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INTRODUCTION 

Let K be a field of characteristic 0, let R be a finitely generated reduced 
K-algebra, and let P be a prime ideal of R. The Zariski-Lipman conjecture 
asserts that if Der,(R, , Rp) (which may be identified with @er,(R, R))p) is 
R,-free, then R,, is regular. It is known that if Der,(R, , Rp) is R,-free, then Rp 
is a normal domain [SJ and in the case where either R is a hypersurface [7,8] 
or else R is a homogeneous complete intersection and P is the irrelevant ideal [6] 
(also, [4]) the conjecture has been verified. Our main objective here is to prove 
the conjecture in the case R = OF-, R, is graded by the nonnegative integers N, 
R, = K, and P = m, where m = @YE, Ri is the irrelevant maximal ideal. 
(We do not require that R be generated by its one-forms.) 

The paper concludes with a section containing several remarks about the 
inhomogeneous case, including a criterion for the freeness of the module of 
derivations of a two-dimensional local complete intersection which we feel 
,may lead to a counterexample. 

1. THE GRADED CASE 

In this section R denotes a finitely generated reduced K-algebra graded by N, 
where K is a field of characteristic 0, such that R, = K, and m denotes the 
maximal ideal @z_, Ri . 

Let d = Der,(R, R). We assume, for the rest of this section, that ~23~ is free. 
We represent R as S/I, where S = K[X, ,..., X,J is a polynomial ring in which 
the Xi have positive integral degrees di, where d1 < d2 < ..* < d, , and 
I c (X, ,..., X,)% is homogeneous. Our main result is then: 

THEOREM. Under the hypotheses above, I = (0). In other words R = S is a 
polynomial ring. 

This theorem establishes the Zariski-Lipman conjecture in the graded case. 
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Proof. We denote by x, ,,.., x, the images of X, ,..., X, , respectively, in R. 
Thus, R = K[x, ,..., x,]. We let F1 ,..., F, E S be a minimal system of homo& 
geneous generators for I. We may inject 4: 9 + Rn by+(D) = (0(x1),..., D(xn)). 
Let - denote reduction module I (i.e., Xi- = xi). Then 4 maps 9 isomorphically 
onto the R-relations on the columns of the matrix J = ((3Fi/8Xj)-). If we 
grade RR by assigning degree -dj to the jth free generator (i.e., R” = R(d,) @ 
... @ R(d,), where, if E is graded, E(t) d enotes the graded module such thar 
E(t), = E,+J, then 9 g +(9) C Rn may be regarded as a homogeneous sub; 
module of ei R(di) and thus has an inherited grading. Since 9 is graded and 
~3?,~ is R-free, 9 itself is R-free. 

Our hypothesis and desired conclusion are unaffected by tensoring, over K, 
with an algebraic closure of K. Thus, we may assume that K is algebraically 
closed. 

Now, it is easy to check that if F E S is a form, Cy-, (8F/aXj)(djXj) = (deg F)F, 
and it follows that there is a unique derivation D, E 9 such that D,(u) = (deg U) 
(u) for each form u E R. Thus, D, = $-l(d,x, ,..., d,x,). 

We next reduce, by induction on n (or on Krull dim R), to the case where 
the degree 0 form Do of .9 is part of a minimal homogeneous basis for 9. For 
assume that D, is not part of such a basis. Then it can be written & u,b, , 
where u, ,..., z+ are nonzero forms of positive degree and 4 ,,.., b, is part of a, 
minimal homogeneous basis for 9. Then 6~~ = D,(x,) = EL=, u&,(x,) and 
since each ut E m and x, $ m2 (or else X, E (X1 ,..., X,J2 + I = (X1 ,..., Xn)2), 
some b,(x,) # m. i,e., there is a homogeneous derivation DE 9 such that 
D(xJ E K - (0) (i.e., D = b,); it follows that deg D = -d,, . Suppose that 
degx, = .** = deg x, = d, while deg xj < d, if j < m (possibly, m = n). 
If j < m we must have deg D(xJ = dj - d, < 0 or D(xJ = 0, and the former 
is impossible. Thus D(xj) = 0 for j < m while for m <j < n, D(xi) E K. 
After a linear change of variables involving only x, ,..., x, (the variables of 

biggest possible degree d,), we can arrange that D(Xj) = 0 for j < n while 
D(xJ = 1. It follows that 1 is closed under the action of a/??X,a. Let I,, = 
In K[X, ,..., X,-J. We claim that I = 1,,S. For if F were a form in I - I$ 
of lowest possible degree c in X, , then aF/aX, is of lower degree in Xfl and in I, 
and hence in I,$, while F - c-‘X,(aF/aX,J is also of lower degree in X, and 
in1, and hence in IaS. Thus, F = c-lXn(aF/aX,) + (F - c-lX,(8F/aX,)) E I,$‘: 

But then R = (K[X, ,..., X,-J/&) [XJ, where X, is an indeterminate over 
R, = K[X, ,...> X,-,1/4, and it easily follows that Der,(R, , R,) is R,-free: 
hence, by the induction hypothesis, I, = (0), and then I = (0). 

Henceforth we assume that D, is part of a minimal homogeneous basis for 9, 
and since &3 is R-free, this basis is free, so that the exact sequence of graded 
R-modules and degree 0 maps given by 

% O---+-R--,~--+T---+O, (*) 

where T = 3/RD, , is split. 
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It is convenient to assume from now on that the subsemigroup {i E N: Ri # 0} 
contains all sufficiently large positive integers: this is true after passing to a 
constant multiple of the original grading. 

Let X = Proj(R). We know from the results of [5] that R is a normal domain, 
and so X is a normal variety. We regard X as the patching together of open 
affine subvarieties X, = Spec([R,],,), w h ere u # 0 is any form and R, = R[l/u]. 
Then the {Xi} = (X$} are a cover. As usual, each graded module E of finite 
type over R gives rise to a coherent sheaf E- on X such that r(X, , E”) = [E&, . 
A degree 0 map of graded modules induces a morphism of sheaves functorially, 
and so the exact sequence (*) gives rise to a split exact sequence of sheaves: 

O+U!,-+W+T--+O. (**) 

0, is the structure sheaf on X. Let Ret) denote the graded K-algebra whose 
ith graded piece is Rti , i.e., R tt) = @$:a Rti . Then we may choose q, a positive 
integer, such that R(Q) is generated by RF’, and we may also regard X as 
Proj(R(q)). This gives an (arithmetically normal) projective embedding of X. 
The sheaf L = R(*)(l)” is a very ample invertible sheaf on X. 

The rest of the argument is devoted to establishing the following facts: 
T” is the tangent sheaf 0, (the sheaf of germs of K-derivations) on X and is 
locally free. Let Q2, be the cotangent sheaf on X (germs of Kahler differentials) 
and let h = Homo,( , 0,). Then we may identify 

Let 6r* be the sheaf of germs of units of 0, . There is a map of sheaves Or* + Q, 
given locally by logarithmic differentiation (CY H a-l dol, where ol is a local 
section of Lo,*), and this map induces a composite map 

f: Pit(X) = Hl(X, Or*) -+ Hl(X, Sz,) -+ H1(X, 52>*). 

Now L corresponds to an element of Pit(X) and we show that the element 
of Ext&r(T”, U,) s Hl(X, .Qg”) represented by (**) is q-if(L). Since (**) is 
split, it follows thatf(L) = 0. But it is quite easy to show that when X is normal 
f: Pit(X) + H1(X, Qnf^) cannot kill an ample sheaf. We give a short proof of 
this fact below by reducing to the well-known classical case where X is a non- 
singular projective curve. 

It remains to verify these assertions. We first note that there is a natural map 
p: 9,” + e, , induced by restriction. On the open afline X, corresponding 
to a form u, r(X, , 9%) = [Der,(R, R)),], s [Der,(R, , R,)], , and the 
grading is such that derivations of degree 6 shift degrees by 6. If 
.4 E [Der,(R, , R,)], , then since d shifts degrees by 0, d 1 [R,], E Der,([R& , 
[R,],) = r(X, , 0,). These maps patch to give the map p: LZf- -+ 8,. We 
compute Ker p. From the definition of p, on X, we have r(X, , Ker p) = 

481/47/z-13 
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lPwulo(Ru , 4Jlo . Now, an element of the module of derivations 

Der[RUIO(Ru , 4) is completely determined by how it maps [R,], = r(X, , L), , 
and if it has degree 0 it restricts to an [R&-linear map of [R& to itself, i.e., 
to an element of Homr(,u,o,)(I’(X, , L), r(X, , L)). Thus, patching, we have 
an injection 

Ker p c+ Horn&, L) E 6, , 

where the last isomorphism identifies the global section 1 of 0, with the identity d 
map idL on L (we get this isomorphism because L is invertible). Moreover, 
q-‘D,, is a global section of Ker p and, in fact, for each II its restriction to X, 
induces the identity map on L. Thus, the element of Hom(0’, , Ker p) z 
I’(X, Ker p) represented by q-‘D, is an inverse for Ker p -+ 0, , and we have 
the following commutative diagram of maps of sheaves with exact rows: 

It follows that there is an induced injection 5: T” --f 0, , Since T is R-free, 
T” is a locally free sheaf on X. T” and 6, are, moreover, both torsion-free of 
torsion-free rank equal to dim X = dim R - 1. It now follows that 5 is an 
isomorphism. To see this, we note that Coker 5, if nonzero, is supported at 
a height one prime P of r(X, , 0,) = [R,], for some open affine X, , since T” 
is locally free, 0,/T” is torsion, and X is normal. But if V is the stalk of 0, 
at P, I’ is a discrete valuation ring, and (R& = V[t, t-l], where t is any element 
of [R,], - (0). But then, passing to stalks at’ P, we can see easily that pP is 
surjective, which implies at once that & is an isomorphism. 

Thus, the diagram above yields an isomorphism 5 of T with ox, and so we 
have that Bx is locally free and that the sequence 

0 - 8, -2 9- -2 tlx - 0 (#) 

is a split exact sequence of locally free sheaves. This sequence represents an * 
element of Ext$,(0, , U,), and since 8, is locally free 

By tracing back definitions we next make an explicit computation of Cech 
1-cocycle in W(X, 8,^) which represents the extension (#): this computation 
is made from our knowledge of p. (Then we use the “fact” that the extension is 
trivial.) 

First, choose forms u0 ,..., u,~ E R, - (0) such that X = lJi XUi . Let Xi - X,$ 
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Recalling the definition ofL, we have that ui spans r(Xti , L) E Ri , and we can 
choose unique elements aii E [RuiuJc (D* d enotes 7 the invertible elements of 0) 
such that 

u, = CQjUf on Xir\Xj,O<i<s,O<j<s, 

i.e., cL = ((i, j) tt aij) is a Cech 1-cocycle which represents L. Consider the 
map f: Pit(X) --f Hl(X, QsA) (= H1(X, HomOx(Bx , 0,)) described earlier, 
induced by logarithmic differentiation. We establish that the Cech I-cocycle 
q-if(c) represents the element of Hi(X, HomB,(Sx, ox)) g Ext&(8x, 0,) which 
corresponds to the exact sequence 

0-+B,D”-~-d0,--+0. (7%) 

First note that q-If(c), by definition, is given by 

(i, j) ++ q-l(D ++ D("lij)laij)* 

where D represents an element of 

On the other hand, we can obtain a Cech 1-cocycle which represents (#) by 
first wpbiw Hom&G , ) to (#I, second, on each Xi choosing a lifting of the 
identity map in Homr(x,)(Ox, , Sri) to Homrcx,,(Ox, 9” Ix,), and then con- 
sidering the Cech I-cocycle 

(i, j) ++ Aij = (the lifting on X,) lXinXj - (the lifting on X,) lxinxi ; 

this is just a matter of tracing definitions and identifications. 
We pick an element hi of 

which lifts the identity as follows: For convenience, let u = ui . Given 
D E Der([R&, , [R,],), there is a unique element hi(D) E [Der(R, , R,)],, which 
extends D and vanishes on u = ui . [To see that a derivation exists, first pick 
D, E [Der(R, , RJ,, such that D, extends D. This is possible, since the map of 
sheaves LB* -+ 0 is already known to be surjective and Xi is affine. Then 
Dl(u) E R, has degree q, and we can write Dl(u) = r,,u where r0 E [RJ,, . Then 
D, - (I/q) roD,, extends D and kills u. If D, , D2 are two derivations which 
extend D and kill u, then D, = D, - D, kills [R,], [u, l/u], and each form 
of R,‘ has its qth power in this ring. Since RR, is a domain and q is invertible, 
D3 kills R, .] Clearly, the map hi taking D to h,(D) lifts the identity. 
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Thus, the cocycle 

(i, j) F+ Aij = h i lxinxj - 4 lXiAXj 

corresponds to the exact sequence (#). 
We compute ASj on D E Der([RUi,J,, , [RUiUi],): we know that Aij(D) has the 

form X,(D,, IxLnxj), where )Ig E r(X, n Xj , Or), and then the required cocycle 
has the form 

(i, j) H P - bd 

(where D it A, E HomOJB, , I?y)). The derivation Aii(D) is completely deter- 
mined by its value on ui lxtnx, . Now, with everything restricted to X, n Xj , 
as necessary, we have, on Xi n Xj , 

4jVW) = h,(D)(ui) - WW,) 
= 0 - hj(D)(az’Uj) (by definition of hi) 

= -h,(D)(cx,‘)uj 

-= -D(cu~‘)z+ (by definition of h,) 

= -(-a;‘) D(ol,Jz+ = ~r;~D(ol,J(a;%,) 

= (D(aij)/aij)ui , 

while on Xi n X, , D,(u,) = qui . 
It follows that A, = q-‘D(~~j)/~i~ and the cocycle is 

which is q-lcL , p recisely as claimed. 
Now, on the one hand, we have already shown, using the hypothesis of the 

Zariski-Lipman conjecture, that q-k, represents 0 in H1(X, QGA), and hence 
so does cL . 

But, on the other hand, the following lemma asserts that this is not the case, 
and completes the proof of the Zariski-Lipman conjecture in the graded case. 

LEMMA _ Let X be a normal reduced and irreducible projective variety over 
an algebraically closed$eld K of characteristic 0, and let L be an ample sheaf on X. 

Then the image of L under the map 

Pit(X) + Hl(X, J?y) 

induced by logarithmic differentiation is not 0. 

Proof. If X is a nonsingular curve, i.e., a Riemann surface, this is truly 
a classical fact: in fact, 

Hl(X, G’y) g Hl(X, sz,) gg HO(X, 0,) gg K, 
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and the map described under a suitable identification of HI(X, Q$^) with 
X3 Z, maps each line bundle to its Chern class or degree. In this case, L is 
ample if and only if it has positive degree, and the result is clear. [See the 
Remark following this proof.] 

But the general case can be reduced easily to the case of a nonsingular curve. 
Let S be the singular locus of X and let U = X - S. We can choose a closed 
reduced and irreducible curve Z C X such that Z n S = a, i.e., ZC U. 
.(X is normal and so if X = Proj(R), S is defined by a homogeneous ideal 
I of R height 2 or more. Hence, there exists a proper ideal J generated by 
(dim R - 2) or fewer forms such that I+ 1 is primary to the irrelevant ideal, 
and we may take Z to be the curve defined by any homogeneous prime of 
coheight 2 which contains J.) Let Y be the normalization of Z. Thus, Y is a 
nonsingular curve and we have a finite morphism Y + X (the composite 
Y-Z + X), where Im(Y) = Z C U, i.e., we have 

where the second map is an open immersion. Since Y, U are nonsingular, we 
have canonical isomorphisms 52, E QCA and 52, g .G?cA. We thus obtain a 
commutative diagram: 

Pit(Y) = H1( Y, Or*) - Hl(Y, 52,) --Ff--+ W(Y, q?) 

t t 4 gH(jQ) 
Pic( U) = H1( U, O,*) ___f fq u, f$) 

t t t - l j ^u^ 

Pit(X) = Hr(X, O,*) ----+ wx sz,> - Hl(X, QR;“). 

The arrow /3 is induced from 01 by the isomorphism, while y is induced by the 
open immersion U -+ X. (Note that if we have a morphism Y -+ X, we do not 
get an induced map Hl(X, sZf^) -+ H1(Y, Qi?) in general, although we do if 
Y, X are nonsingular or if the map is an open immersion. This is why we must 
be careful in choosing Y + X so that (Im Y) C U.) Thus, we get a commutative 
diagram: 

Pic( Y) fy Hl(Y, Q;*) 

t t 
PicjX) Ix H’(x; 52^,) 

where fy, fx are induced by logarithmic differentiation and the left vertical 
arrow by pullback. If L is ample on X, its pullback to Y will be ample (Y + X 
is finite, and Y is a smooth curve), and hence the pullback of L maps to a nonzero 
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element of H1(Y, GG*). It follows thatf,(L) # 0. Q.E.D. for both the Lemma 
and the graded case of the Zariski-Lipman conjecture. 

Remark. The following proof of the Lemma in the classical case was supplied 
by Lipman, who remarks that the steps are justified in [9, Chap. 21: 

A divisor on a curve C over K is given by a family of “local equations” (i.e. 
a “repartition”) (fp)pcc , where fp # 0 is in the function field K(C), and 
fp E 0c.p for almost all P. Similarly, an element of Hr(C, Rcr) can be specified 
by a family of differentials (wp)p,c with wp E L&c, and wp E S2kc p for almost 
all P. Now the d.log map takes a divisor [given by] ( fp)pGc to’ the element 
of WC, W) given by (dfp/fp)w . Moreover, the standard identification 
H’(X, Sa,r) --+ K is given by “sum of residues”. But resp(dfp/fp) is just the 
order of the zero of fp at P ( <O if fp has a pole). Hence Cp resp(dfp/fp) 
is nothing but the degree of the divisor (fp). Q.E.D. 

(Thus in char. p, the d.log image of an ample divisor is zero if p divides the 
degree.) 

2. REMARKS ON THE NONGRADED CASE 

Remark 1. The graded case of the conjecture is not as special as it seems, 
since it has the following: 

COROLLARY. Let (R, m) be a complete reduced local ring with residue class 
field KC R, and suppose char K = 0. Then R is regular if and only if 

(1) Der,(R, R) is free and 

(2) there exists a derivation D: R ---f R such that D(m) C m and the induced 
map m/m” + m/m2 is the identity. 

Proof, The key point is that (2) is equivalent to assuming that R is the 
completion of a finitely generated graded K-algebra R’ generated by its one- 
forms. But then, sinceDer,(R, R) is the completion of Der,(R’, R’), Der,(R’, R’) 
is free, and R’ is a polynomial ring. 

To see that (2) is equivalent to assuming that R is the completion of a graded 
ring generated by its one-forms, first suppose R = R’, where R’ = oi R,‘. 
Define D by D’& fJ = Ci ifi (where fi E Ri’). 

Now suppose D is as described in (2). Let R’ = gr,R = @,T,, mi/mifl. It is 
easy to see that D induces a map Ri’ -+ Ri’ for all i and that this map is multi- 
plication by i. We show that for every i and u E Ri’ there is a unique element 
hi(u) E rni such that hi(u) s u modulo mi+l and D(h,(u)) = ihi( We first 
define Ti : mi - mi as follows: 

Given vi E mi, let ut be defined recursively by 

V t+l = vt - (l/t) (fit - 4, t > 1. (9 



ZARISKI-LIPMAN CONJECTURE 419 

Then the ut satisfy 

CQ+~ = vt mod mi+, 

vt = v, mod mifl, 

D(q) = iv, mod mi+t, 

(lt) 

m 

(W 

for all t, as is readily established by induction. The hardest part is to deduce 
(3,+J from (It), (3,), and (*). Let w = Do, - iw, . By (3,) w E mi+t S- Dw - 
(z’ + 1) w E mi+t+l. But ut+t = nt - (l/t)w so that 

D(vt+l> - iv,+1 = D(er, - (l/r)w) - i(a, - (l/t)w) 

= Ds, - (l/t) Dw - iw, + (i/t)w 

= (Do, - iq) - (l/t) Dw + (i/t)w 

= w - (l/t) Dw + (i/t)w = -(l/t) (&u - (i + t)w) E mi+t+l, 

as required. 
Thus, {TJ~} is a Cauchy sequence (by It)) and we may let 

Ti(v,) = lip vt E mi. 

It is easy to check that 

(a) Ti is K-linear, 

(b) Ti(v,) = zlr mod mi+l (by 2,)), and 

(c) D(T,(w,)) = iTf(wl) (from 3,)). 

Moreover, one can easily check that if or E VW, then vt E mi+t for all t, 
whence T,(q) = 0, so that Ti kills mifl and so induces a K-linear map 

such that 
(mi -+ milmi+l) o hi = id,<, . (if) 

To establish our earlier claim, we must show that if et E mi, v = u modulo mi+l 
and D(v) = iv, then v = hi(u), i.e., v = Ti(V). But it is immediate from (*) 
by induction on t that nt = w for all t in this case. 

Now, if u E Ri’, u’ E Ri’, then y = h,(u) hj(u’) has the properties 

y 5 uu’ modulo mi+j and D(Y) = (; +i)r. 

Thus, hi+i(uu’) = hi(u) h,(~‘). It follows that the hi together yield a K-homo- 
morphism h of rings 

R’ 2 R. 

It is easy to check that h induces an isomorphism 8’ g R. Q.E.D. 
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Remark 2. We simply want to make explicit the observation that if there 
is a Cohen-Macaulay counterexample to the Zariski-Lipman conjecture, there 
is also a Gorenstein counterexample. In fact, when R is Cohen-Macaulay 
normal of finite type over K (say char K = 0), and dim R = d, then (Q&K)** 
(where * is Hom,( , R)) is a canonical module, and this is canonically isomorphic 
with (A”@&))** z (Ad(@&,,)*))* c (AdDerK(R, R))*. For all P such that 
(Der,(R, R))p is free, we have that 

so that Rp is Gorenstein. 

Remark 3. We record the following observation (see [I]) of Becker and Rego. 
If R is, say, an analytic local ring, and Derc(R, R) is free, then the ring of higher 
order derivations is free as an R-module and generated by the l-derivations 
Derc(R, R). Hence, Nakai’s conjecture (generation of the ring of higher deriva- 
tions by the l-derivations * regular) implies the Zariski-Lipman conjecture. 
(The Becker-Rego result is proved thus: let D, ,..., D, be a free basis for 
Derc(R, R). Let 9,, be the set of higher derivations of order <n. Let F be the 
free module on the basis of all d-tuples (it ,..., id) of nonnegative integers with 
CT i, < n, and map F+ 9% by (il ,..., id) ++ D$ ... 02. One checks easily that 
this map is an isomorphism off the singular locus. Since R is normal, the singular 
locus has codimension 2, and F, zZYJ~ are reflexive, it follows that F-+ LBn is an 
isomorphism for all n. Q.E.D. 

Remark 4. Probably, the next case of the conjecture one should attack is 
that of a two-dimensional complete intersection. For simplicity, let us assume 
that R is a reduced complete intersection which is a complete local ring of 
dimension 2 and embedding dimension n. We may assume n > 4, since the 
result is known for hypersurfaces. Moreover, we later assume that R is normal 
(has an isolated singularity). We also assume, for simplicity, that the residue 
class field is C C R. 

We want to give criteria for Derc(R, R) to be free. We have in mind the 
possibility of giving a counterexample to the Zariski-Lipman conjecture (and, 
hence, also, to the Nakai conjecture). 

We fix some notation. 
Let S = C[[x, ,..., x,]], let m = (xi ,..., x,&Y, let fr ,..., fnp2 be an S-regular 

sequence in m2, let I = (fi ,..., f&S’, let - d enote reduction modulo I, and let 
R = S = S/I. If R is to yield a counterexample to the Zariski-Lipman con- 
jecture, it must be a normal domain. Hence, assume also that .Z is prime and 
that R is normal. Since R is a complete intersection and, so, Cohen-Macaulay, 
this is equivalent to assuming that R has an isolated singularity at m, i.e., that 
the (n - 2)-size minors of 
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generate an ideal Q in R primary to fi. Thus, we know depthoR = 
depth,R = 2. 

We have an exact sequence: 

0 ---+ Derc(R, R) - R 2 Rn-2 

where, as indicated, the map Rn + Rn-2 has matrix J. We have a map 

J” : (Rn--8)* + (Rn)*, 

and hence 

An-2w2) * - A\“-2(R”)* 

ill 
T 1 

Ill (it4 

R A2(Rn) 

This determines an element of A2(Rn), unique up to multiplication by units of R. 
(The isomorphisms R z II”-~(R~-~)* and An-2(Rn)* g Aa are not canonical: 
“ithe second is determined by a choice of generator for A”(P) g R.) 

CRITERION. Derc(R, R) is free if and only if the element of A2(Rn) determined 
in this way is decomposable, i.e., has the form hAp, where A, p E AI( 

Proof. Derc(R, R) has rank 2. Hence, it is free if and only if there is a 2 x n 
matrix M over R such that 

0 - R2 M‘ Rn & R”-2 

is exact. The results of [2] assert that this sequence is exact if and only if M J = 0 
and depth I,(M) > 2. The conditions on ;\, p imply that we may take M = [i]. 
The coordinates of X A p in the usual basis for A2Rn are the 2 x 2 minors of M 
(up to sign), and hence these are the same (up to sign) as the (n - 2) x (n - 2) 
minors of J, i.e., 12(M) = Q has depth 2. 

On the other hand, given the existence of M = [;I, the results of [3] yield 
at once the indicated element of A2(Rn) (constructed in (#)) is a multiple of 
h A p; since depth Q = 2, the multiplier must be a unit, which can be absorbed 
into p. Q.E.D. 

Remark 5. We retain all the notation and hypotheses of the fourth paragraph 
rf Remark 4, but we now want to specialize the preceding remark to the case 
71 = 4. Let 

N = @f@4 

so that m = J, and let d,, be the determinant of the 2 by 2 submatrix of N 
formed from the pth and pth rows if p < q (d,, = -A,,). Using the bases 
already chosen to make identifications, we see that Im A2(Jt) is generated by 
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d = JJi<*d@i* A ej *. Of course, ol is a priori decomposable in A2(R4)*. But 
the corresponding element ,!J in A2R4 under the identification induced by 
h2R4 @ h2R4 -+ A4R4 s R (where e, A e, A es A e, t-+ 1) is &$ (-l)i+j+l 
a,,~~ A e, where for each i < j, p, q are chosen so that p < q and {i, j, p, q} = 
(1, 2, 3,4). Change bases: let fr = e2 , f2 = -e, , fa = -e4, f4 1 e, . Then 

where 

B = C ap4fi hh 3 
id 

P, 4 = 394 if i,j= 1,2, 

p,4=1,2 if i, j = 3, 4, 

$3 q = i, j in all other cases. 

The decomposability of this element /3 obtained by switching 2 “complementary” 
Pliicker coordinates in the decomposable OL is not easy to decide, with one notable 
exception: if Jr, = 2% , then, evidently, the decomposability of ol implies the 
decomposability of p. Hence: 

COROLLARY. With the notation and hypotheses of Remark 4, fourth paragraph, 
with n = 4, if a,, = a,, , then Derc(R, R) is free; i.e., if 

then Der&R, R) is free. 

Thus, if fi , fi are an S-sequence in mz, the Zariski-Lipman conjecture 
implies that if S/(fi , fi) h as an isolated singularity at the origin then 

I do not know whether even this is true. 
Finally, we give one criterion for the freeness of Derc(R, R) intermediate 

between the corollary above and the decomposability of /3. 

PROPOSITION. With the notation and hypotheses of Remark 4, fourthparagraph, 
with n = 4, if rij E R, 1 < i <j < 4, give a relation xii YijJi, = 0 which is 
%ondegenerate” in the sense that r = r12rS4 - ~~27,~ + r14r22 $ 0 modulo @i, the@ 
Der&R, R) is R-free. 

Proof. Let Ci be the column 

afilaxi i I af2i% ’ 



ZARISKI-LIPMAN CONJECTURE 423 

Let Eij , i < j, be the 2 x 4 matrix whose ith column is Cj , whose jth column 
is -Ci , and whose other columns are 0. Let E = Xii rijEij . We show that 
the sequence 

0 d R2 ---% R4 -J, RZ 

is exact. By [2], it suffices to show that EJ = 0 and that I,(E) (the ideal generated 
by the 2 x 2 minors of E) is equal to I,(j) = Q. 

Let U = [i -:I. Then EijJ = d,,U, whence 

EJ = C YijEiiJ = (C ~,,a,,) U _ OU = 0. 

It remains to show that I,(E) = &(J). Let D, be the 2 x 2 minor of E 
formed from the itk and jth columns, i < j. 

Define rii = 0 and rj, = -ri* , so that A = (yij) is skew-symmetric. Then 
the ith column Ei of E is 

c y&s 7 

whence 
Dtj = C ri/jtJst 

s,t 

We can view this as a system of six linear equations in six unknowns. The 
matrix is h2A, whence the determinant is det(hsA) = (det A)’ and det A = 

( y12y34 - r13r24 + r14~23)2, i.e., det(h2A) = r6. Since r $ R, we can solve for the 
J3, in terms of the Dij , and, of course, conversely. Q.E.D. 

The earlier corollary is the special case y12 = -rs4 = 1, yij = 0 otherwise. 

ACKNOWLEDGMENTS 

The author is indebted to Joseph Lipman for many stimulating conversations and 
helpful comments, which led to a much more rapid and polished denouement than would 
otherwise have been possible. 

REFERENCES 

1. J. BECKER, Higher derivations and the Zariski-Lipman conjecture, in “Proceedings of 
Symposia in Pure Mathematics,” Vol. XXX, Amer. Math. Sot., Providence, R. I., 1976. 

2. D. BUCHSBAUM AND D. EISENBUD, What makes a complex exact ?, /. Algebra 25 (I 973). 
259-268. 

3. D. BUCHSBAUM AND D. EISENBUD, Some structure theorems for finite free resolutions, 
Advances in Math. 12 (1974), 84-139. 



424 MJXVIN. HOCHSTER 

4. M. HOCHSTER, The Z&ski-Lipman conjecture for homogeneous complete inter- 
sections, Proc. Amer. Math. Sot. 49 (1975), 261-262. 

5. J. LIPMAN, Free derivation modules on algebraic varieties, Amer. J. Math. 87 (1965), 
874-898. 

6. S. MOEN, Free derivation modules and a criterion for regularity (Thesis, University 
of Minnesota, 1971), Proc. Amer. Math. Sot. 39 (1973), 221-227. 

7. G. SCHEJA AND U. STORCH, Uber differentielle Abhlngigkeit bei idealen analytischer 
algebren, Math. Z. 114 (1970), 101-112. 

8. G. SCHEJA AND U. STORCH, Differentielle Eigenschaften des Lokaliserungen ana- 
lytischer Algebren, Math. Ann. 197 (1972), 137-170. 

9. J.-P. SERRE, “Groupes algebriques et corps de classes,” Hermann, Paris, 19.59. 


