 -fs) + I, + f~Io S (v -E)  x 
- - o 0  

x exp[--tr(E) ta] dE, (9) 

where I(o), Io and la are the pileup and solid angle 
corrected count rate, the detected 14 keV gamma- 
ray count rate, and the non-14keV gamma-ray 
count rate, respectively, f~ is the Debye-Waller 
factor for the source, and the integral is the trans- 
mission integral for MSssbauer spectroscopy, T(o), 
with S ( E - o )  being the source shape function, a 
the differential MSssbauer cross section of the ab- 
sorber, and t a the absorber areal density (including 
the Debye-Waller function), la results almost en- 
tirely from Compton processes in the counter in- 
duced by 122 keV gamma-rays. (One of the main 
reasons for selecting argon as a counting gas is its 
property of minimizing the relative contribution of 

la.) TO find the value of I0 and Ia we take a value 
of I(o) from the spectrum where T(o)= 1, usually 
the left or right extreme of the spectrum, and then 
solve an equation for lo and I, which models the 
emission spectrum of the source and the scattering 
cross-section of the absorber. The equation for the 
model is found by running "MSssbauer" spectra 
on Pb, Cu and AI to establish the intensities at 
122, 136, 6.5, 20 and 14 keV. (20 keV is the rho- 
dium X-ray line from the source.) We assume that 
our biological samples have the scattering cross- 
sections of water and make a correction for age of 
the source. Although this process was time-con- 
suming to construct, the information obtained 
from it has allowed us to construct a system 
which can provide a background level as low as 
3% of the total counts in the signal channel. A 
low value o f / a  is especially important in the for- 
mation of the transmission array. 

By solving eq. (9) for T(o) we obtain the follow- 
ing expression: 

T(v) = [l(v) - Io(1 -fs) - I J / f J o .  (10) 

T(o) is the transmission spectrum which is impli- 
ed, but not actually represented, by most pub- 
lished spectra. That is, if one looks at a spectrum 
in the literature which shows a spectral minimum 
of 85% transmission, the tendency is to assume 
that the spectrum is undistorted by the blackness 
effect since 0.86 = exp [-0.15]. However, iffs o r  1 a 

is large, the 85% transmission reported can be 
40%, for example. The result is a spectral distor- 
tion which is further enhanced by the convolution 
of the source and absorber functions. More will be 
made of this effect later as we discuss the decon- 
volution of the source shape function from the 
transmission integral. 

The transmission integral as defined in eq. (9) 
poses a difficult problem for the MSssbauer spec- 
troscopist. The information desired from the ex- 
periment is a(E), the cross-section. The integral is 
the convolution of the source shape function 
S(o -E) ,  and the transmission function for the ab- 
sorber, exp[-a(E)ta]. Since t a and S ( o - E )  can be 
measured and since a(E) can be calculated by a 
computer program, several investigators have 
chosen to perform the convolution of the source 
shape with a guess at the parameters which give 
rise to a(E), fit the experimental data to the trial 
function and then use )~ 2 or some like criterion to 
gauge the precision of the fit and choose the pa- 
rameters for the next trial. This trial and error 
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procedure should, by minimizing X 2, eventually re- 
sult in a determination of the maximum amount 
of information on the parameters which give rise 
to a(E). This procedure, i.e., curve fitting the 
transmission integral, has several drawbacks with 
respect to its alternatives: 

1) It assumes that the a(E) generating program 
contains the necessary sophistication to generate a 
"correct" a(E). If the sample is assumed to con- 
tain a single iron environment, then the total 
number of possible free parameters in a(E) is fif- 
teen. However many experiments do not provide 
prior information (i.e., EPR and ENDOR measure- 
ments) on how many "f ree"  parameters are free. 
Specifically, it is extremely difficult to determine 
whether a sample contains a distribution in one of 
these parameters "G-strain",  for example. 

2) Since a(E) is itself a convolution, calculation 
of the transmission integral requires an additional 
convolotion for each trial in the curve fitting 
procedure. This extra convolution is an expensive 
complication to a curve fitting procedure. 

3) The exponential in the transmission integral 
is an especially malicious property as it forces the 
curve fitter to determine the magnitude of the 
value being exponentiated either by experiment or 
by trial and error. Since this experiment is often 
impossible, another free parameter is added to the 
curve fitting procedure. 

The most attractive alternative to the above 
procedure is deconvolution of the transmission in- 
tegral by a Fourier transform. The advantages of 
deconvolution are that the curve fitter is placed 
one step closer to the M~ssbauer Hamiltonian pa- 
rameters and can test more easily the effects of 
subtle parameter variation in the sample. Decon- 
volution by a Fourier transform is, however, 
fraught with mathematical difficulties. In the fol- 
lowing section, we show how these difficulties can 
be circumvented by stabilizing the Fourier trans- 
form with a truncation in Fourier space. 

In the previous section, we have sketched brief- 
ly the method by which we use the information 
from the multichannel analyzer to construct an ar- 
ray, u, for the velocity at each channel and an ar- 
ray,T, for the transmission of the. spectrometer at 
each channel. Together these two arrays constitute 
a discrete representation of the function T(o) in 
eq. (10). In reality, the formation of T(o) is com- 
putationally more complicated than is shown. 

In order to demonstrate the method we first 
rewrite eq. (10) as: 

Elav - l(v)] (11) 
1 - T(v) - fs(lav_la) , 

where lay = Io+I~. Remembering that lay is derived 
from the left or right extremes of the data, l(v), in 
order for an average of I(o) to equal l~v, T(v) must 
equal one. In real spectra this is not true unless 
the experimenter pays the price of greatly extend- 
ing the scan range. Of course, the reason for this 
is the wings of the resonances in the spectrum. 
We can describe these resonances mathematically 
as  

ai (12) 
I -- T(v) = j = l  "bj2 ..~ ( x j _ / 2 ) 2 ,  

where b: is the linewidth, xj is the resonance cen- 
ter, and aj is a height parameter for the j th  reso- 
nance. In order to estimate the value of T(o) at 
the range extreme where lay is derived, we fit I(o) 
with a least-squares routine at its minima. Since a 
Lorentzian lineshape is inconvenient for this fit, 
we perform the following modification to the T(o) 
array to make it compatible with a quadratic least- 
squares fitting routine: 

1 T ( v )  - + + " - j=~ \ a j  / \ a j  / 

The equation is accurate only in regions where 
the lines do not overlap. The procedure is to fit 
the minima of the T(o) array to the form of eq. 
(13) by least squares. Then by evaluating the func- 
tional form of T(o) at the o where Ia was derived, 
we can calculate a new la~ which is more accurate 
than the statistical uncertainty at any channel. 
With this new value for Iav we can recalculate 
T(o). However, a more accurate evaluation of T(o) 
is not the only reason for pursuing the elaborate 
procedure shown above. Another reason for this 
treatment (the one most pertinent to the present 
discussion) is that it provides an accurate descrip- 
tion of the strongest spectral line. This informa- 
tion is important in finding the proper truncation 
point in Fourier space as will be shown below. 

The convolution theorem of Fourier transform 
theory states that the convolution of two func- 
tions is the inverse transform of the product of 
the Fourier transforms of the two functions. 
Hence, one can deconvolve a function by taking 
its Fourier transform dividing it by the transform 
of the deconvolving function and then taking the 
inverse transform of the quotient. In reality, this 
process is performed via the discrete Fourier trans- 
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formg), which is the discrete representation of the 
Fourier series for a function• In the following, we 
shall treat the discrete transform and the integral 
transform as interchangeable, in order to maintain 
the functional form of the transmission integral. 
[This approximation can be formally justifiedg).] 
We shall then show how the conclusions of this 
treatment fared when tested by the discrete trans- 
form process. 

Invoking the convolution theorem of Fourier 
transforms, we find that: 

F[T(v)] = F [ S ( E ) ] . F [ e x p { - t ~  a(E)}], (14) 

where the shape function 

(15) S(E) = i r ( r ~ + U ) '  

and 
F[S(E)] = exp(-I rs t i ) ,  (16) 

where t is the abscissa of the Fourier space• Here 
it is shown to be a Lorentzian (Cauchy distribu- 
tion). The use of more Complex functional forms 
for S (E) does not affect the validity of the follow- 
ing treatment; in fact, the exact functional form 
used by us is not Lorentzian and will be described 
later because its introduction at this point need- 
lessly complicates the mathematics• In principle, 
one could find tr(E) from the following equation: 

tr(E) = t~ln {F -1 f- F__[T(v)] .]t (17) 
Lexp ( - I I'~ ~l)JJ" 

However, the addition of "noise"  to the prob- 
lem prevents things from being so simple. The 
principal noise source in M6ssbauer spectroscopy is 
the indeterminacy in the lifetime of any particular 
decaying nucleus. The noise properties which are im- 
portant to us here are that it is "whi te" ;  i.e., the 
variance of the noise, s2, which is constant in both 
the frequency and time domains, and it equals the 
number of counts collected in the measurement at 
any channel. We define a random function, r/(E), 
which has a (r/(E))= 0 and a (r/2(E)) = s 2, which is 
independent of E. 

We write the total absorption function of the 
absorber as 

,4 = exp - t .F~  2 j ~ l  Fa + ( E - E j )  2 ' (18) 

where m lines contribute to the cross-section; Fa, 
the absorber linewidth, and Ej, the resonant ener- 
gy of the j th  line, are given in terms of the num- 
ber of channels, and Sj are constants which de- 
scribe the intensity of each line. 

Then, since T(o) and r/(o) are independent and 
since the Fourier transform is a linear transforma- 
tion, the Fourier transform of the transmission in- 
tegral plus noise is 

FIT(v)  + q(v)] = F[S(E)]" 

j =, r 2 + Ej)2J + 

+ F I-rt (v)-I. (19) 

If E is given in units of a channel width, we can 
write the integral transform using the kernel of 
the discrete transform, and setting the limits of 
the integral transform equal to the limits of the 
discrete transform, the Fourier transform becomes 

F= Fs I ~s exp(2niEt/N) 
Ir ,J - ½N F2 + E 2 dE" 

• exp - _ + ( E -  Ej) J - ½ N  j = 1 F2 

x exp(2niEt/N) dE + 

+ q(E) exp(2iriEt/N) dE, (20) 
½N 

where N is the number of channels in the trans- 
form. If Fa and Fs are much less than N and if the 
argument of the exponents in the absorption func- 
tion is much less than one, then the fourier trans- 
form becomes 

F = exp(-12nFst/N[) {P(0) - Fair E S × 
j = l  

x exp ( - 12 irF, t/NI) exp (2 rtiE i t/N)} + q' (t), 

(21) 

where q'(t) is another random function with 
(rff) = 0 and (r/'2) = Ns 2. 

Dividing by exp[-[2zcFs t /N]]  then yields the 
functional form of the deconvolved signal plus 
noise in Fourier space 

F' = F(O) - r ~ F  a exp(-12irFat/NI) x 

×{j~=lSexp(2~ziEjt/N)} + 

+ q'(t) exp(12irVst/NI). (22) 

From eq. (22) the problem with Fourier trans- 
form deconvolutions is obvious: as t moves from 
zero the noise grows exponentially while the signal 
diminishes exponentially. Thus there is some t 
where the noise is greater than the signal. We 
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have chosen to truncate the transform at this 
point. Although truncation introduces a distortion 
to the backtransformed Lorentzian in the absorber 
cross-section, this distortion is accurately calcu- 
lable as will be shown below. 

One alternative to truncation is multiplying the 
above transform by a Gaussian shape function'°). 
This method, which is intrinsically a convolution, 
has the desirable effect of eliminating the trans- 
form at highest t. However, the resulting line- 
shape requires the curve fitter to perform an ad- 
ditional convolution, the avoidance of which is 
one of the reasons to use Fourier transforms in 
the first place. In addition, the effect of the expon- 
entiation in the absorption function is greatly 
complicated by convolving the Lorentzians with a 
Gaussian. 

There is tremendous leeway in the choice of 
method for deriving the truncation point. With 
any choice the basic idea is to truncate the Fourier 
space before the noise component is much larger 
than the signal component. We have chosen the 
truncation point to be where the.standard devia- 
tion of the noise equals the absolute value of the 
signal. The standard deviation of the noise is der- 
ivable in closed form. Following the logic in the 
appendix, one can show that the standard devia- 
tion of the noise aN, is: 

aN = sN 1/2 exp(12nF~tfNI). (23) 

Deriving the absolute value of the signal is 
much more ambiguous than the derivation for 
noise height. Inspection of eq. (22) shows that the 
elements of the Fourier transform array are com- 
plex. One can show that the absolute magnitude 
of the elements must fit the following fluctuation 
formula: 

Isignall - 7rFa C exp(-121rFat/Nl). (24) 

The values of C and Fa can be determined by 
least-squares fitting the portion of the Fourier 
space which is dominated by the signal. This 
least-squares fitting procedure is used by us at the 
end of our program to provide a measured value 
for Fa; however, our method for deriving the sig- 
nal height in Fourier space involves the curve fit- 
ting procedure used previously to correct the value 
of lav during the construction of the T(o) array. 

From the previous curve fitting procedure, we 
know the height and linewidth of each of the 
principal lines in the Mi3ssbauer spectrum. The 
strength of any resonance is proportional to its 

area rather than height. Thus, the magnitude of 
the Fourier transform of the j th  line can be writ- 
ten as 
Isignall - ~ e x p ( -  [2nF, t/'NI), (25) 

- bjAv 

where aj and bj are defined in eq. (12), and zlo is 
the velocity increment between channels. By set- 
ting eqs. (23) and (25) equal and then solving for 
t we arrive at the truncation point: 

N ~ zcaj "~ 
T - 27r (Fa + Fs) In k, bj A vsNl/2J" (26) 

We choose j such that the ratio of a i to bj is lar- 
gest; therefore, our choice is equivalent to choos- 
ing the truncation point as the point where the 
noise amplitude equals the signal amplitude for 
the strongest line in the M/Sssbauer spectrum. 
Having found the truncation point, it is now pos- 
sible to calculate the backtransform of the signal 
and the noise. We write the backtransform of a 
single line as 

rcF a exp(-12rCFat/NI) S j x  F-l ( j th l ine)  = ~ - r  

x exp(21riAxt/N) dt 

sjr  { 
= F2+Ax2 1 - e x p ( - - F a T * )  x 

A X  , 

(27) 

where Ax = E i - x ,  T ~ = 2 rcT/N. 
This function although not a pure Lorentzian is 

easily calculable and easily incorporated into 
Mi3ssbauer spectral synthesis programs as the 
shape function for the emission lines from a par- 
ticular nuclear configuration. The derivation 
shown above is for small S; however, by testing 
the deconvolution procedure with computer gene- 
rated test spectra, we have shown that the inaccu- 
racy in the form of eq. (27) is negligible if Sj is less 
than three. Several points concerning the above 
can now be emphasized to advantage. If the pro- 
cess in eq. (17) is performed on real data with 
truncation, one obtains a(E)  in discrete form. The 
least-squares analysis of eq. (24) on the Fourier 
transform of this output will determine Fa to a 
precision which is calculable from the least- 
squares procedure. Thus /"a can be determined, 
which eliminates one of the variables in the curve 
fitting procedure. Furthermore, a more sophisticat- 
ed analysis in the Fourier space can yield informa- 
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tion on parameter "fluctuations" (section 1) since 
the moments of a distribution are obtainable in 
the Fourier space11). The success of such a treat- 
ment would depend critically on the amplitude of 
the noise; however, parameter fluctuation can be 
a problem of such magnitude that its possibility of 
analysis in Fourier space iswell  to keep in mind. 

It is worth mentioning at this point that a 
knowledge of the form of eq. (24) is unnecessary 
for successful data reduction of M6ssbauer data. 
The sequence in most MSssbauer spectral synthe- 
sis programs is the generation of a line spectrum 
followed by a convolution for the absorber linesh- 
ape. The most accurate and efficient method of 
performing the convolution is the Fast Fourier 
Transform algorithm. In this case, one can accu- 
rately match the true form of the lineshape in eq. 
(27) by convolving the line spectrum with a Lor- 
entzian lineshape and truncating the Fourier 
space. 

Another important property of the above pro- 
cess is its effect on noise. After division by the 
source function in Fourier space, the standard de- 
viation of the noise is given by eq. (23) [see p. 167, 
Cramer12)]. We now calculate the mean variance in 
the Fourier space as 

17 = --~ Ns 2 exp(4rrFst /N ) dt 

N2s  2 
- -  [exp(4~/'+ T / N )  - 13. (28) 

- 4~Fst  

Backtransforming the variance will simply mul- 
tiply it by the number of degrees of freedom in 
the Fourier space, 2T. In order to maintain the 
unitary quality of the  dscrete transform9), we also 
multiply by 1/N 2. Thus the final form of the var- 
iance is 

2 
'~t __ S 

2 ~rF s [exp(4rrF+ T / N )  - 1 ] .  (29) 

T 1 F~, If = ~N, then ~/ is always greater than s, the 
rms noise in the original spectrum. The amount of 
signal in a Lorentzian is properly given by its area, 
so that one should be suspicious of a claim that 
the signal to noise is dramatically increased. That 
is, the frequency components which give rise to 
signal and noise cannot be separated by Fourier 
transforms. Signal to noise can only be increased 
when it is possible to reject some of the frequency 
components of the data on the grounds that they 
contain more noise than signal. This is exactly the 

criterion which we have used in choosing the 
truncation point. 

There is another property of the discrete Fourier 
transform which we cannot afford to ignore. A 
person writing a computer program to perform the 
deconvolution process will likely use the version 
of fast Fourier transform available locallyt3). As 
previously mentioned this algorithm is the discrete 
version of the Fourier series expansion. The im- 
portance of this fact is that the input function is 
assumed to be periodic and that the original and 
Fourier space are cyclic; that is, they repeat every 
2 ~r. The cyclic nature of Fourier space can have 
detrimental effects on a deconvolution process 
when there are lines near the extremes of the 
original space domain because deconvolution on a 
cyclic space has the same effect on the element at 
2 n + t  as it has on an element at t. As a result, 
the deconvolved spectrum can show the image of 
a line close to one end of the spectrum at the 
other end. Since the value of T(o) at either ex- 
treme is theoretically near unity, the array con- 
taining T(o) can simply be augmented by ones un- 
til enough space is provided to "protect" one end 
of the T(v)  array from the other. It is even better 
to augment the T(o) array with the function de- 
fined by the output of the quadratic least-squares 
fit to T(o), i.e., by eq. (12). 

Even though the method we use has been de- 
scribed in some detail, one would find it difficult 
to put it into operation without a knowledge of 
some of the more subtle nuances of fast Fourier 
transforms. We refer the reader to the literature 9) 
for a detailed explanation of these subtleties; how- 
ever, we shall list those most pertinent to the 
present discussion. 

The kernel of the fast Fourier transform is com- 
plex, as can be seen in eq. (20). For this reason 
most versions of the fast Fourier algorithm use 
complex input and output arrays. The T(o) vector 
from MSssbauer data is real, however, and one is 
seemingly forced to double the arithmetic in the 
transform process merely to accommodate the 
form of the algorithm. This is not necessary be- 
cause there are efficient algorithms for transform- 
ing real arrays of even length12). 

To take account of the cyclic nature of the fast 
Fourier transform, it is necessary to construct the 
source lineshape vector with symmetry about its 
first element and its ½N+ 1 element where N is 
the dimension of the array. 

The last property of fast Fourier transforms to 
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be treated is one with many mathematical impli- 
cations. The discrete Fourier transform is defined 
on a uniform mesh. Thus the velocity array must 
be redefined from the array provided by the Moir6 
fringe data such that the velocity increment is 
constant across the entire velocity range. Since the 
velocity drive operates in the constant acceleration 
mode, the velocity increment is nearly constant 
before any redefinition of the velocity array be- 
gins. We have found, however, that some sort of 
interpolation is necessary to accurately reproduce 
the data on a uniform mesh. The interpolation 
procedure is further complicated by a numerical 
requirement of the discrete Fourier transform. 

The discrete Fourier transform is essentially the 
trapezoidal rule applied to the integral in a Fourier 
series expansiong). For'the narrow lines in a M6ss- 
bauer spectrum these integrals become less precise 
as the velocity mesh approaches the linewidth; 
e.g., in the spectrum of iron metal. We have 
found that by increasing the number of points in 
the spectrum before the Fourier deconvolution, we 
can maintain a much higher accuracy through the 
deconvolution process. 

The interpolation process is to fit the primary 
T(v) element, three adjacent points at a time, to 
a quadratic equation in v. Within the velocity in- 
terval defined by the first two points, we evaluate 
T by solving the quadratic at the values of v def- 
ined by the new mesh, . which fall within the in- 
terval. We continue the process by moving the in- 
terpolation interval across the entire velocity array, 
one point at a time, until a new T(v) array is def- 
ined which has a uniform velocity increment and 
more points than the original array. 

We realize that there can be several objections 
to this treatment, the most powerful of which is 
that we have created information which we have 
not measured. This argument would be valid if we 
tried to present the information as output; how- 
ever, after the convolution process is complete we 
restore the data to a uniform velocity mesh which 
has the same number of points as the original 
T(v) array. This final restoration is accomplished 
by a linear least-squares fit through the points ad- 
jacent to each final velocity element. This restor- 
ation process is much simpler than it might seem 
because the final velocity mesh always coincides 
with the treated array at regular intervals since the 
number of interpolation points is integral. We 
note in passing that choosing the number of inter- 
polation points is a complicated matter which 

must take into account three different properties 
of the transform: (1) the accuracy of the discrete 
Fourier transform, (2) the fact that augmentation 
of the T(o) must protect it from "end effects", 
and (3) the fact that the speed and accuracy pro- 
perties of the discrete transform are maximized 
when the total number of points in the trans- 
formed array is a power of two. 

Our reason for choosing a quadratic fit for the 
formation of the interpolated T(o) array is that it 
provides an accurate fit to the data which also 
conforms to the lineshape present in a MSssbauer 
spectrum. For example, linear interpolation does 
not faithfully reproduce sharp peaks in the spec- 
trum. Cubic spline interpolation 14) has properties 
which are inconsistent with those of a Lorentzian 
lineshape. The linear least-squares procedure in 
the mesh restoration process is sufficient for sim- 
ilar reasons. Furthermore, it takes place after the 
truncation in Fourier space has removed most of 
the high-order components of the spectrum which 
would make a higher-order fit advantageous. The 
cost of this treatment is additional computer time 
and slight modifications to the above equations; 
however, the data is now in a form compatible 
with the fast Fourier transform process. 

There has been much use of the term Debye 
temperature, 0D, in the preceding text. Some 
qualification of the implication of this term is ne- 
cessary. The Debye temperature is seen by us as 
an empirically derived parameter to describe easily 
the dependences of isomer shifts and recoil-free 
fraction on temperature. Although we report the 
Debye temperature of our samples and source, we 
do not mean to imply that this value necessarily 
implies the highest frequency vibrational mode 15) 
in the material. Obviously, a detailed study of vi- 
brational spectra in materials with known MSss- 
bauer Debye temperatures is necessary to demon- 
strate the theoretical applicability of the Debye 
model to protein samples. Until this study is com- 
pleted, the Debye temperature measured by M6ss- 
bauer spectroscopists remains a parameter of un- 
known meaning. 

In order to measure the Debye temperature of 
the source, we take spectra on the same sample 
but vary the source temperature. By comparing 
the output of an algorithm based on eq. (3) to the 
data we obtain a Debye temperature from the sec- 
ond-order Doppler shift. We obtain a Debye tem- 
perature based on recoil-free fraction by comparing 
the same data to 
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[ - -6E  R l1 + 1 
f (T )  = exPL k - - ~ o  [~- ~-gx 

I~-~--~ ~exp(-nR)(l+nR)l}l (30) 
X - -  /72 

t l = l  

where f(T) is the Debye-Waller factor, ER is the 
nuclear recoil energy, and R is OD/T. 

While we realize that the temperature depen- 
dence of isomer shift need not stem only from 
population differences in the vibrational spectra, 
we have not as yet found the isomer shift 0D to 
differ significantly from the recoil-free fraction 0D. 
Nevertheless the possibility always exists that a 
low lying electronic state can cause a temperature 
dependence in the isomer shift which will not 
conform to the Debye model. By measuring 0D in 
these two ways and comparing them one has si- 
multaneously a way to check the applicability of 
the Debye model and a method of finding a low 
lying excited state which is surely markedly differ- 
ent from the ground state electronically. 

The source shape function is determined empir- 
ically in a manner analogous to that for 0D. The 
source and sample temperatures are held constant 
while the amount of sample is varied through a 
set of runs. We vary the source width by trial and 
error until the output of the M6ssbauer data pro- 
gram scales linearly with previous measurements 
for the amount of sample in each run. We use 
precision rolled iron foils for this calibration. 

In the previous discussion, we have used a Lo- 
rentzian line shape for the source function. Al- 
though this is the correct line shape for a source 
displaying the "Heisenberg" width, real sources 
have greater widths. Therefore, the Lorentzian lin- 
eshape becomes doubtful as a correct lineshape 
function. Reasoning that the "Heisenberg" width 
Lorentzian is the correct function when one is far 
from the center of the line, we have chosen two 
or three Lorentzians of "Heisenberg" widths sepa- 
rated by a variable distance as the source linesh- 
ape function. For two lines, the Fourier transform 
is only slightly more complicated than a simple 
Lorentzian: 
S(t) = exp ( -  [2~zFst/NI) cos(2~zwt/N), (31) 

where Fs is the halfwidth at half maximum of a 
"Heisenberg" width Lorentzian (i.e. 0.0476 mm/s  
for Fe), w is one half the distance between the two 
Lorentzians in the same units as Fs. Here we note 
that although the cosine function contains zeros 
which could cause singularities in the deconvolved 

function in Fourier space, this does not happen 
because the Fourier space is always truncated 
within the first point of singularity. 

5. Results 
5.1. NON-MOSSBAUER CROSS-SECTION 

FOR IRON FOIL 

We measure the absorption coefficient ~ )  at 
14keV for iron to be (498_7)cm -l. This number 
is the result of a least-squares fit to the plot of de- 
tected intensity vs. iron foil thickness with the 
source velocity at zero. The detected intensity is 
corrected for background, Compton processes from 
the 136 and 122 keV radiation, M6ssbauer effect 
resonance and age of the source. 

5.2. DEBYE TEMPERATURE OF THE SOURCE 

The source is 35 mCi of 57Co diffused into 6/~m 
of rhodium (3 mm diameter). In choosing this 
source configuration, we are compromising source 
intensity with self-attenuation in the source and 
the tendency of the rhodium sources to split mag- 
netically as the source temperature approaches 
zero. The source Debye temperature is 
(361 _ 20) K. 

The value for the Debye temperature is the 
weighted average from three different measuring 
methods for the Debye temperature. The first 
method is to fit the plot of the output of the qua- 
dratic least-squares fit to the transmission array vs 
source temperature. In. the second method, the 
amount of iron (an output parameter of the data 
reduction program) is compared to the source tem- 
perature. Note that both of the first two methods 
employ the temperature dependence of the De- 
bye-Waller factor to determine the Debye temper- 
ature. In the third method, the isomer shift of the 
iron metal spectrum is compared to the source 
temperature. The temperature dependence of the 
second order relativistic Doppler shift determines 
the Debye temperature. The value of the Debye 
temperature from all three determinations agreed 
within error. Although the Doppler shift measure- 
ment was the most precise, it is also the least ac- 
curate, potentially, since isomer shift alone can 
also be a function of temperature due to low lying 
excited states. 

5.3. SOURCE LINESHAPE AND RESONANT CROSS SECTION 

The source lineshape chosen by us was one Lo- 
rentzian (fwhm = 0.095) flanked on each side by a 
Lorentzian (fwhm = 0.095). The two outer Lorent- 
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zians are centered on the inner Lorentzian, and 
each had one half the intensity of the inner line. 
The splitting between centers of the outer lines 
was 0.055 mm/s.  The complex lineshape was de- 
termined by two methods. 

The first method was to compare the spectra 
from a 0.001 inch thick stainless steel foil as a 
function of source temperature. Since this foil has 
such a strong resonance the data reduction pro- 
gram is stringently tested with respect to its ability 
to generate a precise lineshape. In addition, the 
absorption spectrum of stainless steel is such that 
it is extremely sensitive to the source lineshape. 
We note here that the variance in the trans- 
mission array is highest at the resonance peak of 
a strong absorber such as stainless steel. For this 
reason the spectrum of 0.001" stainless steel is not 
suitable to the fitting procedures described below. 
We note here that our cho~'ce of source lineshape 
is based on a trial and error procedure aimed at 
finding a lineshape of the minimum complexity 
sufficient to fit the stainless steel data. When a 
two-line source lineshape failed to provide this 
complexity, the three-line source shape described 
above was the least complicated shape to try next. 
When this shape succeeded, no further shapes 
were tried. 

In the second set of measurements, both the 
source lineshape and the MiSssbauer cross-section 
are determined. In this set of measurements, the 
total amount of iron as determined by the MSss- 
bauer program is compared to the thickness of 
iron foils. The splitting between the centers of 
the two outer source lines is the only free param- 
eter at this point. If one plots the total iron 
from the program vs. sample thickness a straight 
line should result. The source splitting is varied 
until the straightest line is obtained. From the 
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Fig. 4. Total absorption vs th ickness  of  natural  iron foils. 

slope of this line one can determine the M6ss- 
bauer cross-section. Our measurement yielded 
(2.4___2)×10-18cm2 from the data in fig. 4. 

5.4. THE DEBYE TEMPERATURE OF IRON (NBS# 1541) 
The Debye temperature determination for 

NBS# 1541 yielded (430_+30)K and is the weighted 
average of two different measurements: (1) the 
Debye temperature measured by the temperature 
dependence of the isomer shift [(390_+30)K], and 
(2) the Debye temperature measured by the tem- 
perature dependence of the Debye-Waller factor 
[(450+_40)K]. Both measurements were made in a 
similar fashion to that for the source Oebye tem- 
perature except that the absorber temperature was 
varied in these runs. 

5.5. MOSSBAUER PARAMETERS FOR IRON METAL 
All the results of these measurements agree 

with those reported by the group at the Lawrence 
Livermore Laboratory16). Our main purpose here is 
to demonstrate the precision and accuracy of the 
spectrometer and data treatment procedures. How- 
ever, the secondary purpose of this section is to 
demonstrate by example a statistically valid 
method of data reduction. Parameters from Mt~ss- 
bauer spectra are used principally to imply atomic 
properties which in turn imply chemical properties. 
Because these parameters are twice removed from 
the chemistry, the M6ssbauer spectroscopist must 
be careful to show the necessity of his fit and to 
quote the precision of his parameters. We believe 
that the fitting procedure shown below and the 
statistic defined in the appendix are equal in im- 
portance to the primary data itself. For this reason 
we show in detail the fitting procedure employed 
to derive the iron foil parameters. 

In order to derive the M~ssbauer parameters of 
any material, one needs the M6ssbauer data, a 
model for the spectrum, a fitting procedure, and a 
goodness-of-fit criterion. The process of obtaining 
M~Sssbauer data is shown above. The goodness-of- 
fit criterion, ~u 2, is a weighted Z 2 and is described 
in the appendix. We show the fitting model and 
fitting procedure below. 

Because the largest term, by far, in the iron 
metal M~Sssbauer Hamiltonian is the nuclear Zee- 
man, we can use first-order perturbation theory. 
Numbering the six lines of iron from left to right 
we have the following expressions for the line po- 
sitions: 
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E(1) = ½ Q S - K ( I + R )  H+D,  
E(2) = - ½ Q S -  K(l+½R) H+D, 
E(3) = - 1QS + K(½R-I )  H+D, 
E(4) = - ½ Q S - K ( ½ R - 1 )  H + D ,  
E(5) = - ½QS + K(1 + ½R) H+D, 
e(6) = ½QS+K(I+R)  H+D, 

where QS is the span of the diagonal components 
of the nuclear quadrupole matrix when the mag- 
netic hyperfine matrix is diagonal. Therefore, only 
a range for the components of the electric field 
gradient tensor is implied by QS. K equals 
5.9175 mm/s  and uses the published value for the 
magnetic moment of the ground state of STFe, 
+0.09024 nmlT). R is the magnetic moment ratio 
of the excited to ground state of 57Fe. H is the val- 
ue of the internal field of 57Fe in MG. D is the is- 
omer shift. 

The line intensities are: 
I(1) = c ,  
1(2) = " ~BC, 
1(3) = ½C, 
I ~4) = ½ C, 
1(5) = }BC, 
1(6) = C, 

where C is the peak height of the spectrum, B is 
a fudge factor for lines 2 and 5, related to the av- 
erage magnetic polarization angle of the foiPS). 

The remaining parameters for the fit to the data 
are the linewidth to be used with the shape func- 
tion in eqn. (15) and the value for the baseline. 
Both the linewidth and B are fixed during any run 
of the fitting program. There are thus six free pa- 
rameters in the fit: QS, R, H, D, C, and the base- 
line. The baseline is eliminated as a free parameter 
by requiring that the sum of trial vector elements 
equal the sum of the experimental vector ele- 
ments. 

The fitting procedure consists of minimizing the 
value of u/2 by varying the values of QS, R, H, D 
and C from an initial guess at their values. Con- 
vergence of the minimization algorithm is a diffi- 
cult problem in general; however, we have found 
that the following system converges to a true min- 
imum; i.e., a minimum which cannot be improved 
by the parabolic approximation scheme described 
below. The parameters QS, D and C are mini- 
mized by finding the ~2 corresponding to three 
values of a parameter around its current value. 
The three points define a parabola which is solved 
for a minimum which becomes the next value for 

the parameter. The two parameters R and H are 
coupled so that varying one without the other can 
lead to a false minimum. Therefore each of the 
five parameters is minimized in turn until an 
overall minimum is found. R .and H are mini- 
mized together every third turn. 

There are other components to the minimization 
program which speed convergence; however, their 
discussion is unnecessary since they do not affect 
the final values of the parameters. The essential 
point here is that not only is ~2 minimized but 
that it is minimized in such a way that one can 
easily obtain the uncertainties in the parameters. 
Thus the parameters C, QS and D can be varied 
from their minimum values individually until ~,2 
becomes greater than its 95% confidence contour. 
The value of these parameters at this contour de- 
fines the 95°,4 confidence interval for the parame- 
ter. R and H must be varied together along their 
minimum slope angle in the R-H plane, where ~2 
is viewed as a function of R and H only. How- 
ever, this angle is easily calculable in this case, so 
that we can obtain the 9596 confidence range 
easily for R and H. We contrast this to the situ- 
ation occurring if the six lines were fit individu- 
ally. Here the 95% confidence contour is along the 
minimum slope angle in the R, H, QS, D and H 
5-plane where ~2 is viewed as a function of all 
five parameters. We note that the confidence 
ranges of the parameters must be greater than 
those from our model because the uncertainty in 
any parameter will contain cross terms with the 
other parameters in addition to the terms from our 
model. 

Our last pitfall for the curve fitter is the good- 
ness-of-fit criterion. The weakness of the Z 2 crite- 
rion is that all the points are assumed to have 
equal variance and equal information. Although 
the points in a M6ssbauer spectrum have approx- 
imately equal variance, the points at the extremes 
of a spectrum contain no information on the 
M6ssbauer parameters. For these reasons, the ,Z 2 
distribution is not appropriate as a basis for con- 
fidence-interval tests for M6ssbauer parameters. 
The quantity, q/2, which we define in the appen- 
dix, has none of these weaknesses. 

The results of our curve fitting procedure on 
three iron foil (NBS# 1541) runs at different tem- 
peratures are summarized in table 2. Our labora- 
tory is principally biophysics oriented, so we chose 
not to attempt a microscopic physical interpreta- 
tion of the iron foil data. In addition, all these 
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TABLE 2 

Fitting parameters for iron (NBS #1541). 

Temp (K) 4.2 101 291 

C 1.44"_0.04 1.39_+0.04 1.33_+0.04 
H (kG) 339.2_+0.4 338.2_+0.4 330.4__.0.4 
R 1.715_+0.005 1.715_+0.005 1.715_+0.005 
6 (mm / s) - 0.002 _ 0.005 0.000_+ 0.005 0.002_+ 0.005 
QS (mm/s) 0.002 ~ 0.007 0.006___ 0.007 0.005_+ 0.007 
s 0.0239 0.0199 0.0221 
B 1.32 1.32 1.32 
fwhm 0.165 0.165 0.165 
minimum ~,2 4.81 5.55 3•93 
counts/ 

channel 57 000 57 000 57 000 

data are consistent with the previously reported 
values. However, the interesting quality of these 
data is that they were obtained from three MiSss- 
bauer runs: each with 57 000 counts per channel. 
We expect this degree of precision and accuracy to 
aid considerably in our attempts to use MiSssbauer 
spectroscopy in our studies of multi-iron proteins. 
In the preceding, we have shown the methods and 
results o f  many measurements from this spec- 
trometer. We emphasize that it is the methods ra- 
ther than the results which are important here. 
The compatibility of the results with the previous 
measurements merely validates the accuracy and 
precision of the spectrometer. The innovative 
aspects of this spectrometer are that it provides a 
known absorber lineshape, that it is quantitative, 
and that it provides information on the vibrational 
states of the absorber. 

In order to add emphasis to the innovative 
aspects of the above approach to M6ssbauer spec- 
troscopy we have included fig. 5. This figure 
shows the absorption spectra, inverted and nor- 
malized to the transmission spectra of the oxidized 
spinach ferredoxin sample mentioned in the intro- 
duction. Two points are of chief interest here. The 
first is the depth of the resonances of the trans- 
mission spectra. The previously published spectra, 
including our own, have greatly underestimated 
the depth of the resonances for quadrupole pairs 
at low applied magnetic field. For example, the 
ieftmost line in part (a) has a percent transmission 
minimum of 6096 which corresponds to an absorp- 
tion maximum of 1.2 o.d. (shown as a solid line). 
The second point is the obvious increase in reso- 
lution of the absorption spectra compared to the 
transmission spectra. In part (a) of the figure, the 
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Fig. 5. Transmission spectra (crosses) superimposed by absorp- 
tion spectra (solid lines) for oxidized spinach ferredoxin at 
4.2K: (a) H = I . 1 5 k G ,  (b) H = 4 6 k G .  

absorption spectra show an inequivalence in the 
two lines not at all obvious in the transmission 
spectra• 

Appendix 
By applying Poisson statistics to eqs. (10) and 

(29) we derive the Variance in the deconvolved 
data: 

s2 NT (exp(4rtFsT/N) -1) 
= .f2 No 2 \' ~-~ ,  ' (32) 

where Nx is the number' of counts per channel off 
resonance and No is the number of counts per 
channel of 14 keV gammas. 

We define ~,2 as follows: 

~12 = ~ (xi--Oi)2 ai (33) 
i = !  S 2 ' 

where x~ and 0~ are the experimental and expected 
data respectively for an absorption spectrum, and 

ai = [Oi IOi[. (34) 
i =  

We note that this function is simply a weighted 
Z 2. In the following section, we derive the var- 
iance and expectation value for the ~2 distribu- 
tion. 

Let 
xi--O i 

S 
then ~ is a random variable with an expectation 
value of zero and a variance of one. (Here we re- 
call that one of the restraints in the fitting pro- 
gram is that the sum of the xi equals the sum of 
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the 0;.) If r/= ~2a, then r/ is a random variable 
with an expectation value, a, and a variance, 2 a  2 

[see p. 233 Crame'rl2)]. Therefore, the variable 

~ 2 =  ~ ,7; (35) 
i = 1  

has expectation [see p. 191 Cramer~2)] 

rn = ~ a i = 1,  (36) 
i = 1  

and variance 

crZ= ~ 2a~. (37) 
i = 1  

Theoretically, the frequency function for ¢~2 
need not be normal, i.e., Gaussian. However, we 
performed the required convolution numerically 
for an iron spectrum and found that the resulting 
function was very nearly Gaussian with the the- 
oretical mean and variance. The iron spectrum re- 
presents a "worst case" situation since the six 
sharp lines in this spectrum tend to reduce the 
sums in eqs. (36) and (37) to their smallest number 
of terms. As the resonance appears broader the ~U 2 
distribution approaches the Z 2 distribution, which 
itself is normal when the number of terms is grea- 
ter than 30. 

If the distribution of ¢2 is normal, then the 
95% confidence contour is at 1+ 1.96cr. We note 
here that even if the distribution is not normal the 
value for the 95% contour will not be greatly af- 
fected since cr is a theoretically correct number 
and the contour is near 2 cr above the mean value. 
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