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1. INTRODUCTION 

We consider the mixed problem for the system of equations 

wt - u, = 0, Uf + P(4, = 0, (1) 

where p(g) = K2v-y, y = 1 + 2~, E > 0, K = const > 0, in regions (a) 
x > 0, t > 0, and in regions (b) 0 < x < 1, t > 0. In both cases we prescribe 
initial data 

(4x, Oh 4x, 0)) = (~“(4 %(X)h (2) 

where 0 < v < V,,(X) < v < +a. In regions (a) we also prescribe boundary 
data of the form 

@, 4 = u&>, t >, 0, (3) 

while in regions (b) we prescribe boundary data (3) and 

4, t) = u2(t), t > 0. (4) 

Systems of the type (1) describe one-dimensional motion of an isothermal gas, 
in Lagrangian coordinates, in the absence of dissipative effects. Here v denotes 
the specific volume (the reciprocal of the density p), and u is the velocity of the 
gas. The mixed problem (l)-(3) is sometimes called the “piston problem,” and 
the function uI(t) denotes the velocity of the piston. The problem (l)-(4) can be 
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NONLINEAR CONSERVATION LAWS 245 

called the “double piston problem” (although we also allow “rigid walls,” 
u1 = 0 and/or ~4s = 0). 

We always assume that each of the functions Q, u0 , ur , and us are bounded 
and have finite total variation. We set 

Tl = T@,,) + TUT,} + TW,), 
T, = Tl + TV{u,}. 

We first show that the problem (l)-(3) h as a global solution defined for all 
t 3 0 provided that ET, is sufficiently small. The case where E = 0 is considered 
in [4], and for the case where the variation of the data is sufficiently small, see [3]. 
Our result is related to our paper [5], where we considered the pure initial 
value problem. The piston problem is more complicated, due, mainly, to the 
reflection of shock waves at the boundary x = 0, whereby the strength of the 
reflected shock is usually greater than the strength of the incoming shock. 
Our technique is to use Glimm’s method [2], however, we must modify his 
functional in order to take care of the reflections of shock waves on the boundary 
x = 0. Such a procedure requires an estimate of the strength of the reflected 
shock wave in terms of the strength of the incoming shock, together with the 
contribution of the boundary data at the point of reflection. This estimate is 
obtained by showing that if the incoming shock impinges on the boundary 
x = 0 at a point of continuity of ur , then this reflection can be reduced to a 
problem of interacting shocks for a free (i.e., initial value) problem. 

For the “double piston” problem, (l)-(4), th e existence of a solution is much 
more delicate due to the continued reflection of shock waves across both 
boundaries x = 0, and x = 1. We first present an example which shows that the 
problem cannot have a global (in time) solution without some additional 
restrictions on the data. We give a fairly careful analysis of this example which 
points out just where the difficulty lies; namely, it is necessary to put conditions 
on the data which prevent the pistons from coming together in a finite time 
(p = +oo), and also prevent the vacuum (p = 0) from appearing. These 
“physical” conditions are made precise in inequality (14). In order to handle the 
problem of multiple reflections of shock waves off the boundaries x = 0 and 
x = 1, we employ the generalized Riemann invariants introduced by DiPerna 
in [l]. Measured in terms of these coordinates, the strengths of the reflected 
shock waves do not increase, modulo contributions from the boundary data. 
Thus, we can again use Glimm’s method, where we now employ a functional 
analogous to that used in [l] (which, however, is supplemented by additional 
terms needed to take boundary interactions into account). The desired decrease 
of our functional is obtained only if ET, is sufficiently small and the approximate 
solutions lie in the region in which the generalized Riemann invariants are 
defined. This requires a short detour; namely we first fix ET, to be sufficiently 
small and then take t to be sufficiently small. We thus get a weak solution defined 



246 NISHIDA AND SMOLLER 

in 0 < t < to , 0 < x < 1, which is V-continuous in t. It therefore satisfies the 
above “physical” conditions on the data in this time interval. Thus using this 
a priori bound, we can take as new “initial data” the functions (ZJ(X, r,), U(X, t,)). 
We then proceed to solve the problem locally and repeatedly in regions 
nt, < t < (n + l)to , 0 < x < 1, where n = I,2 ,... . This then yields the 
desired global solution. 

2. PRELIMINARIES TO THE PISTON PROBLEM 

Solutions of nonlinear hyperbolic systems are usually discontinuous; thus, by 
a solution of (l)-(3), we mean a pair of bounded measurable functions 
(v(x, t), u(x, t)), which satisfy the two equations 

J;,, j (4 + ~(4 A) dx dt + s,=, uo# dx = 0, $J E Cal, VW, t> = 0, t > 0. 

330 

We recall from [5], that a pair of Riemann invariants for (1) may be taken as 

Y = u - Kylqp’ - 1)/C], s = u + Ky’/2[(p’ - 1)/C]. 

In these coordinates, we can solve the simplest piston problem, i.e., the analog 
of Riemann’s problem for the mixed problem. 

LEMMA 2.1. Consider the system (1) with data a(x, 0) = o+ , u(x, 0) = u+ , 
and ~(0, t) = u- , where v+ , u+ , u- are constants, and a, > 0. This problem has a 
piecewise continuous solution in x 3 0, t 3 0 satisfying the estimates 

+, t) = y(@, t), u(x, t)) 3 r(v+ , u+> Ez y+ , 
s(x, t) = s(v(x, t), u(x, t)) < max[s(v+ , u+) E s+ ,2x - Y+], 

As < 2 max [0, u- - u+] = 2421, 

where As is the variation of s across1 S, in the solution. 

Remark. The term 2u- - r+ is new to the mixed problem, and is due to 
shock waves, reflecting off, or coming out of, the boundary x = 0. 

Proof. We consider two cases: u+ < u- , or u+ > u- . Suppose first that 
u+ < u- . The solution to our problem is given by a shock wave of the second 
kind coming out of the origin (see Fig. 1). 

1 Si denotes an i shock, and Ri denotes an i rarefaction wave i = 1, 2 (see [5]). 
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Using Fig. 2, we see Y- 3 Y+ , and since s0 = 2u- - r+ and s+ = 2U, - r+ , 
we have 

As = se - s+ -=c so - s+ = 2~ - r+ - (2u+ - r+) = 2du, 
s- < so = s+ + (so - s+) < (2u+ - I+) + 2(u- - u+) = 2u- - r+ . 

‘v+ I u,) 
X r+s = r++s+=2u+ 

FIGURE 1 FIGURE 2 

If we consider the case where u+ > u- , we must, of course, exclude the case 
where p = 0 (i.e., v = 00) so we must assume here that2 

s- - Y+ > 2(u+ - u-) - (2&W/C). 

? To see this, we consider the equation s - Y = 2Ky’l”[(p’ - 1)/c], together with 
Fig. 3. Note that p = 0 corresponds to s - T = -2Ky1/z/~, while p > 0 corresponds to 
s - Y > -~KY~/~/E. Since s- - s+ = 2(u- - u+), we have s- - r+ = (s- - s+) + 
(s+ - r,) > -2Ky’/2/~. 
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In this case, we can find an s- < s+ such that s+ - s- = 2(u+ - u-). Hence the 
solution to our problem is given by an R, coming out of the origin (see Fig. 4). 
Using Fig. 5, we see that r- = r+ , and s+ - s- == 2(u+ - u-), s- = 2u- - T+ . 
This completes the proof of the lemma. 

+t (v-,u-) R2 

U- I?& (v+,u+) 

(v+,u+) x 

FIGURE 4 

FIGURE 5 

3. THE DIFFERENCE SCHEME AND NONLINEAR FUNCTIONALS 

We next consider general data u, , v,, , u1 , all three functions being bounded 
and of bounded total variation. To handle this general case we shall use a 
modified form of Glimm’s scheme. Thus, let 

Y = {(m, n) : m = 1, 3, 5 ,...; n = 1, 2, 3 ,... }, 

A = fl (Km - 1) I, (m + 114 x WI), 
(rn.rl)EY 

and choose the mesh lengths 1, h to satisfy 

Z/h = ( l/Kyl~z)[l + (</2Kr”“)(so - ~,,)]-((~+~)l’), 
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and 

so = m=4 2: 4wo(4, ~oW>p 2 ;;E W - rd. 

Let {IX %: n = 1,2,...} be a random sequence of numbers equidistributed in 

(-1, 11, and let u~,~ = (ml + a,Z, nh), m = 1, 3 ,..., n = 1, 2 ,...; a,,, = 
(0, nh - +h), n = 1, 2 ,...; a,,,, = (ml, 0), m = I, 3 ,..., be the mesh points. 

We define the 1 curve 0 to be any spacelike curve joining points a,,, 
(m = 1, 3, 5 ,...) and not containing points ((m + 1) I, 0), m = 1, 3, 5 ,..., which 
lies in 0 < t < h if x > 0, and which also includes the half-ray t > h/2, x = 0, 
and the straight-line segment joining a,, to uol (see Fig. 6). 

A 

O02 (1 

hq- 
I curve d 

OlO 24 ‘I30 41 a50 

FIGURE 6 

In order to define the I curve J, we first let i;- (respectively iE+), m = 2,4,6,... 
be any space-like curve joining u,,-~,~ and CZ~+~,~ lying in (n - 1)h < t < n/z 
(respectively nh < t < (n + I)h), and not passing through the point (ml, n/i); 
it+ (respectively +) is the straight-line segment joining the points a,, and 
[0, nh + (h/2)], (respectively [0, nh - (h/2)]). Then the I curve 1 is composed 
of curves $+, m = 0,2,4 ,... and straight-lure segments joining the mesh points 
um-l,n and ~,,,+r,~-r, (or u,,+.rPn and u~+~,~+J, m = 2,4 ,... on which the index m 
increases to infinity, together with the half-ray t > nh + (h/2) (or t > nh - (h/2)). 

Next, we use Glimm’s method [2], to obtain approximate solutions to our 
problem. Namely, we solve the Riemann problem in the region nh < t < 
(n + l)h, ml < x < (m + 2)E, m = 1, 3 ,..., 71 = 0, 1, 2 ,..., and we also solve 
the problem (l)-(3), with constant data (see Lemma 2.1) in the region nh < 
t < (n + l)h, 0 & x < 1. This is analogous to what is done in [4, 51. 

In order to obtain the desired estimates on these approximate solutions, we 
define certain functionals as follows. For an I curve J, we let 
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where cyk is an S, crossing J, & is an S, crossing J, and 

I 3/j I = 24 = 2 max{O, %(%+I) - %(%)I 

for all j such that [0, jh & (h/2)] E J. Here 1 czk / and [ pL 1 denote the strength 
of the shock waves 01~ and /3, , respectively (see [5]). We next let 

where Ollc , PI , and yj are as above. Here the term / 01~ 1 / /31 I is included only if 
or, and /I1 are approaching (cf. [2]); the term 1 olle I I 01~ 1 is included for k < 1 and 
the terms 41 01~ I2 and j LYE I 1 yj I are included for all k, j. Finally we set 

F(J) = L(J) + KQ(Jh (6) 

where K = O(E) will be chosen later. Note that 

F(O) <L(B) + m(o)2 < 2L(B), (7) 

since we may assume that KL(0) < 1, if E is small. 
It is interesting to compare the F defined by (6) to the associated F of the pure 

initial-value problem, defined in [5]. Th e new terms here are C I yj 1 in L(J) and 
C / elk I j 01~ 1, $2 j 01~ 12, C / elk / j yi I in Q(J). These terms are due to reflection 
of shocks on the boundary x = 0; see Fig. 7. That is, each yj comes from an S, 

Yj ES2 
4 ES2 Qk’SI 

FIGURE 7 

when we solve (l)-(3). The term $1 olle I2 is needed in order to handle the 
reflections of shocks on the boundary x = 0 (LX + /3’ in Fig. 7). The strength of 
the S, reflected wave, f3’, is greater than the strength of the incoming S,; i.e., CL 
We will show below that 18’ 1 < / (Y 1 + I y 1 + CE / OL 12. The term j 01~ j 1 OLD 1, 
K < Z, goes into the term 1 plc’ / I 01~ / after 01~ is reflected at x = 0 (that is, we do 
not get / ak’ / / 01~ 1, i.e., a new S, , as in the Cauchy problem, but we get an S,). 
Finally, j a, / i ‘yj 1 goes into 1 01~ / I p1 I away from the boundary; that is, yi 
becomes an Sz . 

The interactions which do not contain reflections of shock waves on the 
boundary x = 0 are quite the same as for the Cauchy problem, and for these, the 
estimates in [5] are valid. 
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4. ESTIMATE OF THE REFLECTED SHOCK WAVES 

In this section we shall consider the reflection of a shock wave of the first kind 
on the boundary x = 0, at time t = nh. Thus, we suppose cy is an S, coming 
into the boundary x = 0; it gets reflected into ashock wave /3’ E S, , and our 
task is to estimate ] /I’ / in terms of 1 OL j and the boundary data. We first consider 
the case where the piston velocity u is constant near the point (0, nh). 

PROPOSITION 4.1. Let 0 < E < &, and consider the rejlection o( + p’ on x = 0, 
at t == nh, where 01 E S, , p’ E S, . If u is constant on (n - 1)h < t < (n + l)h, 
x = 0, then 

IB’I <;~1+CE142, (8) 

where C is a positive constant independent of 01, /3’, and E, provided that the waves 01 
and /3’ are contained in the strip p E [p, j], u E R’ in the r, splane. 

In order to prove this proposition, we need a lemma. This lemma states 
roughly, that shocks reflected off a part of the boundary in which ui is constant 
may be considered as coming from a pure Cauchy problem. 

LEMMA 4.2. Given cy, /3’ as above, there exists 01’ E S, , /3 E S, with 1 01 / = / /I [, 
1 01’ / = / /3’ / such that /3 + 01+ 01’ f /3’. 

Proof. Using the remark [5, p. 1921 we note that the shock wave curve S, 
starting at any point (r- , s-) is symmetric to the inverse shock wave curve S,’ 
starting at (r- , s-), with respect to the line r + s = r- + s- . Similarly, this 
symmetry is valid for S, and S,’ starting at any point (P, S), with respect to the 
line r + s = r” + S (see Fig. 8). 

\ \ t-?,,“j) 
4 \ s; 

\ 
s2 

'\ 

S 

\ 

L r \ s-i 
\ 

\ 

9 

\ 
3 \(r-,s-1 

\ 
\ 

FIGURE 8 

Given 01, we construct /3’, /3, and 0~’ as follows: First consider the diagram in 
Fig. 9. 

The intersection of the inverse shock curve S,’ starting at (r+ , s+) with the 
line r + s = I- + s- is denoted by (f, i); the shock curve S, from (Y, f) to 
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s 

L r 

FIGURE 9 

(r + , s+) is ,8’; the point on the inverse shock curve S,’ starting at (Y- , s-) with 
strength / LY 1 is (r, s), and the shock curve S, from (I, s) to (r- , s-) is /3 where 
1 p / = 1 OL I. If we draw the inverse shock curve S,’ from (f, i), it crosses the S,’ 
starting from (Y- , s-), at (r, s) because of the symmetry with respect to the line 
r + s = r- + s- = r” + S. Therefore the shock curve S, from (r, s) to (r” S) is 
a’whereI&I = IP’I. Q.E.D. 

Proof of Proposition 4.1. From Fig. 9, Lemma 4.2 and the estimate of 
[5, Lemma 4(i)(a)], we have 

as asserted. 

PROPOSITION 4.3. Let 0 < E < $, and consider the rejection a: -+ /3’ on x = 0 
at t = nh, where 01 E S, , p E S, . Then if ) y j = 2 max(O, ul(a,,lz+l) - z+(a,,,)), 
we have 

where C is a positive constant, independent of OL, ,Y, ] y 1, and E (see Proposition 4.1). 

Proof. The reflection CL ---f p’ is described by the diagram in Fig. 10, where 

u- = +,A fi = 4btl). 
We let (r* , s*) = (r(v* , u*), s(v* , u$) and (T; S) = (r(~, a), s(@, B)). First 

consider the case when c < u- . If we refer to Fig. 7, we see that the region 
Y + s < 2~ lies below the line r + s = 2u- , so that the starting point of the 
shock /3’ lies below the line r + s = 2~~. Now we construct p, 01’ as in Lemma 4.2, 
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(v-,u-) 
* 
X 

FIGURE 10 

FIGURE 11 

253 

FIGURE 12 
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and let /?” denote the S, as in Fig. 11, (1 01’ 1 = j /3” I). Then using Proposition 4.1, 
we have the estimate, 

I P’ I < I 6” i < I 01 I + Cf I 0~ 12, 

so that (9) holds if ii < u- . Suppose now that zi > u- . If we refer to Fig. 12, 
we see that 

i8’l -=C113”l+~~l~l+~~/~12+~. 

But from Lemma 2.1, we have 4 < 2(2? - U-) so that (9) holds and the proof is 
complete. 

5. CONVERGENCE OF THE APPROXIMATING SOLUTIONS 

We shall now obtain uniform bounds on the total variation of the approxi- 
mating solutions using Glimm’s method. That is, if J1 and Js are two I curves 
with Jz an immediate successor to Jl , we shall show that F( Jz) < F(J,) provided 
that $(O) is sufficiently small. The interactions which do not involve reflections 
of shock waves at the boundary x = 0 are quite the same as in [5]; we need only 
consider the case where J1 and Jz differ only on a,,, < t < a,,,+l , 0 < x < al,n, 
and 01 + y --f/I’ (cf. Fig. 13, where y = y(A)). For this interaction, we note that 
a and y cross J1 but not Jz and ,8’ crosses Jz but not J1 . We have 

L(Jd - L(J,) = I P’ i - I 01 I - I Y I7 

where of course, y = y(A) is a contribution due only to the boundary data, and 

O(JA - Q(J4 = I P’ I c I az I - I 0~ I C I az I - t I 01 I2 - I 01 I I Y I 

-l4~IY~I-lYIcI~A 

FIGURE 13 
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so that using Proposition 4.3, where3 K = 4Ce 

FG) - FG) = I P’ I - I 01 I - I Y I - (K/2) I a I2 

+ K [(I P’ I - I Q! I - I Y I) c I % I - (I Y I + 2 I Yj I)1 OJ I/ 

if KY’(6) < 1 and K = 4Cc; i.e., &(@‘I) < (4C)t. We have thus proved. 

LEMMA 5.1. IjO < E < 4, and G(O) is su@ciently small, then F(],) < F(J,), 
where Ji (i = 1, 2), are two I curves, and J2 is an immediate successor to J1 . 

From this lemma, it follows thatF(J) <F(U) < 2L(U) ,< const Tv{(v,, u,, uI>,” 
for any Z curve J, This estimate yields a uniform bound on the total variation of 
any of our approximating solutions, on each line t = const > 0. We thus have 
the following theorem. 

THEOREM 5.1. Let the data functions (pO(x), uO(x), q(t)) each have bounded 
total zrariation, and be bounded; i.e., j u,,(x)j $- j ul(t)\ < M, 0 < p- < pO(x) < 

P+ < + co. Then there exists a constant y,, , 1 < y,, < 2 such that for y E [I, ~~1, 
the mixed problem (l)-(3) has a global (weak) solution which has bounded total 
variation on each line t = const > 0. y. depends on the total variation of the data. 

We remark here that the extension to 3/O > 2 is considered in Section 9. 

6. AN EXAMPLE 

Consider the system (1) in the region 0 < .r: < 1, t > 0, with initial data (2) 
in 0 < s < I, and boundary data 

40, 4 = @), 4, t) = uz(t), t 3 0. w-9 

Such a problem is not well posed, if one does not provide supplementary con- 
ditions on the boundary data. To see this, consider the case where E = 0, 
(udt), u2(t)> = (ul , 4, where u1 , u,, are constants with ur - u0 = 1. Suppose 

3 This comes from the interactions in x > a,,, , as in [5]. 
4 By TV(j, g}, we mean Tot Var f + Tot Var g. 
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FIGURE 14 

uA 

“3 Ul U’U, 

FIGURE 15 

further that (w&x), u,,(x)) G (w ,, , z+,), where a, is a constant. Using Lemma 2.1, 
we see that an S, shock wave shoots out of the corner (0, 0), and impinges on the 
boundary x = 1. It is then reflected as an S, shock wave which impinges on the 
boundary x = 0; this shock in turn is reflected as an S, , and so on (see Figs. 14, 
15). If we let Vi = (vi , zli), i = 0, 1, 2 ,..., then we see that uaa = u,, , z+,+i = ur, 
11 = 0, 1) 2 )... . 

We have, with?(a) = w-r, 

-cl - Vo>M~o) - P(SW2 = uo - % = -h - %)(P(%) - P(SW2 
so that if we square and collect terms, we get wi2 = wswo . Similarly, ws2 = wrwa 
so that w1/w3 = w,/wa = K > 1. Then wa = K-la, , w5 = K-2wl ,..., and in 
general, w2,+i = K-“v,; likewise wzti = K-‘%I, . If we let the shock speed s, 
be defined by 

then s,K?(w, - vo) = - 1, s, = Kn(vo - v&l. If we let (TV denote the 
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shock speed of the Sr shocks, we have an = P(v, - q-I. If d, and n, are 
defined as in Fig. 14, then 

Since 0, -+ 0 as n --)r co, we see p(v,) --f co, as n + XJ. Thus, the pressure 
becomes infinite after a finite time! 

To analyze this example, we write the system in Eulerian coordinates 

Pt + (P4 = 0, (P4t + (PU2 + P(P)), = 0, 

and for simplicity, we assume us = 0, ul = 1. Here q is the position of the gas 
particle, and q and x are related by 

s 
P 

x= p(s, t) ds > 0. 
0 

Also, aq/at = u, aq/ax = p-1, u, = vt . Thus, 

4(X, t) = q(x, 0) + j-" u(x, t) dt, 
0 

so q(x, t) labels the q position of that point where the amount of gas between that 
point and 0 is X; the piston corresponds to x = 0. The piston path is 

q(o, t) = q(o, 0) + jot ~(0, t) dt = jot ~1 dt = t. 

x=0 x=I 

FIGURE 16 FIGURE 17 

If we set q(1, 0) = $, p-l(t, 0) dt, then the wall is given by q( 1, t), and we have 

q(l,t) = q(l,O) + jtu(l, t)dt =Q + sju(1, t)dt. 
0 0 

Thus, in Eulerian coordinates, the piston moves with velocity 1, and the piston 
path is given by q(0, t) = t; see Fig. 17. Our example corresponds to the 
triangular region OPQ in Eulerian coordinates; i.e., the piston collides with the 
wall at a finite time, t = Q. This is physically impossible, for at this time, 
p = + co, p = + co, so that the force on the piston is infinite. 
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From this example, we see that the trouble is that the piston collides with the 
wall. It is thus natural to assume that both boundaries q(0, t) and q(l, t) do not 
collide in finite time. Hence, it is necessary to impose the following restriction on 
the boundary data (1): For all t 2 0, q(0, t) < ~(1, t); i.e., 

jot z+(s) ds < Q + lt 11z(4 ds (11) 

where Q is defined by 

Q = l1 P,‘(O d-i = jo1 de-) d5. 

Observe that (11) fails for our example since here Q = o, , and (11) yields 

t = (ul - uo)t < ?I0 . 

That is, (11) does not hold for t > u,, , and as we have seen earlier, blow-up 
occurs precisely at time w0 . 

Next, we also cannot admit boundary data which allows the pistons to move 
infinitely far apart from each other, since generally speaking, this will lead to 
p - 0 as t --f co. For example, suppose that we consider the problem (l)-(4) 
where we take p(v) = v-r, ~(0, t) = - 1, ~(1, t) = 0, and (‘u(x, 0), u(x, 0)) = 
(l,O).Thenfrom(ll)weseethatq(l,t)-q(O,t) = 1 +t~+~~ast-++c~. 

Moreover, an analysis similar to that given above shows that an R, rarefaction 
wave shoots out of the corner (0,O) and impinges on the boundary x = I. It 
then gets reflected as an R, , and so on.5 Here we see that ZI ---) + co as t -+ CO, 

5 The solution to this problem can be constructed via the methods in [6]. That is, we 
can consider this mixed problem as an initial-value problem as follows (where for brevity, 
we merely sketch the solution). 

Also, we may note that for p(v) = ~-(~+~e), E > 0, it can happen that e, = + ~0 for 
all t > 0 (cf. Lemma 2.1 in case 24+ > u- , S- - Y+ < 2(U+ - U-) - [2Kr”a/e]). 
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i.e., p --+ 0 as t -+ + co. Thus, in order to avoid p coming arbitrarily close to 0, 
it is necessary to bound ~(1, t) - ~(0, t) from above; i.e., it is necessary that 

s,’ ~~(5) d5 + Jot [us(s) - ul(s)] ds < const 

for all t > 0. In the next section we shall see that this condition, together with 
(11) yields a global existence theorem for the problem (l)-(4). 

7. PRELIMINARIES TO THE EXISTENCE THEOREM IN 0 < x < I 

For the problem in 0 < x < 1, we define a solution of (1) (2), (10) to be a pair 
of bounded, measurable functions U, ZI satisfying the pair of equations 

lT L1 (4 - 4c> dx dt - .c,=, 4 d-4 + .F,=, uo+ dx 

+ I., us+ dt - uw 

for all T > 0 and for all 4 E Cl, and 

s,,, J-’ (4 + PM 944 dx dt + St=, uo+ dx = 0 Wb) 

for all $J E Col, satisfying #(O, t) = $(l, t) = 0 for all t > 0. Here we tacitly 
assume that St=, V$ dx is defined for all T > 0; in fact, we shall obtain a (weak) 
solution which is a continuous function in t >, 0 with values inLl(0, 1). 

In order to solve this problem, we shall again use Glimm’s method, together 
with the functional introduced by DiPerna in [l], now supplemented by the 
boundary terms. We assume that the initial conditions zlo(x), uo(x) and the 
boundary conditions ul(t) and u2(t) are bounded and have finite total variation; 
we also assume that 0 < v < zlo(x) < v < co. 

Let 

Q(t) = l1 ~064 dx + [ 04s) - W) ds. (13) 

From the examples in the last section, we see that in order to avoid the vacuum 
(p = 0) in the solution and to avoid the collision of the boundaries (p = +co) 
for all time, it is necessary to assume that there exist constants Qr , Qs such that 

0 <Q, <Q(t) GQS, -=c +a, (14) 

for all t > 0.6 In what follows, we shall actually prove that (14) is also sufficient 

6 Note that (14) holds in the case of “rigid walls”; namely ul(t) = t+(t) = 0. 
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for global existence of a solution for the problem (l)-(4), provided that 
ET, < const. 

We note here that for a weak solution of (l)-(4) in 0 < x < 1, 0 < t < T, 
Eq. (12a) with 4 = 1 yields the equality 

s 1 
v(t, x) dx = 6 *o(x) dx + Jrb MS> - G)) ds = t?(t) (15) 

0 

for 0 < t < T. It follows from (14) and the finiteness of the total variation of or 
and ua that the following limits exist: 

(16) 
u, = lim us(t) = Jjmm ur(t). t-t+UZ 

We let L be the following line segment in the r, s plane: 

where r = r(v, u), s = s(v, U) are the Riemann invariants. 
We choose the space mesh length 1 = 1/2M, where M is an integer; the time 

mesh length h = h(Z) will be chosen later. We set 

and 

P = ((m, n): m = 1, 3, 5 ,..., 2M - 1, n = 1, 2, 3 ,... }, 

A = IZ{{(m - 1) 1, (m + 1)Z) x {A}: (m, n) E P}. 

Let {a,} be a random sequence in (- 1, 1) as in Section 3, and let u%,~ be the 
mesh points, where umsn = (ml + a,&, ah), (m, n) E p, a,,, = (0, nh - $h), 
n = 1, 2 ,..., upMsn = (1, nh - &Zz), n = 1, 2 ,..., a,,, = (ml, 0), m = 1, 3 ,..., 
2M - 1. The I curve s” is any space-like curve joining the points a,,, , m = 1, 
3 ,..., 2M - 1, and not containing points ((m + l)Z, 0), m = 1, 3 ,..., 2M - 3, 
which lies in 0 < t < h if Z < x < (2M - l)Z, and which also includes the two 
half-rays t 2 +h, x = 0, and t > $h, x = 1, and the straight-line segments 
joining a,,, to u,,,, and u2M--1.0 to u,~,~ . The I curves J are defined in an analogous 
manner; see Section 3 and Fig. 18. 

We now recall the main theorem in [l] concerning the transformation from the 
Riemann invariants Y, s to the generalized Riemann invariants $(r), #(s). Let 

a = 2(u - 24,) = Y + s - 2u, , 

7 = (2&#/e) pe = s - r + (2Ky19,) 
(18) 
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and 

W(k, 0) = ((a, 7)): 1 u I < kq, Cl < 07 < C%} 

where 1 > k > 0, 0 > 0, c, , c2 > 0 (see Fig. 19). 
Let us consider the following transformation from (r, s) to (+(r), #J(S)): 

To : 
I 
u’ = exp 0(~ + u) - exp I!?(, - u), 
7’ = exp e(q + U) + exp e(q - U) - 2, (19) 

t =nh 

t 

I I 
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where u’ = 4 + I/, v’ = tj - 4 gives 4 = d(r), # = #(s). For this transformation 
applied to the system (1) we have the following properties [l] : 

(i) Tow3 W’ = ((u’, 7’): 1 u’ j < kq’, dl < 7’ < d,}, dl = dl(cl), 
4 = d&d 

(ii) The shock curves Sr and S, in the Y, s plane, so - s = g,(r,, - r; pa), 
and r0 - Y = g,(s, - s; pe), are transformed by T, to curves 

~4, - # = GM, - 4; ~‘1 and A, - 4 = G(~o - #; rlo’h 

respectively. Let the shock strengths of S, and S, in terms of 4, # be d$ = Co - C# 
and d+ = #,, - I/, respectively. If we take K sufficiently small, c, = c,(k) and 
cs = c,(K), then the shock waves in the region W’ do not increase in strength 
(measured in terms of 4, J,!J) after interacting with each other. 

(iii) As k + 0, c, and dl remain finite, but 

‘,‘F c,(k) = +a& and t $2 d,(k) = $-co. 

In the next section we shall apply these results to our problem. 

8. SOLUTION OF PROBLEM (l)-(4) 

We now return to our problem. We set 

(20) 

The line segment L (see (17)) becomes, in terms of o, 7, 

where Q < 7m < Q, and so 

Hence for sufficiently small k, we have, using (iii) and (20), that 

L’ C W’ = ((a’, v’): 1 u’ 1 < k~‘, dl < 7’ < d,}; 

that is, dl < vl’ < 71~‘ < r/z’ < $ , where (0, vm’) = T,(O, vm). Therefore, we 
may put, for small k 

S = a dist{L’, alV’} > 0, (21) 
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where aW’ is the boundary of TV’ and, as usual, dist{(#, , $r), (4s , $a)} = 
1 +1 - 4s j $ 1 +I - #us 1. Hereafter we fix k small as above. 

We set 

A = j h(p = [ca(R)/2K~1~z]1~~)l 

and we take the time mesh length to be 

h = l/x, 

where we note that when E is small, 0 is small and has the same order as l in view 
of (18) and (20). 

In order to define the functional F on J, we set (see Fig. 20) 

4) = 26&) - %), i= 1,2, 

q’(t) = 8(2 + d&,(t), i = 1,2. 
(22) 

FIGURE 20 

We remark that the indices 1 and 2 in the u - 7 plane in Fig. 20 refer to just 
the two values of o on x = 1, and are independent of those of ai( i = 1, 2. 
Furthermore, the two S, shock waves S , and S, having the same strength AU 
are transformed by T, into S.,’ and S,‘, respectively, which have different 
strength in terms of the U’ coordinate. 

We now define the functional F on J: 

F(J) = C 4+ 1 4 + C 4’ + c do;, (23) 
S1~Jn(o<s<l) Sz~Jn(O<z<l) Jn(x=o) Jn (~1) 

where 

flu,’ = max(0, a,‘(nh + 1 h) - ul’(nh - fi h)} 

Llaz’ = max(0, u,‘(nh - &h) - o,‘(nh + 4 h)). 
(24) 
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LEMMA 8.1. Let the image under T, of the approximate solution {vl , z+} on J 
be demed br {A = #(VI ,d, lcrl = YW ,4>. If GA, ~$1 E w’, then 

F(Js) G F( Jd (25) 

for J2 being an immediate successor of J1 . Also for J = 6, we have 

F(8) < TW(x, 01, #lx, O), q’(t), a,‘(t)) 

< @M . TVq&4, T,(X), u&), u&)1, (26) 

where M is a constant depending only on WI. 

Proof. The estimate (25) comes from (ii) and the argument in [l, 41. Here 
we must always keep in mind that the boundary conditions on x = 0 and x = 1 
are given by u = q(t), i = 1, 2, and we can solve the simples piston problem, as 
in Lemma 2.1 at x = 0, 1 and t = nh with data z+(t). But for the solution we 
have the estimates 

A# < Au,’ near t = nh, x=0 for S,, 

and 

A# < Au,’ near t = nh, x=1 for S,, 

as in Lemma 2.1. Since the solution is contained in W’, the strength of the shock 
coming off the boundary is dominated by AUK’ (cf. Fig. 20). For example, if we 
consider an S, coming off x = 1, we have, from Fig. 21, 

4 = 42 - 4, = B+,‘(A) - ~‘(4 - (u,‘(A) - v1’6’W 

= Hu,‘(A) - +‘(A) + 711’(4 - ~s’(AN 
< +{a,‘(A) - u,‘(A) + u,‘(A) - q’(A)} = a,‘(A) - u,‘(A) 

< uz’(dz) - u,‘(d,) = (tanh Bu,) d, + 2 tanh Bu, 

- [(tanh 00~) d, + 2 tanh Bar] 

< W + ddu, - uI) G 142 + d2) Au, 3 Au,‘. 

FIGURE 21 
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(Here our notation daa and A u2’ is consistent with that of (22) and (24) since we 
are considering an S, shock coming out of x = 1.) 

Now as soon as we know that our approximate solution {#r , $r} on J lies in IV’, 
we can estimate the total variation of (&, #r) on J by F(J) as follows. Since 
lim t++a, ui’(t) = 0, for ul’ = ~‘(a, , uJ, rl,’ = T’@Q, 4, we have 

~JV{u~‘} = 2(decreasing variation of CT!’ on J) 

q c Ju1’+2 c .rn (s=O) Jrr(O<S<l) 
w+4H1)dq’j 

Hence from Lemma 8.1, we have 

It follows, then, that we must find conditions both on the initial and boundary 
data and on the time interval, so that the approximate solutions belong to W’ for 
that time interval. This is provided by the following lemma. 

LEMMA 8.2. Suppose that initially {& , &}a C W’ and that 

F(&j < a.9. (28) 

If in addition the approximate solution satisjies 

then the approximate solutions (& , &> are contained in W’. 

Proof. It follows from the definition of L (see (17)) and the assumption (29) 
that (&(t), u,) lies on L, and that 

We set 

T&W, urn> EL’. (30) 

die WI , A>, L’f = SUP dist &Mx, 9, tfrdx, t>>, El. J ~X,t)m-l(O<X<1) 



266 NISHIDA AND SMOtLER 

Using (30) and the fact that lim,++m q’(t) = 0, we have 

Here we have also used (27), (28), and the hypothesis (+c , &}a C IV’. Therefore 
by (21) we conclude that {& , #I}J C W’. This completes the proof. 

Now in view of (26), we can choose 0, so small that for any 0, 0 < 0 < @,, , 
we have (28). The fact that {& , &}a C W’ follows from (14) at t = 0, and the 
finiteness of the total variation of wa(o(x), z+,(x), z+(i), u,(t), together with (16), 
(20), and (21), for 0 < 0 < O,,; i.e., for 0 < F < q, . Hereafter, we only 
consider E in (0, q,]. 

LEMMA 8.3. Let 0 < E < co; then the meaPt velocity &(t) of the approximate 
solution (vt(t, x), u&t, x)] satis$es the inequality (29) for 0 < t < to , where to 
depends only on w’ and c0 . Moreover, the following estimate holds for the approxi- 
mate solution on 0 < t < to: 

where C, is a constant depending only on W’ and co . 

Proof, When the approximate solutions {fh, , &} are contained in W’, we can 
estimate the total variation of the approximate solutions {rL, sI} as follows, 
using (25), (26), and (27): 

0 * TJWz , 4 G C~Wz > A> G 8WJ) 

< 8C@7) < 8C0M - TV+,, , u,, , u, , u& 

This then yields (31). Next, for 71 = 1,2,... we have 

f’ I dx, nh + 0) - v,(x, nh - O)l dx 
JO 
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Since {wl , ul} is a weak solution in the strip (n - 1)h < t < nh, it follows from 
(15) that 

Therefore, 

fort < to = Q,(4xC)-? F ur th ermore, there exists an lo > 0, such that 

for all I < Z. , because 

This completes the proof of the lemma. 
From Lemmas 8.1, 8.2, and 8.3, we conclude that there exists an c0 > 0 such 

that for any E, 0 < E < E,, , the approximate solution (& , #r} C IV’ and so 
TV{r 1 , sr} < C for 0 < t < to . Therefore Glimm’s argument for the conver- 
gence of the approximate solutions yields a weak solution to the problem (I), (2), 
(10) in the region 0 < t < to , 0 < x < 1. Since the limit is also Lr continuous 
in t, the equality (15) holds for 0 :< t < to and so we also have 

0 ~01 <Q(t) <Q:! < +a o<t<to (32) 

for our weak solution. We now can proceed to construct the weak solution on 
to < t < 2t, , and so on. In fact, since we can assume that there exist integers 
n = n(Z) such that to = nh for Z = 24, j = 1, 2,..., the new “initial” data 
w(t, , x), u(t, , x) can be approximated by a subsequence of the piecewise constant 
functions gl(tO + 0, x), u,(t, + 0, x), which are given by 

in (m - l)Z < x < (m + l)Z, m = 1, 3 ,..., 2M - 1. The fact that the approxi- 
mate solutions (& , &} are contained in IV’ in 0 < t < to gives us 
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That is, F(j) can be considered as an a priori bound, which together with the 
successive use of (32), enables us to extend the weak solution for all t > 0. We 
thus have our main theorem. 

THEOREM 8.4. Let the initial conditions q,(x), u,,(x), and the boundary conditions 
ul(t), u2(t) be bounded and havefinite total variation. Also assume 0 < v < v,,(x), 
for v = const., and let (14) hold. Then there exists a y,, > 0, depending only on the 
variation of the data, such that for any y E (1, ~~1, the mixed problem (l)-(4) has a 
weak solution de$ned for all time. The solution has (unzformly) bounded total 
variation on each line t = con&. > 0. 

9. THE EXTENSION TO E 3 3 

In the previous sections, our results were only valid for y = 1 + 2~ < 2. 
That is, the piston problem is solvable if ET, < C, = constant, and 0 < E < $. 
The reason that we had to take E < & is due to the fact that such a restriction 
was needed for the estimates of [5] to be valid. We shall now show how to 
remove this restriction. To see this, we note that E < + was used only on 
[5, p. 1881 in order to prove the two inequalities 

0 < (Y - l)(Y + l)-’ < 1 and (Y + l)-2 ,< Y-2 < a-1. (33) 

Here Y is defined by 

Y = [ycP(cY - 1)/U’ - l]‘/z, (Y>l, r=1+2c, E>O. 

Now it is a fairly straightforward calculation to check that Y 2 1, and thus the 
first set of inequalities (33) is valid. On the other hand, 

so that the second set of inequalities in (33) is also valid. It follows from this that 
the piston problem (l)-(3) is solvable provided that ET, < C, , where l 2 0. The 
fact that the double piston problem is solvable provided that (14) holds and 
ET, < C, , f > 0, follows from [l]. 

We must still check the double piston problem when E = 0. But for E = 0, the 
usual Riemann invariants and our arguments in Sections 7 and 8 yield the 
existence theorem. In fact, for this case, as was pointed out in [4], the interaction 
of shocks of the opposite family do not increase in strength in terms of the 
classical Riemann invariants. 
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