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PREFACE TO VOLUME II

The work reported in this volume was completed under
contract number 1-35715. However, the results reported in
either Volume I or Volume II can be understood without the other
volume. The tire shear-force representation methods, which are
described herein, were not used to obtain the findings presented
in the first volume.

The purpose of this volume is to provide a comprehensive
description of tire shear force performance for use in highly
advanced simulations of combined steering and braking passenger-
car maneuvers. Two approaches are presented: first, an extended
tire model; and second, a mathematical method (called 'the
similarity method'") for fitting tire data.

This work was carried out primarily by Hans Pacejka.

. e

o TE MM PR

P L T PR PO R




ACKNOWLEDGEMENTS

Mr. Philip Grote programmed the brush-type tire model.
Mr. Thomas Post carried out the calculations for the similarity
method example. Ms. Jeannette Nafe typed the extensive sets of
equations included in this report. The authors thank these
people for their contributions.

-



TABLE OF CONTENTS

PREFACE . . . . . . o v o o o v o v o oo il
ACKNOWLEDGEMENTS -« « « ¢« « ¢ v ¢« v v v v v v v o v o o v
SECTION 1. ANALYTIC SOLUTION FOR BRUSH-TYPE
TIRE MCDLL. . . . . e |
COMPUTED CHARACTERISTICS. . . . . . . . . . . 13
SECTION 2. SIMILARITY METHOD . . . . . . . . . . . . . . 14
Wet Traction. . . . . . . . . . . . . . . . . 14

Influence Speed V.. . . . . . . . . . . . . .15
Influence Vertical Load }FZI. P V'

Influence Small Camber Angles y . . . . . . . 19
Interaction Longitudinal and

Lateral Slip. . . . . . . . . . . . . . . .20
Complete Functions for Fx and Fy‘ o ... . 23
PROCEDURES. . . . . . . . . . . . . . . .. .26
General Force Functions . . . . . . . . . . . 26
Arguments . . . . . . . . . . . . ... ... 26

Application . . . . . . . . . . . . .. ...31



SECTION 1

ANALYTIC SOLUTION FOR BRUSH-TYPE TIRE MODEL

The model employed consists of one or more rows of elastic
studs (tread elements) which are inbedded in the rigid rotating
wheel. Over a certain length, 2a, these elements make contact to
the road surface. For simplicity, uniform pressure distribution,
q, and constant elastic properties, kx,y’ are assumed throughout
the contact area. The coefficient of friction, u, 1s represented
by a linearly decaying function of the sliding speed, Vs‘

When the response to purely lateral or longitudinal slip is
studied, or when equal lateral and longitudinal slip stiffnesses
are considered, the tread elements deflect in the same direction
as the direction of the shear force acting at the tip of the
elements in the sliding range. Consequently, they deflect opposite
to the direction of sliding speed of the elements with respect to
the ground. In these simple cases all the elements throughout
the contact range deflect in the same direction. It is assumed
that the elements instantaneously assume the new equilibrium position
as soon as the sliding range is entered. Due to the uniform pressure
distribution the deflection remains constant in the sliding range.
Also, due to the uniform pressure distribution and the simple con-
struction of the model (carcass deflection zero or uniform) the
sliding speed is known for each element in the sliding range and
1s equal to the slip speed, Vc’ of the lower portion of the wheel.
Figure 1 illustrates the situation under combined lateral and brake

slip for equal longitudinal and lateral stiffnesses of the elements.
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Figure 1. a) The brush type tire model under combined
longitudinal (brake) slip and lateral slip
in case of equal longitudinal and lateral
stiffnesses.

b) The linearly decaying friction coefficient.

In case of unequal stiffnesses the deflections of the elements
remain equally directed along the contact line as long as the
elements remain adhered to the ground. In this adhesion range,
the shear forces have not the same direction as the deflections and
consequently deviate from the direction of the slip speed, Vc'

In the sliding region, however, the shear force will be directed
opposite to the sliding speed which, when equilibrium has been
reached, equals the slip speed of the wheel, Vc' A picture as

shown in Figure 2 is expected to occur.
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Figure 2. Expected deflection in case of unequal stiffnesses.



An exact description of the variation of the deflection in
the sliding area is difficult to obtain. We will present here an
approximate expression for the side force and the longitudinal
force by assuming an approximate variation of the deflection of
the tread element in the sliding region. We might assume that at
entering the sliding zone an instantaneous drop of the deflection
to the equilibrium or steady state deflection takes place. This
may occur approximately when sufficient damping is provided in the
rubber elements so that slip-stick is just suppressed. In the
cases of purely side-slip or purely longitudinal-slip or when
the slip stiffnesses are equal, no difficulty arises when adopting
this assumption. In the case of unequal stiffnesses and combined
inputs, this assumption may lead to an unrealistic transition
from just adhesion to sliding. Consider Figure 3 which shows the
situation at the transition point when instantaneous transition
to the steady state deflection is assumed and the element stiffnesses
in y- and x- directions (kx, ky) are unequal. The radii of the
circle and ellipse constitute the directions of force and deflection
respectively.
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9 9 "i/ deflection kX >k
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| (brakmg)
|
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|
0 % -t
A Vs
Fimure 5. Tho ivstontancons transiticen from adhesion to

conilibriun (steady state) doflection (1-3).
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At point 1 the adhesion boundary is reached (u-uo). In case
U would be a constant and equal to Koo the tip of the element
must follow the ellipse for the shear force to remain the same.
In point 2 we have a shear force direction opposite to the slip
speed, Vc’ which is the same as the sliding speed of the element,
Vs, in case equilibrium has been reached and no further change
in deflection occurs. In point 3 the shear force is reduced to
a value which corresponds to the lower coefficient of friction
U at VS=VC.

The figure shows that the tip has moved from point 1 to point
3 in a direction which is far from compatible with the direction
of the shear force (ql) (= direction AQ).

In reality (assuming u constant and equal in all directions),
the sliding speed is directed opposite to the shear force and
initially will be directed according to OA. Subsequently, the
sliding speed will tend asymptotically to the steady state direction
(IA) equal to the direction of the slip speed, VC (cf. Figure 4).

As an approximation of the actual path of the tip of the
element we take first a straight line in the initial sliding direction
and second the asymptote shown in Figure 4. In the first part,
which will be called the transition region, the deflection will
be assumed to vary linearly from the deflection in the transition
point, where sliding starts, to the steady state deflection in the
point where the asymptote is reached and, presumedly, the steady
state deflection commences. Figure 5 illustrates the approximate
variation of the deflection.

Although in reality the picture becomes much more complicated
in the case where u depends upon the sliding speed, we will assume
a similar approximate variation for the deflection. The adhesion,
transition, and steady state regions along the contact length of
the tire model may be found as follows.
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Figure 4. The variation of the deflection of a tread element
with unequal horizontal stiffnesses after that
sliding has started.
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Figure 5. Approximation of variation of Figure 4.
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First we derive the components of the deflection in the x-
and y- directions in the transition point (ua, Va) and in the steady
state range (us, VS) as indicated in Figure 6. They correspond

to point 1 and point 3 of Figure 3 respectively.

L

Figure 6. The deflections (u_, vq) and (uq, VS) at beginning
and end of the transition regioil.

We define the components of the speed of travel and the slip

speed :
VX =V cos a, Vy =V sin o (1)
V.. =sV_, V. =V =5V (2)
cX X X cy y y X
with
S, = VCX/VX, Sy = ch/VX'= tan o (3)

where Sy and s, are the longitudinal and lateral slips, respectively.
As usual, the élip angle 1s denoted by a. The speed of rolling
is defined as

Vo=V, -V = (- sV, (4)

r X C

The deflections in the adhesion regcion become (a = half contact

length):
u = -(VCX/yr)(a-x) = -sx(a-x)/(l-sx) = -s% (a-x) } 5)
v o= —(ch/Yr)(a-x) = -sy(a-x)/(l—sx) = -S} (a-x)



in which have been introduced the reduced slips:

= ' =
si ch/Vr’ S \'

b= Ve Iy (6)

The shear forces per unit length of circumference, Ay and qy’
become with kx and k representing the stiffnesses per unit length
of the tread elements in the x- and y- directions, respectively:

q, = kxu, q. =k v (7)

At the boundary of adhesion where X=X, the resultant shear

force obtains its maximum value Hod, We find for X,

Xg = 2 7 W, Vr/(kivgx ¥ kivgy)l/z
= 2 - uge,/Ogsyt v ks (8)
With (5) and (6) we find the deflection at the transition point:
Uy = sV (ax), v = -V /Y) (axy) (9)
= -sr(a-x,), = -S§(3'Xa)

As to finding the steady state deflection we must consider the
fact that the sliding speed, Vs’ is equal to VC. Now VS is known,
p can be obtained from a given functional relationship with VS'

For instance:

b= u (1-AV) (10)
The resultant shear force equals:

q = uq, (11)

and is directed opposite to VC so that

9% ='(ch/vc)l*'qz’ 4y = -(ch/VC)qu (12)
and further the deflections:
V__Hq V_Hq
= .. CX Z = .Sy 'z
Ug = g Ve T Tk (13)
c X c 'y

With the quantities (9) and (13) we are able to establish the transition

length, t.

et Aaeme o
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Figure 7. Graphical construction of the transition length.

The angle ¢ indicating the direction of initial sliding
(cf. Figure 7) is given by the direction of the internal stress

tan ¢ = uakx/vaky (14)

With the introduction of a factor A we have, according to Figure 7:

()\ua - us)/(kva - VS) = tan Y (15)

With the aid of the expressions for the deflection (9) and (13)

and for X, (8) we obtain

u(k +k_ )
_ X 2 2 2 2 16
x-_k——Lu = ko VCX+ky ch (16)

oX'y c
For the transition length, t, we have according to the above figure:

t = (A-1)(-v, cotan a + u) = (A-1)(a-x,) (17)
which results in:

2

-1/2

t= (1) uga, VoV (18)

2,2
_*+ KV
X Yy &)
It may be noted that t increases with decreasing values of ch
and VC as a ratio to the rolling speed, V.. At wheel lock we have
Vr=0 and, consequently, a vanishing transition region. In the
latter case the stcady state dedlection occurs over the whole
contact lenzth. The resulting shear force then opposes the direction
of the speed V=VC=V . The x-coordinate where the steady state

s
sliding reqicn begins roads:




X . =X -t (19)

s a
which with (8), (16), and (17) appears to become
kx + k Vr
xs=a-uqz_E;ky_Y. V: (20)

Let us consider the variation of the various regions with
increasing slip speed, VC (cf. Figure 8). Below a critical value
of slip, which results from equation (8) for x, = -a, complete
adhesion will occur in the entire contact range -a<x<a. When the
slip is increased beyond this critical value, a sliding region
will arise at the trailing edge. The transition region may extend
beyond the contact length. Only the portion inside the contact

range 1is of importance. When the sliding region becomes sufficiently

large the steady state region may emerge.

For the tire model with uniform pressure distribution the adhesion
region and with the transition region will vanish only in case
of wheel-lock (Vr=0)' This obviously also occurs when 0=90°.

The steady state deflection extends then over the whole contact
length.

(“;'(vs) (upv')  (4%) V,./ﬂ / /
s | L1y

@ steady s)cate (locked wheel )

W.

Figurc 8. The various regions in the contact area at increasing

valuos of slin.
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For the computation of the resulting shear forces and the aligning

moment it is necessary to consider three ranges:

Range 1: x_ < -a (complete adhesion) :
Range 2: X, > -2 and X, < -a (adhesion and transition regions)
Range 3: x_ > -a (adhesion, transition and steady-

3 state regions)

For a rectangular contact area with length 2a we have the

following general expressions for the forces:

= a _ a
Fx = 2b [a qxdx, Fy = 2b [a qydx (21)

We may consider a pure translation of the base line of the
tread elements due to tire carcass longitudinal and lateral flexi- ¢
bility. With carcass stiffnesses Kx and K_ we obtain for the
resulting moment about the vertical axis through the wheel center
(cf. Figure 9):

M, = My + FE (/K - 1/K) (22)

(23)

Figure 9. The base line of the tread elements translated
according to simplified representation of carcass
flexibility.

In the adhesion region we have : J

u = ua(a-x)/(a-xa), v o= Va(a—x)/(a-xa) (25)

10



In the transition region we have:

qx - kxu’

with

u

Vv

[(xa—x)uS + (x-xs)ua]/t

[(xa—x)vS + (x~xs)va]/t

In the steady state region we have:

qx - -(ch/vc)uqz’

Ay

= -V, /Vua,

(26)

(27)

(28)

Generally valid expressions for the forces and the moment

may be derived after the introduction of the quantities defined

below.

!

Variable

i

RANGE 1

(If Only
Adhesion
Region Occurs)

x,<-3a, Xxg<-a

RANGE 2

(If Also
Transition
Region Occurs)

X, >-2, Xg<-2

RANGE 3
(If Also

Steady State
Region Occurs)

Xy V-2, Xg2-2

2auy/(a-xa)

2avg/(a-xg5)

X3

[(x,+2)ug

-(xs+a)ua]/t

[(xaﬁ-a)vs

~(sg*a)vy ]

Xa

Vs




We obtai

Tegions:

where

F
ys

n

]

sums over the adhesion, transition and steady state

an * FXt ¥ FXS

F _+F _ +F
ya yt ys

MZa + Mzt + Mzs + FxFy(l/Kx - l/Ky)

bkxué(a-xé)

bkx(ué + ué)(xé - x;)
Zbkxu;(a + x;)
bkyvé(a-xé)

bky(vé + V;)(Xé - xg)

2bkyv;(a + x;)

(30)
(31)

(32)

(33)
(34)
(35)
(36)
(37)

(38)

The expressions for the moment are complicated and are not repro-

duced here.

For vanishing slip (s%+0 and s§+0) we may linearize and obtain

the result for the case of complete adhesion:

-2 ' = - ' ~ . = -
da bkxsX = CssX = CssX CS(VCX/VX)
-4a2bk s!' = -Cs!' ~-Cs_ = -C_ tan o
yy ay 'y a
3 . . _
(4/3)a bkysy = CMaS} = CMaSy CMa tan o

with Cs’ Ca’ and CMa denoting the slip stiffnesses :

C

CMJ

i

4a’bk
X

4albk
y

4.3

= za bk
a’b y

3
12

(39)
(40)

(41)

(42)
(43)

(44)



COMPUTED CHARACTERISTICS

For the same parameter values of the tire model as employed
in Ref. [1] the force and moment response to combined side and
longitudinal slip has been calculated. In the subsequent Figures
10 through 13, two series of results are shown. The first (shown
at the top of the page) for a relatively large longitudinal slip
stiffness, CS, and the second (bottom figure) for a relatively
low value of Cs‘ The following parameter values were used:

V = 50 ft/sec, AS = 0.00353 sec/ft, My = 0.53

c, = 10 IFZI (1b/rad), C, = 40 IFZ| or 5 |le (1b/unit slip)

K, =4 Ile/a(lb/ft), Ky = 2 IFZI/a(lb/ft)

Note: the values of F, and o are not relevant since the responses
are computed and shown in the following non-dimensional form:

F = E/IE |, F,o= B /IF, |, M, = M /@a[F ) (45)
The calculated results are qualitatively similar to experi-

mental findings. An important result is that according to this

analysis, the difference in the Fy-a curves due to a variation in

longitudinal slip stiffness, Cs’ is insignificant. In the Fx-sX

diagrams the slope at the origin reduces in value due to a lower

value of Cs' The Fy-FX curves of Figure 12, calculated for Se

values varying from -2 to +1 (=wheel lock) at constant values of

o, turn out to change their shape when CS is varied. The end

points at wheel lock remain at the same location, as should be

expected. The moment M, vs. a curves do not show the negative

portion beyond a certain slip angle, as often occurs in practice.

This discrepancy has been expected and is due to limitations of

the model. The MZ—Fx curves show marked changes due to variations

of C.,. The effect of introducing carcass comnliance (finite KX

and KV) 1s a»nreciable and the resulting W: curves are qualitatively

similar to experimental curves.

13
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SECTION 2

SIMILARITY METHOD

The object of this method is to establish a mathematical
description of tire shear force and aligning moment characteristics
for any combination of longitudinal and lateral slip and of
camber, at any vertical load and speed of travel, within ranges
covered by experimental data. The method makes use of a set of
measured characteristics for longitudinal force, Fx’ lateral
force, Fy’ and aligning moment, QZ, as a function of slip angle,
o, longitudinal slip, s, and camber angle, vy, at different values
of vertical load, FZ, and velocity, V. From these data, basic
curves and other basic relations are derived. In earlier work,
the method was developed for the case of dry road contact and
for longitudinal force rather than longitudinal slip as the input.
The relations obtained are relatively simple (cf. Chap. 7.5 of
Clark's Mechanics of Pneumatic Tires). In the following work,
the behavior on wet roads, with highly sliding speed dependent
shear forces, resulting in decaying characteristics for the
forces versus slip, is generated by a set of mathematical formu-
lations. It should be noted that this theory does not attempt
to model the physics of tire behavior. It merely tries to
describe mathematically the shear force generation of a tire
based on measurements of this tire on a specific road under specific
circumstances.

Wet Traction

On dry surfaces, where p is less dependent on sliding speed
than on wet surfaces, Fy may be a single valued function of FX
for a given slip angle, o. Experiments on wet surfaces show a
different picture as illustrated on the following page:

14
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In order to cover the entire curve, we must adopt an input
variable different from Fx' For this purpose, we choose the

longitudinal slip, s, as the input variable. Its definition is:

V. - @R
s = 100 - X €0 (%)

Vx
where Vx denotes the longitudinal speed component of the wheel
center and @ the revolving speed of the wheel about the spin
axis and Reo the effective rolling radius at free rolling.
Obviously, s=0 at free rolling and is 100% when the wheel is

locked. Under the action of driving forces s becomes negative.

An outline of the successive steps to be taken in order to
arrive at the force and moment functions of variables o, s, Y
and parameters V and Fz is given below.

Influence Speed V

1. Take the measured curves for (Fx-s) and (Fy-u) at

nominal load (-FZO) and for different speeds V. Introduce new
s

slip notations: Se = 100 ° sy = sin a.

15
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0 s simx | 0 s = 5
Yy = X ico I

2. Transform these curves to basic curves FyB and FxB
(one for Py~a, one for Fx-s) so that by proper multiplication
with factors, which are functions of V, the original curves are
approximately obtained.

Three types of multiplication are required:

(1) vertical multiplication with a factor ¢v which
approaches unity when s+0 and o+0. This factor
brings about the decay of the curves due to
increasing sliding speeds without effecting the
slope in the origin.

(2) radial multiplication with a factor AV being a
function of V which causes a change in the total
level of the curve.

(3) horizontal multiplication with a factor Ny being
a function of V which brings about a change in
slope at s=0 and «=0.

16



The latter two multiplications may be applied to a range
of the basic curves beyond sin @ = 1 and s = 100%. In order
to get proper results, the slope of the basic curves at s = 100%
and sin a = 1 should be set equal or close to zero. The resulting
formulae for FX and Fy read:

-F_ = ¢ A « F__(xz) with x. = = S
X xV xV xB‘\“F F AxV 100 AxV X

F A F o (ye) i th WY s v

-FE_ =19 . . y wit Yp = sin o = s
y Ty yv TyBYE Foody w7

(The actual functions for the different factors appearing in

these equations are given on pages 24 and 25 ).

Influence Vertical Load IFZI

3. Take the measured curves at nominal speed (VO) and at
different values of vertical load |F |.

) S F
‘Fy 1400 eyg. 3omphy X IR\
1000 (=-E,)
600
b
) s, = sina [
4. Transform the curves which are not measured under

normal conditions (FZO, Vo) to the curve for PZ = FzO'

NOMINAL .
e VAV B
/. Fz= on
< s ! o Sy ]

17
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This may be done by successively multiplying in:

a) radial direction with a factor g which changes the
level without effecting the slope in the beginning.
It has been observed (especially with the FX curves)
that the relative change in level is not only a
function of FZ. Especially at high loads the factor
may increase with slip. Therefore, xF will be a
function of both load and slip. We may choose, for

instance, a linear function for AXF:

¥ Sx)‘xFl

where factor A Fo takes care of the level at low slip
values (near peak) and AxFl at values near the locked
condition.

b) horizontal direction with factor g changing the slope
at the origin as a function of vertical load.

At this stage, we have for the influences of V and |F |

combined:
. Nx
-FX = ey A FXB(XF] with Xg = T; Sy
. ny
-Fy = ¢YV Ay . FyB(yF) with Yp T; sy
where XX = ka . AXF , Ay = AyV . AyF
nx = nXV ¢ an ’ ny = nyV * HYF

18



A possible interaction between V and ]FZI has obviously been
disregarded. It is therefore important that the nominal
conditions Vo’ IFZOI are close to the average operating condi-
tions of the simulation.

Influence Small Camber Angles Yy

5. Take the camber force characteristics for different
speeds V and loads ]le. Determine the camber stiffness CY as
a function of V and Fz'

The camber stiffness may be taken as a product of a function of
only the load and a function of only the speed.

C, = C

Y y,ofv = ¢

y,oFo(Fz) ) Cy,ooV(V)/cy,ooo

6. Shift the Fy(a) curves found in 4 over the distance (to
the right)
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a0,

The cornering stiffness C, follows from the slope of the basic
curve CaB by multiplication with factor ny

The argument Ye reads now:

n . C, n, _
Yp = XX sin(a - = ) = ;z Sy
y o y
with the equivalent sideslip:
sy, = sin %eq
Interaction Longitudinal and Lateral Slip
7. The complicated interaction process of longitudinal

and lateral slip is a difficult matter. A more or less precise
generation of the forces as a function of sy and Sy would require
a large number of manipulations. A relatively simple repre-

'sentation which appears to work satisfactorily will be given here.

Use will be made of the curves at (V, FZ) as computed before
for either pure sy or pure s (see the figure on the following

page).

g o ver e bews vac



- F Vl Fz - F‘

Cs = Cs,oFY
0 $, = S/100 i
"F‘ s =0

Next, the variation of the initial slope due to interacting slip
is taken into account. The corresponding stiffnesses Ca,sFV
and Cs,aFV may be found from the measured variation of these
stiffnesses at nominal speed V0 and load on. The latter stiff-
nesses are denoted by Ca,soo and Cs,aoo' The variations of

these quantities with slip are as shown below. (The actual curves
derived from the initial slopes of measured characteristics should

be determined very carefully.)

C“:Ca’sw Csscs'c(cc
Vo e
Vi
2
/
rd
/ C“m - CS’CGO
‘ b 100 /
= 3 . -i = St 1
0 %= Yoo ! 0 $y=Sinx
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The stiffnesses under different conditions may approximately be
obtained by considering the changes which occur with Ca at

s=0 and 100% and with CS at a=0. (The value of Cs will tend to
zero for sin o = 1, anyway.) A multiplication factor nys for
Ca which varies linearly with Sy is employed so that the experi-
mentally found changes with Fz and V are fulfilled at s=0 and 100%.
A factor LI is employed for representing the changes in CS.

C
s,oFV
n (1-s)+ Sy 3 Myq = T —
ys yso ysl X Xa 5,000
C C
. FVv o,1FV
with n = 2,0 and n = 2
yso T, 000 ysl €y 100
where Ca,oFV and Cs,oFV and Ca,lFV are functions of PZ and V.

They may be approximated by a product of a function of FZ and a
function of V. From before

C

a,SFV = nys ) Ca,soo ; Cs,aFV = Mxa Cs,aoo

The indices after the comma denote the values of the slip s
(o=zero), the load (o=nominal) and the speed (o=nominal),
respectively. After the slip stiffnesses have been established,
the (FX - sx) and (Fy - sy) diagrams will be multiplied in verti-
cal direction in such a way that the initial slope produces the

X,y

required stiffness. Moreover, the Fy curve- should approach a
straight line with slope representing the stiffness Ca,lPV at
Sx=1' The FX curves approach the abscissa at sy+1. In case of
the FX curves, the multiplication factor should be taken as a
function of Sy In general, it appears that the multiplication
factor (¢xu) is a strongly nonlinear function of Sy which may be
sufficiently represented by a fourth degree function of Sy

(See figure below.) For the multiplication factor of the F
curve, we did not attempt to make it a function of o as only

relatively small values of S, = sin a are considered.
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ments

N {' ~\(i- s,‘)"} cos

(O( =I6°)

0 S, I

The multiplication factors, finally, will have the following

form:
4 _ Ca,sFV ) Coa,lFV
ys Ca,oFV ~ Ca,1FV
C cos a - C
o = [i ) s,oEV ng . s,aFV (1_Sx)4 cos a_
xa s,0FV eq 4

How these factors are used in the final equations is shown in
the following.

Complete Functions for FX and F

8.  The proposed final equations for F and Fy as influenced
by FZ, V, s and o read:

'
rr1
1

¢ A

y = Os Sy Ay ApFpOp) * Gy qpy 5y (17046)

’ (1)
Feo® b S Aav AxFFxB(XF)

(@)
[97]



with

FyB(yF) = basic function of Yg FXB(XF) = basic function of Xg

yp = By if [8,] <1 Xp = By if [By ] <1
Ygp = sgn By if lBy[ > 1 Xgp = sgn B if |8xl > 1 }(2)
Moy * N Moy * N
8 _ AYV : AXF 3 Bx - AXV : AXF s 4
Y yV yF y xV xF
and
o - Ca,sFV = Co,1FV o =1 - Cs oFVEOS%eqCs, V(15 1% coso
ys C - C Xo C cosa X
a,0FV a,lFV s,0FV eq
- o, . 2.2
by = 17 Ag bV + BobLY by = 1 - A bV + B bV
Ll o- 5 | - -1 ;
b, = 315, - sy * 15 sy b= F[Is ] - sy| ¢ sy
S
3 = i = 1 =....s___ =__Y.
Sy T SIL Qgq s Syy T SR Gy Sx T 100 * 5xv T 100
%eq = @YV Cy opy/Cq oRv

Note: s y and syV are illustrated in the figure on page 28.
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AyV = kyV(V)
AyF = (1-sy)AyFo
)\ —

yFo~ AyFo(Fz)’ AyFl’ AyFl(Fz)

lev -

= C

=
1

yF

a,0Fo0

/C

Ca,ooV/CaB’

®,000

+ S
Y

A

yF1

—rr

>
|

= Ay (V) ]

AF = (1'Sx)xxFo * S ARl
Ao~ MxFo(F2)» Axp1™ Axp1 (F)
xv = C /C

s,o0V’ “sB’
NxF = Cs,oFo/Cs,ooo

The various slip stiffnesses are found as follows:

Ca,oFV

3
1]

3
1l

_ Ca,oFo

= Nypyy

.

a,00V

C
0,000

a,1Fo

oB

Co, 10V

C

a,lo0

_ Cs,oFo Cs,ooV

Cs,oFV ~ C
$,000
- annxVCsB
. (4)
Cs,ocFV nxa Cs,ocoo
Txa ~ Cs,oFV/Cs,ooo
Ca,lFV/Ca,loo



PROCEDURES

For the mathematical description of shear force generation
(Egqs. (1), (2), (3), (4)) to be useful, it must be applied to
the measured characteristics of an actual tire. A proposed way

to arrive at the final equations 1s given below.

General Force Functions

'Fy - ¢ys¢yVAyVAyFFyB(yF) ¥ Ca,lFVsy(l'wys)

-Fx - ¢xu¢xVAxVAxFFxB(XF)

Arguments
s - YV E ¢ g = xV ' xF
y A A y X A s A X
yv yF xV xF
Yp = sgn By if ’By' > 1

"

Xp B, if [B ] <1 }
xp = sgn B if |8 | > 1

The various subfunctions appearing in these shear force formulae
are found in successive steps starting with the original curves

for different V and nominal load !FZ}.



1. First construct the basic curve FB by extrapolating
the V-curves to a curve which would hold for a speed V=0. Then
(if necessary) multiply the V-»0 curve with a factor in horizontal
direction so that its slope at the origin becomes equal or
almost equal to the slope of the steepest curve. We call the
curve thus obtained the basic curve Fy which, through the above
manipulation, will not need to extend beyond a slip value equal
to one.

The slope at the origin of the basic curve is given by the slip
stiffness CB' The stiffnesses of the other (V) curves are
designated with CooV‘ (Note that suffixes s, y, o and s have
been omitted here.)

2. Replace original V-curves by curves which deviate from
them at larger slip values in that the tendency to end in a
concave manner is absent. The new curves should tend to inclined
straight assymptotes of which the slope (e) preferably changes
linearly with V. The deviation (4) of the original curves from
the assymptotes should preferably vary quadratically with V.




The slope of the assymptote of the basic curve should be zero or
small. Determine the slip value where the top of the nominal curve
(V=30 mph) is reached. Half this value is called Sy and a_.

v
Draw a vertical line thrsough o = o and s = Sy A1l the assymptotes

v

intersect this vertical line at different distances § above the
point of intersection of the B-assymptote with the vertical line.
This latter point is located a distance FBo above the horizontal

axis.

The original V curves may be approximately obtained from
the besic curve (B) by first multiplying B with a factor

%— = CE_ in horizontal direction so that the slopes at 0 coincide.
v

Then mﬁiXiplying with factor AV = {FBO + 5)/PBO in radial direction
so that the slope doesn't change but the level of the point of
intersection of assymptote and vertical line is made approximately
equal to the level of that point of the V-curve. Finally,

multiplving with the oy factor which must be equal to 1 for



vanishing slip values (a or s) and further must produce the slope
which (linearly) varies with V and the concave portion which
(quadratically) varies with V. The value 1 is realized by
assuming that the deviation from the B-curve due to this dy factor
starts only at a slip value halfway to the value where the nominal
curve becomes maximum. (This is an assumption which may be close
to reality as the influence of sliding speed, which ¢V tries to
express, only starts to act over the entire contact patch when
full sliding begins, which assumedly occurs near the top of the
curve.)

=1 - AVb + BV for |b] > 0 or ¢y = 1 for [b] < 0

by by

with b the |slip value| minus the halfway value: b = st,yl - Sx,yv‘
The value of As follows from the slope e(:AsV + eB); BS follows from
deviation A(zBSVZbeZPBeAV) at b=be (see Figure on page 28). The
factors As and BS are here treated as constants. The factors

Ny and Ay may be given an appropriate functional relationship with
V. ‘

3. The changes in slip stiffnesses Ca’ Cq due to vertical
load variations are expressed by the factors Ng- This factor
is defined as the ratio between the slip stiffness at certain
|Fz| and the slip stiffness at nominal load |F | both at nominal
speed Vo‘

>

000
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Through horizontal multiplication of the original curves with
this factor, all the slopes become equal at zero slip. By sub-
sequent multiplication with factor Ag in radial direction, the
level of the top (at relatively small slip values, AF = XFO) and
at large values of slip near 1 where the curves have an almost
horizontal tangent (AF = AFl) can be attained approximately. We
have

!

A =
F1 F1

AFo -

‘Tj)"'ﬂ>

0

where F and F; depend on |[F,|. Some functional relationship of

and kFl with Fz may be established.

Mg AFo

4, The interaction of slip is mainly determined by the
factors ¢ys and ¢ . These factors reduce the portion of the F
value that is left after subtracting from the original curves
-Fy,x the linear functions Ca,va. §y and Cs,lFV s, (=0),
respectively. The formulae given before indicate how the factors
are determined.

’FXIY \
Fy-s
cd Nal z‘\uar-‘l’m
Slope{ ¢ n F-s, dmgrqm
° Sy
i d Tesu igi i -
The functions Ca,soo an Cs,aoo 1t from the original inter

action curves at nominal speed and load (FZO, VO). The slope
variation of the F_ vs. s, curves at the origin yields the function

(s ) The 1n1t1a1 slope of the constructed F_ vs. sy curves

s , 100
for varloas fixed values of S, serves for the determination of
3 o
the function Ca,soo(sx)‘ For o-90 (sy+l) we have Cs,aoo+0' For
+100% =
s+100% (5X+1) we have Ca,soo Ca,loo .



’ﬁq K=0°
2’ R
b.
0 FZ 0/ vo
4
2° F’
0 S,‘ |

The functions Ca,lFo(Fz) and Ca,loV(V) may be obtained from the
values of the original Fy interaction characteristics at Sy = 1
(wheel-lock) for different values of a, |FZ| and V (see Figure).

Application

The method as described before has been applied to the H-5
tire on wet asphalt. In graphs I, II and III the original F_ and
F, curves are given for different speed V and load |F,|. In the
graphs I and II the basic FB curves are shown. In graph I we arrive
at FyB by extrapolation. The differences in slope at 0 are small
so that a horizontal multiplication does not seem necessary, since
we are interested only in relatively small slip angles (< 20°).
However, this was needed in graph II for F . There, the FxB curve
should extend beyvond Sx=1 if, for instance, the curve for V=30 mph

is to be derived from the basic FYB curve. In order to save space,
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we have multiplied the FxB curve with a certain factor so that
its slope equals the slope of the 30 mph curve. To determine the
position of the "assymptotes" in order to have their slope vary
linearly with V and their deviation from the original curves at
high slip values (shaded area) change quadratically with V, is
really more an art than a science. We expect that the simulated
curves will be all right at small slip values and at large slip
values. The transition range may show deviations in curvature.
For instance, the Fy curve at 50 mph shows a relatively sharp
curvature near its maximum value. It seems impossible to derive
such a curvature from the relatively smooth basic curve. The same
may hold for the 50 mph FX curve. However, it would not be sur-
prising if the error lies within the range of inaccuracy of the
measurements. In order to be able to describe the deviation from
the assymptotes at sx=1 (s=100%) (Graph II) in terms of Vz, the
30 mph curve was replaced by the shown substitutive curve.

The approximate functional relationships for Coov and Ay
are shown in Graphs I and II.

Graphs I and III show the influence of changing the vertical
load. As the F_ values are given only for relatively small slip
values (s_), it is sufficient to use a AyF for small and for large
values of Sy The AxFo (small S.» near peak) and the xxFl
(at sx=l) obtained are shown graphically. Also, the variation of
the slip stiffness Cq, oFo with |F_| at V=V =30 mph is shown.

In Graph IV, the measured interaction-curves have been shown.
The solid straight lines are tangents to the Fx-curves in the origin.

From them we obtain C aoo(a) as shown in Graph V. The dashed

curves in Graph IV are Fy-a curves for different values of slip %
(indicated at origin of dashed curves). They are obtained from

the Fy-s curves. From the tangents to the dashed curves at their
origins, we obtain the C (s) values shown in the same Graph V.

a,S00
In Graph IV, also, the Fy values at Sx=1 for different values of

wi
o
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load and speed are shown. From these data we find Ca 10V(V)
’
and Ca,lFo(Fz)'
A collection of formulae and constant values are listed on

the next pages. The functions FxB(xF), FyB(yF) are shown on
Graph VI.

Calculations have been carried out in order to check the
validity of the method. For a number of combinations of o values
(2° and 16°), s values (10%, 30%, 70%) and V values (30 mph and
50 mph) the results are shown on the last two diagrams VII and
VIII in comparison with the original measured curves. A reasonable
agreement appears to occur. A better choice of constants may give
rise to results which are closer to the experimental data.

Sub-Functions (For main functions, see formulae (1) and (2) on
pages 23 and 24).

(V in mph, Ca in 1bs/rad, CS in 1bs/-, F in 1bs)
’... ,I.. LI I
£ =-10°F
z z
o 2,2 . 2,2
¢YV =1 ASYVbY ¥ BSYV by Yy = 1 - Ag Vb + B Vb
=1 iz - ] -1 ] ]
by 72 (llsyl syv| * Iyl spd b= (sl - sy ¢ dsyl - s
. . 5 Sy
Fy = sinGgq » Sy = sinay Sx = 100 ° Sxv = T00

%eq T & T YCy,oFV/Coc,oFV
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ooo.mu\omo s, _ dX, oooaaU\omo 0 - m»:
mmU\>oo.mu _ X, mao\>oo“au - >xc
(9°0-3 +
[9°0-"3])911"0-“7580" T =14y
(1-“5 + |1-"3[)szar0-"3 =°T% (6°0-%3 +
TXXg ) 08X (X5 ) o 3%y 16°0-25])18T 0 - 25 po'T = 34y
(0T-A)c 0T x 9°g + T = My Ay 0T X 8 + T = Ay



= 180 14071.1 - (v-38)%10.4 x 107°} ¢ = 16(6+V) (62-V)

Co00v = T 5,00V

C - 180 {157 - 119(f -1.15)2} C = 22700 £_(1-0.189f )
a,0Fo m z s,oFo0 z z
Cu,loV = 425 + 3V

Ca,lFo = 515 fz

Cy,ooV = 1000 fz

Cy,oFo = 1000 fZ

Coc,soo - Ca,soo(sx) Cs,aoo ) Cs,aoo(g&)
Constants
sy * 0.0235 A, = 0.021

Bsy = 0.00072 Bey = 0.00026

a, = 4° ~» syV = 0.07 Sy T 5% - Sev T 0.05

CaB = 8000 CSB = 18400

Ca,ooo = 8850 Cs,ooo = 18400

Ca,loo = 515

Cy,ooo = 1000 fZ
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