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ABSTRACT

An analysis is made to determine the rates of drop shirnkage and flame
movement during the asymptotic combustion of spherical drops controlled
by the transport of heat and mass. The effects of unsteady diffusion
and radial convection of heat and mass are taken into account. Exact
solutions of the equations governing spherically-symmetric transport
phenomena are obtained from which the expressions describing the radius
time history for the drop and flame surface are determined. The ef-
fects of gas inertia, transient terms and radial convection resulting
from unequal fluid densities are established and the regions of appli-
cability of previously reported approximate solutions are determined.

Introduction

The combustion of liquid fuel sprays is of considerable practical impor-
tance in oil burners, diesel engines, gas turbines and liquid propellant rocket
motors. A first step toward any understanding of spray combustion and its ap-
plication to the design of efficient combustion systems is knowledge of the
mechanics governing the burning of single fuel droplets. Extensive research
on this problem has been performed. Most of them emphasize the spherical-
symmetric, gas transport processes for the vaporization (with or without com-
bustion) of single-component droplets. Wise and Agoston {1] and Williams [2]
have reviewed the state of the art to the mid-fifties and the early seventies,
respectively. Recently, Sirignano and Law [3] have surveyed the progress made
on transient, convective, multicomponent droplet vaporization, with particu-
lar emphasis on the internal transport processes and their influences on the
bulk vaporization processes. Faeth [4] has reviewed the present understanding

261



262 W.J. Yang Vol. 4, No. 4

of spray combustion including the transient evaporation, ignition and combus-
tion processes of individual droplets. Only a brief summary of some recent

works on droplet evaporation and combustion is presented here:

Two theoretical models have been formulated in order to gain physical
insight on the vaporization processes of a spherically symmetric single-com-
ponent drop in a quiescent atmosphere: the quasi-steady and transient diffu-
sion models. The former, also referred to as the 4% law model, has concluded
that (i) the mass burning rate is proportional to the instantaneous droplet
diameter d which varies with time t according to the square law; (ii) The
flame front standoff ratio (ratio of the flame-to-droplet diameter) is con-
stant during the course of burning. Flame extinction occurs when the droplet
vanishes; and (iii) The flame temperature is constant and equal to the adia-

batic flame temperature.

Although the predicted evaporation times agree well with the results of
laboratory-scale tests, several observations indicate that combustion of fuel
droplets is inherently a transient diffusion controlling process. Depending
upon the intensity of convective transport through internal circulation, the
diffusion-limit [5-8] and rapid-mixing models {9] have been developed to re-
present two extreme ratios (slowest and fastest, respectively) of internal
heat transfer in the liquid phase. In the former model which is relevant for
more viscous fuel or during the initial period, the heat in the droplet is
transported by diffusion alone. However, in the latter model which is rele-
vant for less viscous fuel, the combined internal convective-diffusive trans-
ports are so rapid that the droplet temperature is maintained spatially uni-
form but temporally varying. Results from these two models should provide
lower and upper bounds on the evaporation behavior. Faeth [5] and recently
Law et al. [8,9] have analyzed both limiting cases under the assumptions of
quasi-steady gas phase processes. The predicted behavior on the temporal var-
iations of the droplet and flame sizes were found to agree with the experi-
mental observations under a convective-free environment [10,11]. Crespo et al
[6] and Waldman [7] have independently employed the perturbation method, one
using the ratio of the ambient-gas and liquid densities and the other using
the ratio of the droplet radius to the diffusion field radius as the small
parameter, to analyze the effects of unsteady droplet heating on combustion
with the assumption that the temperature and regression rate of the droplet
surface are given constants. The inner (droplet vicinity) regiom is in a

quasi-steady state and is characterized by a balance between convection and
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diffusion, while the outer region is dominated by unsteady diffusion. Both
approximate solutions represent, in essence, a perturbation of the quasi-
steady result.

The most complete model is developed by Kotake et al. [12] which con-
siders the unsteady diffusion-controlled combustion of liquid droplets in-
cluding liquid-phase heat conduction. Theoretical results obtained by a
numerical method have later been found to be erroneous [13]. In the absence
of combustion, the heat-transfer controlling shrinkage history of a droplet
may be divided into three stages {[14]: (i) the early (or heat-up) period where
the srhinkage is controlled by drop heat capacity, (ii)} the asymptotic stage
where interfacial phase change is the controlling mechanism, and (iii) the
intermediate stage where both effects are of comparable importance. Theoreti-
cal results for category (ii) predicts that the shrinkage rate obeys the square

law [14,15]. Theory compare well with test data [14].

The present study deals with droplet evaporation accompanied by combus-
tion. The method of similarity transformation is applied to solve a complete
set of spherically-symmetric time-dependent equations of heat and mass trans-
fer in the gas phases including the effects of heating up of the liquid phase.
Exact solutions are obtained for the burming rate and the temporal motion of
the flame in the asymptotic stage of droplet combustion. The results are ade-
quate except for the initial period and are superior to the existing transient-

diffusion solutions due to their simplicity.

Analysis

Consider an evaporating and burning spherical drop in a quiescent oxidizing
atmosphere surrounded concentrically by a spherical flame front as shown in
Fig. 1. The radius of the liquid drop is Rj. Its surface temperature and
vapor concentration are Ty and Cy , respectively. The radial distance of the
combustion surface from the center of the liquid drop is Ry and its tempera-
ture is Tg. The oxygen-inert gas mixture at a large distance from the flame
surface is at the temperature T and the oxidizer concentration C, . Oxidizer
is delivered inward to the combustion surface by convection and diffusion.

The fuel evaporates and diffuses, without chemical change, to the combustion
surface. The location of the combustion surface is defined by the condition
that the ratio of the mass rate of delivery of fuel vapor to oxidizer cor-
responds to stoichiometric proportions. It is assumed that the reactants are

consumed instantaneously upon reaching the flame front, resulting in the re-
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lease of the combustion heat. The physical properties of combustion products
and inert gas in the oxidizer-inert gas mixture are alike and assumed inde-
pendent of the distance r from the droplet center; consequently, of tempera-
ture and gas composition. The effects of variable properties on single drop-
let evaporation may be compensated provided the constant properties are eval-
uated at an appropriate reference temperature according to: (i) a simple 1/3

rule [13], (1i) an arithmatic average [16], or (1ii) a logarithmic mean [17].

The equations of continuity for an incompressible fluid can be integrated
to give vir2 = f(t) for i = 1,2. Here, v denotes the radial velocity and the
subscripts 1 and 2 refer to the gas mixtures within and outside the flame

surface, respectively. A mass balance at the drop surface gives

s 2,2
vy o= -ElRlRl/r (1-a)
wherein E1 = pl/p1 -1. Similarly, the radial velocity of the oxidizer-inert
gas mixture is found to be
e 02,2
v, = EZRZRZ/r (1-b)

kl and kz are the front velocities of the drop and flame surfaces, respec-

tively. E2 is equal to unity.

The equations of temperature T; and concentration C; read

aTj aTy aj 3 2 0Tj

5t Vi 3T ‘r'zi}'(r 37 ) @)
and

3Cy Ci Dy 3 2 3G

e Viar 2 or (r" 57 (3

respectively, for i = 1,2, where a denotes the thermal diffusivity and D is the

mass diffusivity. The initial and boundary conditions are

at t = 0: T.1 =T C.1 = C, 4)
3T, .
at r = Rj: ky gr = oR L+ G (T-T,)] (5-a)
c . cTol .
17G = o(Ty-Ts =Dy 5= = oy + (B;-1IC IR (5-b)
3T2 3T1 oCy
at r = Rz: T1 = T2; k2 T k1 i DlH rra (6-a)
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at T = T, =T,; C=¢ (7

with b defined as MlLCS/(ﬁTi). Here, M denotes the molecular weight; k, ther-
mal conductivity; p, density; Cp’ specific heat; L, latent heat of vaporiza-
tion; CS and TS, concentration and temperature, respectively, over the droplet
surface under saturation state; H, heat of combustion; Y, stoichiometric mass
ratio; and R, universal gas constant. The subscripts % and s signify the
liquid drop and saturated state, respectively. The first expression of Eq.
(5-b) describes a relation between liquid temperature and composition at the
droplet surface. In its derivation, use 1s made of the Clausius-Clapeyron

equation and heat of mixing is neglected.

A similarity transformation is performed on Eqs. (2) through (7} according

to
TN = [T, (50T /8T CLONS)) = (€ (r,t)-C,l/C, (8)
No=—T 5 R = (-D¥28 (a,0)1/2 9
i 2(ait)172 i it

_ _ . 172 _ R .
Here, AT = T - Ts and Si = Lei , where Lei = ai/Di is the Lewis number. The

superscripts - and -- signify derivatives with respect to Ni' Both B1 and B2

are positive constants to be determined.

The resulting second-order ordinary differential equations are integrated

twice subject to the appropriate boundary conditions. It yields

T* - —I(El’Bl’Nl) . T* - I(ElelsBzA)I(EzsszyNz) (10)
1 [1+WC¢1(E1,BI)]Ja 2 [1+WC¢1(E1231)] ¢2(E2,32)Ja
- (mz-W)I(El,BISI,NISI) . I(EZ’BZSZ’NZSZ) ’
C, = H C, = - 11)
1 1+W¢, (E;,8,8)) 2 9, (E;5»B,S5)
in which

I(Ei,Y,y)=(-l)iZY3exp[Y2+2(—l)iEin]J xZexp(-x2-26, % hax  (12)
-n'y

¢; (E;,Y) = I(E.,Y,Y) (13)
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- 1/2, - . -
Here, A = (az/al) ; Ja °1Cp1AT/°zL’ m, = bAT/C

1

W=1 + El; C = (Cpl/cpl)-l; K = Akl/kz
D{HC,, ap 1/2 1/2
Ql = szT (W) ) Q2 = YDI" mz = pl/ cuo’ DI‘ = (DI/DZ)

Ja is the Jakob number for droplet evaporation. The constants Bj are evalu-

ated from
[T+, (B,B5)1 %~ { [TwwCe, (E;,B)19a * ! ] ™ (14-a)
(K/A)(Bl/sz)3exp[8§(1-251)-(BZA)Z-ZEIBf(BZA)'l]
~1(E;,B},B)A) /8, (Ey,B,) = 5,Q,Ja[1+HCh, (E;,B))1/Qy0,(E,,B,S,) (14-b)

It is obvious that the radius-time histories given in Eq. (9) for the
droplet and flame front do not satisfy the initial conditions R1(0)=R2(0)=R°,
where Ro is the initial drop radius. This anomaly arises from the complete
neglect of the equations of motion for the gas mixtures which is justified in

the succeeding section. As a remedy, one writes the radius-time history as

R =R+ (-1)iZBi(ait)l/2 (15)

which is mathematically inapplicable to the very beginning of a combustion

event.

Results and Discussion

Equations (11) and (12) describe the unsteady distribution of tempera-
ture and composition, respectively in the gaseous space on both sides of the
combustion flame. Both the temperature and concentration fields are func-

tions of the physical properties and the parameters Bi's.

The constant B1 is evaluated by means of Eq. (14-a) through successive
approximation. With the substitution of Bl’ Eq. (14-b) may be solved for B,

in a similar manner. To avoid such a tedious procedure in evaluating B, and

BZ’ the functions ¢1, ¢2 and I, as defined by Eqs. (12) and (13), are piesented
in graphical form in Figs. 2, 3 and 4, respectively for values spanning the
range of potential application. n, defined as ABZ/BI, signifies the flame-
front standoff ratio in the quasi-steady analysis since the instantaneous

radii of the liquid droplet and flame front are respectively—ZBl(alt)l/2 and 2
Bz(azt)l/2 in the absence of the heat-up period. Now, B; can be directly eval-

uated from Fig. 2, but B; and n determined from Figs. 3 and 4 must still sat-

isfy Eq. (14-b).
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It can be shown that for any values of B; and E; = 0
_ i g2 1/2 2
¢i(0,Bi) = (-1) ZBi(l-w BiexpBierfC Bi) (16)

However, for small values of Y, referring to B2 or BZSZ' the function ¢, can
be approximated by

2

9,(E,,Y) ¥ 2¢ an

where Y is large, a good approximation can be obtained through an asymptotic
expansion as
2

0,01,V % (/3% (18)
Both approximations are plotted in Fig. 3.

The ¢1 function has the upper and lower limits which are parallel as
shown in Fig. 2. The lower limit coincides with the quasi-steady approxima-
tion.

Figure 4 illustrates that the upper limits of the I function for a given

E1 and any values of Bl'

at which the flame front coincides with the droplet surface.

The lower limit corresponds to the abscissa, n =1

(i) Effects of radial convection

One finds through an examination of Eqs. (1), (2) and (3) that Ei =0
corresponds to the case of no convection in the unsteady transport fields ex-
ternal to a burning droplet. In other words, the difference between the non-
zero and zero Ei curves in Figs. 2 through 4 is a measure of the effects of
convective motion on the evaporation rate and flame movement. Figure 4 re-
veals that in the absence of radial convection, fast droplet evaporation as
indicated by large values of Bj results in a combustion with n close to umity.
In other words, the flame front where chemical reaction takes places stays close

to the droplet surface during the process of combustion.
(ii) High ambient-gas temperature case

When the difference in temperature between the drop and the surrounding
gas mixture is considerable, 1/m1 approaches zero and the LHS of Eq. (14-a)
vanishes. The rate of decrease in size of the drops is then determined by
heat transfer processes within the flame surface. B;j is evaluated by

_ Ja

where Jy = (sz- Cpl)AT/L indicates the contribution due to initial heating.
When Jp<<1, Eq. (19) reduces to ¢1(E1,Bl) = Ja.
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(iii) Oxidizer-diffusion controlling case

The temperature field inside the flame boundary T: may have already
attained a‘steady state at the initiation of drop combustion since the heat
capacity of the fuel vapor-gas mixture is very small, implying a small value
of K. In addition, the flame-front standoff ratio is much larger than unity.
Hence, the first term of Eq. (14-b) can be neglected. The transport phenu-
mena of the gas mixture inside the flame surface would play a minor role on
drop combustion, or conversely, the drop burning is controlled by heat and
mass transfer in the oxidizer-inert gas mixture. The theory 1s called the
oxidizer transfer model [18], in contrast to the present analysis known as
the fuel vapor-oxidizer transfer model. Out of the total heat H that is pro-
duced in droplet burning, the fraction L is consumed for draoplet evaporation.
The remaining fraction (H-L) 1s dissipated outward into the hot environment.
Hence, H in the definition of Q; should be replaced by (H-L), i.e. Q1 =
Dl(H-L)/szT (az/Dl)l/z. zn addition, the interfacial temperature T;(Bz)
corresponds to T;, where Tf = (Tf-Tw)/AT and T is the adiabatic flame tem-

perature. This is equivalent to replacing -I(El,Bl,BZA)/{ [1+WC¢1(E1,BI)]Jak
*

by Tf in Eq. (14-b), which 1s then reduced to

wherein Q3 = (H—L)/(szcpz). For Le2 =1 or 32 = 1, Eq. (20) is further sim-
plified as
TeTe = Qs | (21)

This equation is identical with that obtained in reference 18 which has neg-

lected the convective contribution to the transport phenomena.
(1v) Transient effects

The quasi-steady model [17,19] yields

Bi = tn(1+B)/2W; n = 1+Y(p1/p2)2.n(l+B)/A2 (22-a)
in which B is the transfer number defined as CplATf/L and ATf = Tf - TS. For
B less than unity, Eq. (22-a) can be approximated by

o * . 1/2 _ *, .2
Bl - (Jalz) » N = 1+Y(p2/pz)Ja/A (zz-b)

where J; is the Jakob number for droplet combustion defined as plB/pz. The
lower broken line in Fig. 2 represents the quasi-steady result. The deviation
of the zero E1 curve from the quasi-steady approximation is attributed to the
contribution of the transient term. Similarly, the difference in the values
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of B2 or n between the present analysis and the quasi-steady model is a mea-
sure of transient effects. In reference to Eq. (17) and the definition of

El’ it is seen from Fig. 2 that the quasi-steady model is an accurate approxi-
mation only when og is much less than Py and the degree of superheat AT is
sufficiently small.

(v) Effects of gas inertia

The role of gas inertia on drop evaporation is found to be negligible in
comparison with heat transfer effects [15]. This conclusion is still valid
here in the presence of combustion. The relative importance of effects of gas
inertia and heat transfer on the movement of the flame front will be estab-
lished in the following: with the aid of Eq. (1-b), the equation of motion
for the oxidizer-inert gas mixture is integrated from the flame surface R,

to infinity. Neglecting the effect of viscosity, it yields

3 2 g
RyR, + 5 Ry = ;?[pz(kz) - py(=)] (23)
in which g, expresses the conversion factor and P, is the gas pressure. The

equation of state for an ideal gas Py = pzﬁ TZ’ where R is the universal gas

constant, is then combined with Eq. (23). It yields, in dimensionless form

MR, + 3()%) = Ty(Ry) - T, () (24)
* * * % Ty (Ry) -To * Ty (*) -Tw
Here R2 = RZ/Rr’ t = azt/Ri; TZ(RZ) = _E_K%____ ; Tz(m) = _EET____
_BRR, T
) 2
Ma3;

R, is the reference flame radius; and Ty(=), a prescribed temperature of the
oxidizer-inert gas mixture at a large distance from the flame surface at T2
(R,)). For a step change in T,(R)) from T = 293°K to Tg = 2300 °K and Ty (=)
remaining at T,, X takes the values of 3.0x10 for Rr = 3 mm in the atmospheric
environment. One may then conclude that the effect of gas inertia on the
flame-front movement, as expressed by the LHS of Eq. (23), is entirely neglig-
ible as compared to that of heat transfer processes. Hence, the equations

of motion for the gas mixtures may be omitted in the formulation of the prob-
lem.

Conclusions

The equations governing spherically-symmetric, unsteady transport pheno-
mean in the gas phases are solved exactly including the effects of droplet

heating. The results which predict the mass burning rate and the temporal
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motion of the flame obey the square law. Their radius time history i1s revised
to take the form of Eq. (15) but 1s 1napplicable in the short initial stage
of droplet combustion. The evaporation and flame movement constants Bi and
the flame-front standoff ratio n are presented in graphical form for conven-
1ence in practical uses. The effects of radial convection resulting from un-
equal fluid densities, transient terms and gas inertia are established. The
quasi-steady approximation 1s in considerable error for large superheats and
large vapor densities, while the oxidizer diffusion model is an accurate ap-
proximation when the Lewis numbers of the gas mixtures are unity.
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