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There exists evidence that subjective expected utility (SEU) theory, 
the most general of the maximization theories, is an invalid model for 
decision making. Huang (1971) and Pollatsek (1971) have shown that 
subjects violate SEU theory if they prefer intermediate variance on a set 
of gambles when the level of expected value is held constant. There is 
substantial evidence in the studies cited below that subjects indeed do 
so. Consequently, the maximization theories do not provide a suf- 
ficiently general model for decision making behavior. It is, therefore, 
necessary to find a general model that will take into account more 
diverse types of decision making behavior. 

There are several decision making models in the literature in which 
risk is an important variable (Royden et al. 1959; Coombs and Pruitt 
1960; Pruitt 1962; Van der Meer 1963; Coombs and Meyer 1969; 
Coombs and Huang 1970b). In order to test these models, risk must be 
examined in more detail; otherwise, the interpretation of discrepant 
experimental results will not discriminate between incorrect assump- 
tions about the nature of risk and incorrect assumptions about the 
decision process. 

Coombs and Huang (1970a) propose a structure for perceived risk in 
their paper on the polynomial psychophysics of risk. They define three 
transformations on games of the form g=(~~.p,z), in which outcome y 
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occurs with probability p, otherwise z occurs (y Z z). They propose 
that these transformations induce corresponding transformations on 
perceived risk in which the joint effect has a particular polynomial form 
which can be tested using conjoint measurement methods (Krantz and 
Tversky 197 1). The three transformations used in their study were: 

a(g) = (Jj+U, l/2, 2 - a) 
b(g) = (y+b, l/2, Z + b) 

c(g) = (_Y, l/2, z)c 

where a and b are amounts of money and c is a nonnegative integer. 
The a(g) transformation controls the range and variance while leaving 
the probabilities and expectation unchanged. The b(g) transformation 
controls expected value while leaving the other variables unchanged. 
The c(g) transformation is a multiple play transformation given by the 
convolution of the game g with itself c times. 

The authors proposed that there exist real valued subjective func- 
tions CX, p, and y on the perceived risk of a game corresponding to the 
u(g), b(g), and c(g) transformations respectively such that their joint 
effect can be characterized by the following distributive model: 

R(g) = ida) + /x6)1 Y(C) 

where R(g) is the riskiness of the game g generated by the values of a, b, 
and c applied to the gamble gu=(O,1/2,0). The experimental results 
from rank orderings of risk preferences supported this model over 
several other models. 

Pollatsek and Tversky (1970) constructed an axiomatic theory for 
perceived risk which leads to the theorem that risk is a linear function 
of variance and expected value. Coombs and Bowen (197 1) varied 
probability keeping variance and expectation constant and showed that 
risk varied concurrently, indicating that risk cannot be solely a function 
of variance and expectation but that probability plays a significant 
part. 

The current paper tests a model for perceived risk that takes both 
range and probability into account keeping expected value constant. 
Two-outcome gambles were chosen so that the range of a game, a, and 
the probability of a game, [I, fould be varied while expected value 
remained constant. Expected value was not varied since the effect of 
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expected value on the perceived risk of a game has been studied 
extensively (Coombs and Huang 1970a; Coombs and Bowen 1971; 
Pollatsek and Tversky 1970). These considerations led to the following 
derivation for the form of the gambles. Suppose we have a game 
g=(y,p,z) and we set the expected value equal to zero, then: 

(l)yp+(l -p)z=O,orpti-z)+z=O 

or 

(2) z = - pa, where a is the range (a=~ - z) 

Solving now for y yields: 

(3)y=a(l -P) 

Consequently gambles where the expected value is zero and the range 
and probability are varied will have the form g = (qa, p, - pa) where 0 
< p < 1, q=l - I?, and a is some positive amount of money. Gambles 
were constructed of the above form to investigate the effect of range 
and probability upon the perceived risk of a game. A positive amount b, 
30 cents, was added to both outcomes fixing the expected value at 
30 cents. A positive expected value was chpsen so that there would not 
be a minus-one transformation for games with the same range and 
different probabilities. For example, the game (0.40, 2/3, - 0.80) 
becomes (0.80, l/3, - 0.40) when the probability is varied and range 
remains constant with expected value equal to zero. However, when the 
expected value is set to 30 cents, the two games become (0.70, 2/3, 
- 0.50) and (0.10, l/3, - 0.10) and it is not as easy to discern with a 
glance that the two ranges are equal. 

The model assumes that there exist real valued functions R, a, 0, and 
y, defined on g, a, p, and p respectively such that 

RCA = 4aMp) + Y(P) 

where (Y, p, and y correspond to three psychophysical functions for the 
subjective effects of the a and p parameters on perceived risk, R(g). 
This particular function that was chosen to characterize the risk of a 
game was mediated by the following considerations. Changing the range 
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of a game will increase risk by increasing the amount to win and at the 
same time increase the amount to lose. Changing the probability of a 
game, however, will not only change the actual amounts of the out- 
comes, but it will also change the probability with which each of the 
outcomes occurs. For example, increasing the probability will not only 
decrease the amount to win and increase the amount to lose, it will also 
increase the probability of winning the positive outcome. In view of 
these considerations, the above model of risk was proposed, where 
c~(a)fl(p> represents the joint effect of the a and ,D parameters on risk 
that is mediated by the outcomes and y(p) corresponds to the sub- 
jective effect of odds alone on risk. 

To test the theory, the difference in risk was compared between 
certain gambles chosen so that the -y(p) term can be cancelled as 
follows: If one considers the two games, gi with parameters Ui and p 
andgi with parameters Uj and I?, then according to this model, their 
difference in risk is given by: 

Dij =‘(gi) - ‘kj) = [a(ui)P(P) + T(P>I - [Q(aj)P(P) + rQ>l 

= P(P) IaCui> - a(uj>l 

In characterizing differences in risk by the above model it has been 
assumed that the subjective process of evaluating differences in risk is a 
subtractive one. One sees that the difference in risk between two 
gambles with the same expected value has the structure of a simple 
distributive polynomial. This structure must satisfy certain properties 
which can be tested by conjoint measurement methods. 

Method of analysis 

There are four simple polynomial models in three variables as follows 
(Krantz and Tversky 1971): 

Y, +r2 +r3 additive model 

r1r2r3 multiplicative model 

r1 (r2 +r3) distributive model 

Yl r2 + r3 dual distributive model 

The necessary conditions for each of these models, which are sum- 
marized in table 1, can be tested by conjoint measurement methods; 
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consequently, conjoint measurement methods can be used to distin- 
guish between these four models. Since the p and a parameters are 
assumed to induce subjective transformations which can be charac- 
terized by the distributive model when looking at differences in risk, 
attention is directed to those tests which are the necessary and distin- 
guishing tests for that model. 

A measure of each S’s consistency was constructed to provide a 
comparative error rate as a basis for testing significance of results where 
necessary and appropriate for the tests listed in table 1. These tests are 
described briefly in the results. For a more detailed explanation of the 
necessary conditions for the four polynomial models and the tests used 
in this experiment see Coombs and Huang (1970a) and Krantz and 
Tversky (197 1). 

The experiment 

Method 

Subjects 

The Ss were 20 paid male volunteers who were students at the University of 

Michigan. 

Stimuli 

The stimuli which are shown in table 2 are all pairs of two-outcome gambles 
with one level of expectation, b=0.30, two levels of p. and five levels of a. The 
number of levels chosen was the minimum number needed to test the properties of 
the distributive model (Krantz and Tversky 1971). A graphical representation of 

Table 1 
Necessary conditions for four polynomial models. 

Additive Multiplicative Distributive Dual distributive 

Simple independence Simple sign dependence Simple sign dependence Simple sign dependence 

Joint independence Joint sign dependence J Joint sign dependence of Joint sign dependence of 

of all parameters of all parameters one pair of parameters one pair of parameters 

Double cancellation Double cancellation Double cancellation Double cancellation 

Distributive cancellation Dual distributive 
cancellation 
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Table 2 
The basic games. 

p1=1/3 P2=2/3 

al=1.20 
a2=1.80 
a3=4.50 
a4=9.10 
a5=20.70 

( 1.10,1/3, - 0.10) (0.70,2/3, - 0.50) 
( 1.50,1/3, - 0.30) (0.90,2/3, - 0.90) 
( 3.30,1/3, - 1.20) (1.80,2/3, - 2.70) 
( 6.90,1/3, - 3.00) (3.60,2/3, - 6.30) 
(14.10,1/3, - 6.60) (7.20,2/3, - 13.50) 

the design of the experiment is shown by the x’s in the cells of fig. 1. Each cell 
represents the difference in risk between two games, one with the range equal to 
the column entry and one with the range equal to the row entry and both having 
the same probability of outcomes. Therefore, each stimulus can be characterized by 
a triple (ai, at pk) where Qi and a. are the respective values of the range of the two 
games and pk is the probability o fl. wmnmg, which is the same for both games. Only 
the cells above the diagonal have been indicated as they will have the same ordering 
as :those below the diagonal with a sign change. 

Procedure 

The S was presented with a deck of IBM cards with one pair of gambles on each 
card (see fig. 2). The cards were randomized within each deck. The order of the pair 
of games on each card was randomized. There were five different replications of 
each deck. The order of these five decks was also randomized. 

al a2 a3 a4 a, 
al x x x x 

a2 x x x 

a3 
a4 
as rT!a x x 

X 

Pl 

al a2 a3 a4 a5 
al xxxx 

a2 xxx 

a3 q x x 

a4 X 

a5 

P2 

Fig. 1. The basic design. 

Fig. 2. One of the stimuli used in the experiment. 
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The Ss attended six sessions on six consecutive days. The first session was a 

practice session. During the first part of the practice session, the Ss became 
accustomed to the type of games they would be making judgements about. During 
the second part of this session, they were presented with a set of practice games 
which differed in expectation, range, and probability from the games used in the 
following sessions. They were asked to make the same type of judgements they 
would be making throughout the rest of the experiment. 

On the following days the Ss were presented with a deck of 1 14 IBM cards. They 
were asked to take off the top two cards from the deck, putting the top card on 
their left and the other card on their right. Then they were to decide whether the 
pair of games on the card on the left or on the card on the right had a greater 
difference in risk. Once they had made their decision, they were to place the card 
with the pair of games which had a greater difference in risk in a pile with the other 
card on top of it. They then took off the next two cards and proceeded in the same 
manner as before. They did this until they finished going through all 114 IBM 
cards. A total of 57 paired comparisons were made by each S. It took each S an 
average of 25 min to go through the deck of 114 IBM cards. 

The data were analyzed between sessions to determine the S’s pay for the 
previous session. The Ss were instructed that if they made careful judgements, then 
they would be paid $ 3.00 for the session. Since it was assumed thatif the Ss made 
careful judgements, then they would satisfy one of the tests of independence 
needed for any of the simple polynomial models, satisfaction of this test was used 
as a measure of how carefully the Ss were making their decisions. Although each S’s 
pay was determined by the violations made of this test of independence, 25 cents 
was deducted for each violation, they were never aware of how their pay was 
determined. At the end of the six sessions, each S’s responses for a given com- 
parison were pooled across sessions to obtain the stochastically dominant ordering. 
This is the ordering that is used in reporting the results. 

Results 

Consistency 

The level of consistency was calculated for each S using a folded binomial 
distribution (Coombs and Huang 1970a) which had a mean of 3.44 and a standard 
deviation of 0.15. All of the Ss deviated significantly from chance (consistency at a 
chance level = 3.5) at the 0.01 level. The Ss’ consistency level is presented in 
table 3. They are ordered from most to least consistent. 

Although it was assumed that the more consistent Ss would have fewer errors, as 
was found after collecting the data, no error theory was incorporated in the model. 

Independence 

Two types of independence were tested, simple independence and joint in- 
dependence. Simple independence for each variable was tested by comparing the 
orderings induced on that variable with the remaining variables held constant at 
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Table 3 
Consistency. 

Subject number Consistency level 

24 5.00 

1 5.00 
14 4.98 
11 4.98 
6 4.98 
8 4.98 

21 4.96 
10 4.96 
15 4.95 
22 4.95 

I 4.94 
9 4.84 

18 4.82 
3 4.78 

16 4.71 
2 4.66 

11 4.6 1 
23 4.58 

4 4.22 
5 4.03 

each level in turn. These orderings must all be the same. Joint independence was 
tested by comparing the orderings induced on the joint effect of two variables with 
the third variable held constant at each level in turn. These orderings must all be the 
same. The results on the two tests of simple independence and the two tests of joint 
independence are presented in table 4. 

The last test of joint independence, A x P;A, consisted only of six new tests in 
addition to the previous 16 tests of simple independence. Therefore, if a S made 
three or more violations of this test of joint independence and made no violations 
of the tests of simple independence, this was considered to be a serious violation. 
As can be seen from table 4, 16 of the 20 Ss substantially violated this test of joint 
independence. As all of these tests of independence are necessary conditions for the 
additive model, that model can be ruled out for characterizing the difference in risk 
between two games. 

Sign dependence 

This test, a more general form of independence, requiring that independence be 
satisfied except for the sign of the variable held constant, was carried out on all 
possible combinations. The results on the tests of sign dependence are presented in 
table 5. As may be seen from the table 15 of the 20 Ss substantially violated the 
test of sign dependence for A x P;A. Since all of the tests of sign dependence must 
be satisfied if the multiplicative model is a viable one, this model may be rejected. 
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Table 4 
Results on four tests of independence. 

Simple independence Joint independence 

P;AXA A; AXP AXA; P AXP;A 

No. of 
violations 0 16 18 17 1 

1 3 0 0 3 
2 0 1 1 0 
3 or more 1 1 2 16 

No. of 

possible 
violations 

8 8 13 22 

Table 5 
Results on four tests of sign dependence. 

No. of 
violations 

No. of 

possible 
violations 

Simple sign dependence Joint sign dependence 

P; AXA A; AxP AXA;P AXP; A 

0 16 18 17 1 
1 3 1 0 4 
2 0 1 1 0 
3 or more 1 0 2 15 

8 8 13 22 

Double cancellation 

All twenty Ss satisfied the four tests of double cancellation. 

Distributive cancellation 

Distributive cancellation was the final property tested. This property is a 
necessary condition for all of the models except for the dual distributive one. 
However, if distributive cancellation is satisfied, the dual distributive model may 
still be a viable model. All 20 Ss satisfied all nine tests of distributive cancellation. 
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Discussion 

Using conjoint measurement methods the multiplicative and additive 
models have been shown not to be viable models for characterizing 
differences in risk. These conclusions are supported by a priori con- 
siderations also as follows. 

If one makes the assumption that the difference in risk between two 
identical games is zero, and one assumes that differences in risk can be 
characterized by an additive model, then the following is true for the 
game gi with parameters ai and p. 

Dii = P(P) + a(ai) - a(ai) 
= P(P) 

Dii =O*p@)=o 

The above derivation shows that if the model for characterizing differ- 
ences in risk is an additive one, then the B(p) term is an irrelevant 
variable. Since probability was shown to be a relevant variable when 
looking at the difference in risk between two games, this provides 
support for the conclusion that differences in risk cannot be charac- 
terized by an additive model. A similar analysis reveals that the mul- 
tiplicative model cannot characterize differences in risk. 

All of the tests for the distributive and dual distributive model were 
satisfied. Since distributive cancellation was satisfied for all 20 subjects, 
this leads one to believe that the distributive model is the correct model 
for characterizing the difference in risk between two games. However, 
these two models must be examined in more detail. 

There is an additional condition which can be used to distinguish the 
distributive model from the dual distributive model; the distributive 
model requires that there exist a level of P which induces a degenerate 
ordering on A X A and a level of A X A which induces a degenerate 
ordering on P. It is argued that A X A induces a degenerate ordering on 
P when the two ranges are equal, that is, those cells which form the 
diagonal of the data matrix. If the two ranges are equal, then the two 
games are the same game and there is no difference in risk between 
them. If the level of P is 1, then P will induce a degenerate ordering on 
A X A; the reason being that there will be no risk involved. This 
provides support for the distributive model over the dual distributive 
model. 
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A further examination of the dual distributive model provides 
support for the rejection of this model as a viable one for characterizing 
differences in risk. If one assumes that the difference in risk between 
two identical games is zero and that differences in risk can be charac- 
terized by a dual distributive model, then the following is true for the 
game gi with parameters ai and p: 

Dii = O(p)a(ai) - a(ai) 
= hi) [P(P) - 11 

Dii = 0 * either a(ai) = 0 or p(p) = 1 

The above derivation shows that if the above dual distributive is 
proposed then either p(p) or cu(a) is a constant function. However, if 
either of these two functions are constant then this implies that either 
probability or range is not a relevant variable when looking at differ- 
ences in risk. This has been shown to be an invalid conclusion. A similar 
analysis follows for other possible dual distributive models. The above 
results provide substantial support for the rejection of a dual dis- 
tributive model for characterizing differences in risk. 

The above evidence supports the claim that of the four simple 
polynomials, the distributive one is the only viable model for charac- 
terizing differences in risk. Through the use of conjoint measurement 
methods it was found that all the necessary conditions for the dis- 
tributive model were satisfied. Furthermore, the distributive model is 
the only model which satisfies the assumption that the difference in 
risk between two identical games is zero. Consequently, if differences in 
risk are characterized by a distributive model and the cognitive process 
of taking differences in risk is a subtractive one, then the only viable 
model for characterizing the risk of a single game is a multiplicative or a 
dual distributive one. 

An alternative model that could be proposed for determining the risk 
of a game is the additive one, as follows: 

R’(s) = da) + P(P) + r(p) 

for all a e A and for all p E P where (Y, 0, and y are real valued functions 
defined on A, P, and P respectively. Since the model proposed in this 
paper is a multiplicative one for the functions cw(a) and p(p), it could be 
argued that one cannot distinguish between the model proposed earlier 
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and the one proposed above. However, the following analysis shows 
that the above model is not a viable one for the two games, gi with 
parameters ai and p and gi with parameters ai and p. 

Dij=‘ki) - Rk.)= ia + P(P) + r(p)] - [a<aj> + p(p) + r(p)] 
= a(ai> - cu(aj j 

This implies that the difference in risk between two games with the 
same probability can be completely characterized by the difference in 
range between two games and that probability is not a relevant variable. 
However, the previous analysis has shown that probability is indeed a 
relevant variable when one evaluates the difference in risk between two 
games. Consequently, the above model can be ruled out as a viable 
model for a theory of risk. 

In earlier studies (Coombs and Huang 1970a, b; Coombs and Meyer 
19691, it has been assumed that increasing the range of a game increases 
the risk of a game if expected value is held constant. This assumption 
was supported in this study. It does not seem likely that such a simple 
monotonic relationship holds when the probability of a game is in- 
creased. If risk is characterized by a dual distributive model, where 
changing the probability of a game produces two different effects on 
the risk of a game, then it seems unlikely that any simple relationship 
between changes in risk and changes in probability will be found. 
Furthermore, if risk is characterized by a dual distributive model, it is 
not obvious how one would test the effect of changes in probability on 
the risk of a game. 

The additive, multiplicative, and dual distributive models have been 
shown to be invalid models for characterizing differences in risk. The 
additive model has also been shown to be an invalid model for charac- 
terizing the risk of a game. There has been shown to be substantial 
support for the hypothesis that the difference in risk between two 
games has the structure of a distributive model and that the risk of a 
game has the structure of a multiplicative or dual distributive model. 
Therefore, there appears to be substantial support for the proposed 
empirical relational system for perceived risk. 
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