Mixed Problems for Nonlinear Conservation Laws

Takaaki Nishida*
Kyoto University, Kyoto, Japan

AND

Joel Smoller*

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104
Received May 14, 1975; revised September 9, 1975

1. Introduction

We consider the mixed problem for the system of equations

$$
\begin{equation*}
v_{t}-u_{x}=0, \quad u_{t}+p(v)_{x}=0 \tag{1}
\end{equation*}
$$

where $p(v)=K^{2} v^{-\nu}, \gamma=1+2 \epsilon, \epsilon \geqslant 0, K=$ const >0, in regions (a) $x>0, t>0$, and in regions (b) $0<x<1, t>0$. In both cases we prescribe initial data

$$
\begin{equation*}
(v(x, 0), u(x, 0))=\left(v_{0}(x), u_{0}(x)\right) \tag{2}
\end{equation*}
$$

where $0<\mathbf{v} \leqslant v_{0}(x) \leqslant \bar{v}<+\infty$. In regions (a) we also prescribe boundary data of the form

$$
\begin{equation*}
u(0, t)=u_{\mathbf{1}}(t), \quad t \geqslant 0, \tag{3}
\end{equation*}
$$

while in regions (b) we prescribe boundary data (3) and

$$
\begin{equation*}
u(1, t)=u_{2}(t), \quad t \geqslant 0 \tag{4}
\end{equation*}
$$

Systems of the type (1) describe one-dimensional motion of an isothermal gas, in Lagrangian coordinates, in the absence of dissipative effects. Here v denotes the specific volume (the reciprocal of the density ρ), and u is the velocity of the gas. The mixed problem (1)-(3) is sometimes called the "piston problem," and the function $u_{1}(t)$ denotes the velocity of the piston. The problem (1)-(4) can be

[^0]called the "double piston problem" (although we also allow "rigid walls," $u_{1} \equiv 0$ and/or $u_{2} \equiv 0$).

We always assume that each of the functions v_{0}, u_{0}, u_{1}, and u_{2} are bounded and have finite total variation. We set

$$
\begin{aligned}
& T_{1}=T V\left\{v_{0}\right\}+T V\left\{u_{0}\right\}+T V\left\{u_{1}\right\}, \\
& T_{2}=T_{1}+T V\left\{u_{2}\right\} .
\end{aligned}
$$

We first show that the problem (1)-(3) has a global solution defined for all $t \geqslant 0$ provided that ϵT_{1} is sufficiently small. The case where $\epsilon=0$ is considered in [4], and for the case where the variation of the data is sufficiently small, see [3]. Our result is related to our paper [5], where we considered the pure initial value problem. The piston problem is more complicated, due, mainly, to the reflection of shock waves at the boundary $x-0$, whereby the strength of the reflected shock is usually greater than the strength of the incoming shock. Our technique is to use Glimm's method [2], however, we must modify his functional in order to take care of the reflections of shock waves on the boundary $x=0$. Such a procedure requires an estimate of the strength of the reflected shock wave in terms of the strength of the incoming shock, together with the contribution of the boundary data at the point of reflection. This estimate is obtained by showing that if the incoming shock impinges on the boundary $x=0$ at a point of continuity of u_{1}, then this reflection can be reduced to a problem of interacting shocks for a free (i.e., initial value) problem.

For the "double piston" problem, (1)-(4), the existence of a solution is much more delicate due to the continued reflection of shock waves across both boundaries $x=0$, and $x=1$. We first present an example which shows that the problem cannot have a global (in time) solution without some additional restrictions on the data. We give a fairly careful analysis of this example which points out just where the difficulty lies; namely, it is necessary to put conditions on the data which prevent the pistons from coming together in a finite time ($\rho=+\infty$), and also prevent the vacuum ($\rho-0$) from appearing. These "physical" conditions are made precise in inequality (14). In order to handle the problem of multiple reflections of shock waves off the boundaries $x=0$ and $x=1$, we employ the generalized Riemann invariants introduced by DiPerna in [1]. Measured in terms of these coordinates, the strengths of the reflected shock waves do not increase, modulo contributions from the boundary data. Thus, we can again use Glimm's method, where we now employ a functional analogous to that used in [1] (which, however, is supplemented by additional terms needed to take boundary interactions into account). The desired decrease of our functional is obtained only if ϵT_{2} is sufficiently small and the approximate solutions lie in the region in which the generalized Riemann invariants are defined. This requires a short detour; namely we first fix ϵT_{2} to be sufficiently small and then take t to be sufficiently small. We thus get a weak solution defined
in $0 \leqslant t \leqslant t_{0}, 0 \leqslant x \leqslant 1$, which is L^{1}-continuous in t. It therefore satisfies the above "physical" conditions on the data in this time interval. Thus using this a priori bound, we can take as new "initial data" the functions ($\left.v\left(x, t_{0}\right), u\left(x, t_{0}\right)\right)$. We then proceed to solve the problem locally and repeatedly in regions $n t_{0} \leqslant t \leqslant(n+1) t_{0}, 0 \leqslant x \leqslant 1$, where $n=1,2, \ldots$. This then yields the desired global solution.

2. Preliminaries to the Piston Problem

Solutions of nonlinear hyperbolic systems are usually discontinuous; thus, by a solution of (1)-(3), we mean a pair of bounded measurable functions ($v(x, t), u(x, t)$), which satisfy the two equations

$$
\begin{gathered}
\int_{\substack{t \geqslant 0 \\
x \geqslant 0}} \int_{\substack{t \geqslant 0 \\
x \geqslant 0}}\left(v \phi_{t}-u \phi_{x}\right) d x d t+\int_{t=0} v_{0} \phi d x+\int_{x=0} u_{1} \phi d t=0, \quad \phi \in C_{0}^{1}, \\
\int_{t=0} \int\left(u \psi_{t}+p(v) \psi_{x}\right) d x d t+\int_{t=0} u_{0} \psi d x=0, \quad \psi \in C_{0}^{1}, \quad \psi(0, t)=0, \quad t \geqslant 0 .
\end{gathered}
$$

We recall from [5], that a pair of Riemann invariants for (1) may be taken as

$$
r=u-K \gamma^{1 / 2}\left[\left(\rho^{\epsilon}-1\right) / \epsilon\right], \quad s=u+K \gamma^{1 / 2}\left[\left(\rho^{\epsilon}-1\right) / \epsilon\right] .
$$

In these coordinates, we can solve the simplest piston problem, i.e., the analog of Riemann's problem for the mixed problem.

Lemma 2.1. Consider the system (1) with data $v(x, 0)=v_{+}, u(x, 0)=u_{+}$, and $u(0, t)=u_{-}$, where v_{+}, u_{+}, u_{-}are constants, and $v_{+}>0$. This problem has a piecerwise continuous solution in $x \geqslant 0, t \geqslant 0$ satisfying the estimates

$$
\begin{aligned}
r(x, t) & \equiv r(v(x, t), u(x, t)) \geqslant r\left(v_{+}, u_{+}\right) \equiv r_{+} \\
s(x, t) & \equiv s(v(x, t), u(x, t)) \leqslant \max \left[s\left(v_{+}, u_{+}\right) \equiv s_{+}, 2 u_{-}-r_{+}\right] \\
\Delta s & \leqslant 2 \max \left[0, u_{-}-u_{+}\right] \equiv 2 \Delta u
\end{aligned}
$$

where Δs is the variation of s across ${ }^{1} S_{2}$ in the solution.
Remark. The term $2 u_{-}-r_{+}$is new to the mixed problem, and is due to shock waves, reflecting off, or coming out of, the boundary $x=0$.

Proof. We consider two cases: $u_{+}<u_{-}$, or $u_{+}>u_{-}$. Suppose first that $u_{+}<\boldsymbol{u}_{-}$. The solution to our problem is given by a shock wave of the second kind coming out of the origin (see Fig. 1).

[^1]Using Fig. 2, we see $r_{-} \geqslant r_{+}$, and since $s_{0}=2 u_{-}-r_{+}$and $s_{+}=2 u_{+}-r_{+}$, we have

$$
\begin{aligned}
& \Delta s=s_{-}-s_{+}<s_{0}-s_{+}=2 u_{-}-r_{+}-\left(2 u_{+}-r_{+}\right)=2 \Delta u, \\
& s_{-}<s_{0}=s_{+}+\left(s_{0}-s_{+}\right)<\left(2 u_{+}-r_{+}\right)+2\left(u_{-}-u_{+}\right)=2 u_{-}-r_{+} .
\end{aligned}
$$

Figure 1

Figure 2

If we consider the case where $u_{+}>u_{-}$, we must, of course, exclude the case where $\rho=0$ (i.e., $v=\infty$) so we must assume here that ${ }^{2}$

$$
s_{-}-r_{+}>2\left(u_{+}-u_{-}\right)-\left(2 K \gamma^{1 / 2} / \epsilon\right) .
$$

${ }^{2}$ To see this, we consider the equation $s-r=2 K \gamma^{1 / 2}\left[\left(\rho^{\varepsilon}-1\right) / \epsilon\right]$, together with Fig. 3. Note that $\rho=0$ corresponds to $s-r=-2 K \gamma^{1 / 2} / \epsilon$, while $\rho>0$ corresponds to $s-r>-2 K \gamma^{1 / 2} / \epsilon$. Since $s_{-}-s_{+}=2\left(u_{-}-u_{+}\right)$, we have $s_{-}-r_{+}=\left(s_{-}-s_{+}\right)+$ $\left(s_{+}-r_{+}\right)>-2 K \gamma^{1 / 2} / \epsilon$.

In this case, we can find an $s_{-}<s_{+}$such that $s_{+}-s_{-}=2\left(u_{+}-u_{-}\right)$. Hence the solution to our problem is given by an R_{2} coming out of the origin (see Fig. 4). Using Fig. 5, we see that $r_{-}=r_{+}$, and $s_{+}-s_{-}=2\left(u_{+}-u_{-}\right), s_{-}=2 u_{-}-r_{+}$. This completes the proof of the lemma.

Figure 4

Figure 5

3. The Difference Scheme and Nonlinear Functionals

We next consider general data u_{0}, v_{0}, u_{1}, all three functions being bounded and of bounded total variation. To handle this general case we shall use a modified form of Glimm's scheme. Thus, let

$$
\begin{aligned}
& Y=\{(m, n): m=1,3,5, \ldots ; \quad n=1,2,3, \ldots\} \\
& A=\prod_{(m, n) \in Y}([(m-1) l,(m+1) l] \times\{n h\})
\end{aligned}
$$

and choose the mesh lengths l, h to satisfy

$$
l / h=\left(1 / K \gamma^{1 / 2}\right)\left[1+\left(\epsilon / 2 K \gamma^{1 / 2}\right)\left(s_{0}-r_{0}\right)\right]^{-((1+\epsilon) / \epsilon)}
$$

where

$$
r_{0}=\inf _{x \geqslant 0} r\left(v_{0}(x), u_{0}(x)\right)
$$

and

$$
s_{0}=\max \left[\sup _{x \geqslant 0} s\left(v_{0}(x), u_{0}(x)\right), \quad 2 \sup _{t \geqslant 0} u_{1}(t)-r_{0}\right]
$$

Let $\left\{\alpha_{n}: n=1,2, \ldots\right\}$ be a random sequence of numbers equidistributed in $(-1,1)$, and let $a_{m, n}=\left(m l+\alpha_{n} l, n h\right), \quad m=1,3, \ldots, \quad n=1,2, \ldots ; a_{0, n}=$ $\left(0, n h-\frac{1}{2} h\right), n=1,2, \ldots ; a_{m, 0}=(m l, 0), m=1,3, \ldots$, be the mesh points.

We define the I curve \mathcal{O} to be any spacelike curve joining points $a_{m, 0}$ ($m=1,3,5, \ldots$) and not containing points $((m+1) l, 0), m=1,3,5, \ldots$, which lies in $0 \leqslant t \leqslant h$ if $x>0$, and which also includes the half-ray $t \geqslant h / 2, x=0$, and the straight-line segment joining a_{10} to a_{01} (see Fig. 6).

In order to define the I curve J, we first let $i_{m}^{n_{-}}$(respectively $i_{m}^{n_{+}}$), $m=2,4,6, \ldots$ be any space-like curve joining $a_{m-1, n}$ and $a_{m+1, n}$ lying in $(n-1) h<t \leqslant n h$ (respectively $n h \leqslant t<(n+1) h$), and not passing through the point ($m l, n h$); $i_{0}^{n^{+}}$(respectively $i_{0}^{n_{-}}$) is the straight-line segment joining the points $a_{1 n}$ and $[0, n h+(h / 2)]$, (respectively [$0, n h-(h / 2)]$). Then the I curve J is composed of curves $i_{m}^{n_{ \pm}}, m=0,2,4, \ldots$ and straight-lyne segments joining the mesh points $a_{m-1, n}$ and $a_{m+1, n-1},\left(\right.$ or $a_{m-1, n}$ and $\left.a_{m+1, n+1}\right), m=2,4, \ldots$ on which the index m increases to infinity, together with the half-ray $t \geqslant n h+(h / 2)$ (or $t \geqslant n h-(h / 2)$).

Next, we use Glimm's method [2], to obtain approximate solutions to our problem. Namely, we solve the Riemann problem in the region $n h \leqslant t<$ $(n+1) h, m l \leqslant x \leqslant(m+2) l, m=1,3, \ldots, n=0,1,2, \ldots$, and we also solve the problem (1)-(3), with constant data (see Lemma 2.1) in the region $n h \leqslant$ $t<(n+1) h, 0 \leqslant x \leqslant l$. This is analogous to what is done in [4, 5].

In order to obtain the desired estimates on these approximate solutions, we define certain functionals as follows. For an I curve J, we let

$$
L(J)=\sum_{J}\left|\alpha_{k}\right|+\left|\beta_{\imath}\right|+\left|\gamma_{j}\right|
$$

where α_{k} is an S_{1} crossing J, β_{l} is an S_{2} crossing J, and

$$
\left|\gamma_{j}\right|-2 \Delta u_{1}-2 \max \left\{0, u_{1}\left(a_{0, j+1}\right)-u_{1}\left(a_{0, j}\right)\right\}
$$

for all j such that $[0, j h \pm(h / 2)] \in J$. Here $\left|\alpha_{k}\right|$ and $\left|\beta_{l}\right|$ denote the strength of the shock waves α_{k} and β_{l}, respectively (see [5]). We next let

$$
\begin{equation*}
Q(J)=\sum_{J}\left\{\left|\alpha_{k}\right|\left|\beta_{l}\right|+\left|\alpha_{k}\right|\left|\alpha_{l}\right|+\frac{1}{2}\left|\alpha_{k}\right|^{2}+\left|\alpha_{k}\right|\left|\gamma_{j}\right|\right\} \tag{5}
\end{equation*}
$$

where α_{k}, β_{l}, and γ_{j} are as above. Here the term $\left|\alpha_{k}\right|\left|\beta_{l}\right|$ is included only if α_{k} and β_{l} are approaching (cf. [2]); the term $\left|\alpha_{k}\right|\left|\alpha_{l}\right|$ is included for $k<l$ and the terms $\frac{1}{2}\left|\alpha_{k}\right|^{2}$ and $\left|\alpha_{k}\right|\left|\gamma_{j}\right|$ are included for all k, j. Finally we set

$$
\begin{equation*}
F(J)=L(J)+K Q(J) \tag{6}
\end{equation*}
$$

where $K=O(\epsilon)$ will be chosen later. Note that

$$
\begin{equation*}
F(\mathcal{O}) \leqslant L(\mathcal{O})+K L(\mathcal{O})^{2} \leqslant 2 L(\mathcal{O}) \tag{7}
\end{equation*}
$$

since we may assume that $K L(\mathcal{O}) \leqslant 1$, if ϵ is small.
It is interesting to compare the F defined by (6) to the associated F of the pure initial-value problem, defined in [5]. The new terms here are $\sum\left|\gamma_{j}\right|$ in $L(J)$ and $\sum\left|\alpha_{k}\right|\left|\alpha_{l}\right|, \frac{1}{2} \sum\left|\alpha_{k}\right|^{2}, \sum\left|\alpha_{k}\right|\left|\gamma_{j}\right|$ in $Q(J)$. These terms are due to reflection of shocks on the boundary $x=0$; see Fig. 7. That is, each γ_{j} comes from an S_{2}

Figure 7
when we solve (1)-(3). The term $\frac{1}{2}\left|\alpha_{k}\right|^{2}$ is needed in order to handle the reflections of shocks on the boundary $x=0\left(\alpha \rightarrow \beta^{\prime}\right.$ in Fig. 7). The strength of the S_{2} reflected wave, β^{\prime}, is greater than the strength of the incoming S_{1}; i.e., α. We will show below that $\left|\beta^{\prime}\right| \leqslant|\alpha|+|\gamma|+C \epsilon|\alpha|^{2}$. The term $\left|\alpha_{k}\right|\left|\alpha_{l}\right|$, $k<l$, goes into the term $\left|\beta_{k}{ }^{\prime}\right|\left|\alpha_{l}\right|$ after α_{k} is reflected at $x-0$ (that is, wc do not get $\left|\alpha_{k}{ }^{\prime}\right|\left|\alpha_{l}\right|$, i.e., a new S_{1}, as in the Cauchy problem, but we get an S_{2}). Finally, $\left|\alpha_{k}\right|\left|\gamma_{j}\right|$ goes into $\left|\alpha_{k}\right|\left|\beta_{l}\right|$ away from the boundary; that is, γ_{j} becomes an S_{2}.

The interactions which do not contain reflections of shock waves on the boundary $x=0$ are quite the same as for the Cauchy problem, and for these, the estimates in [5] are valid.

4. Estimate of the Reflected Shock Waves

In this section we shall consider the reflection of a shock wave of the first kind on the boundary $x=0$, at time $t=n h$. Thus, we suppose α is an S_{1} coming into the boundary $x=0$; it gets reflected into a shock wave $\beta^{\prime} \in S_{2}$, and our task is to estimate $\left|\beta^{\prime}\right|$ in terms of $|\alpha|$ and the boundary data. We first consider the case where the piston velocity u is constant near the point $(0, n h)$.

Proposition 4.1. Let $0 \leqslant \epsilon<\frac{1}{2}$, and consider the reflection $\alpha \rightarrow \beta^{\prime}$ on $x=0$, at $t=n h$, where $\alpha \in S_{1}, \beta^{\prime} \in S_{2}$. If u is constant on $(n-1) h<t<(n+1) h$, $x=0$, then

$$
\begin{equation*}
\left|\beta^{\prime}\right| \leqslant|\alpha|+C \epsilon|\alpha|^{2}, \tag{8}
\end{equation*}
$$

where C is a positive constant independent of α, β^{\prime}, and ϵ, provided that the waves α and β^{\prime} are contained in the strip $\rho \in[\rho, \bar{\rho}], u \in \mathbb{R}$ in the r, splane.

In order to prove this proposition, we need a lemma. This lemma states roughly, that shocks reflected off a part of the boundary in which u_{1} is constant may be considered as coming from a pure Cauchy problem.

Lemma 4.2. Given α, β^{\prime} as above, there exists $\alpha^{\prime} \in S_{1}, \beta \in S_{2}$ with $|\alpha|=|\beta|$, $\left|\alpha^{\prime}\right|=\left|\beta^{\prime}\right|$ such that $\beta+\alpha \rightarrow \alpha^{\prime}+\beta^{\prime}$.

Proof. Using the remark [5, p. 192] we note that the shock wave curve S_{1} starting at any point (r_{-}, s_{-}) is symmetric to the inverse shock wave curve $S_{2}{ }^{\prime}$ starting at (r_{-}, s_{-}), with respect to the line $r+s=r_{-}+s_{-}$. Similarly, this symmetry is valid for S_{2} and $S_{1}{ }^{\prime}$ starting at any point ($\left.\tilde{r}, \tilde{s}\right)$, with respect to the line $r+s=\tilde{r}+\tilde{s}$ (see Fig. 8).

Figure 8
Given α, we construct β^{\prime}, β, and α^{\prime} as follows: First consider the diagram in Fig. 9.

The intersection of the inverse shock curve $S_{2}{ }^{\prime}$ starting at $\left(r_{+}, s_{+}\right)$with the line $r+s=r_{-}+s_{-}$is denoted by (\tilde{r}, \tilde{s}); the shock curve S_{2} from ($\left.\tilde{r}, \tilde{s}\right)$ to

Figure 9
$\left(r_{+}, s_{+}\right)$is β^{\prime}; the point on the inverse shock curve S_{2}^{\prime} starting at $\left(r_{-}, s_{-}\right)$with strength $|\alpha|$ is (r, s), and the shock curve S_{2} from (r, s) to (r_{-}, s_{-}) is β where $|\beta|=|\alpha|$. If we draw the inverse shock curve $S_{1}{ }^{\prime}$ from (\tilde{r}, \tilde{s}), it crosses the $S_{2}{ }^{\prime}$ starting from $\left(r_{-}, s_{-}\right)$, at (r, s) because of the symmetry with respect to the line $r+s=r_{-}+s_{-}=\tilde{r}+\tilde{s}$. Therefore the shock curve S_{1} from (r, s) to $(\tilde{r} \tilde{s})$ is α^{\prime} where $\left|\alpha^{\prime}\right|=\left|\beta^{\prime}\right|$.
Q.E.D.

Proof of Proposition 4.1. From Fig. 9, Lemma 4.2 and the estimate of [5, Lemma 4(i)(a)], we have

$$
\left|\alpha^{\prime}\right|=\left|\beta^{\prime}\right| \leqslant|\alpha|+C \epsilon|\alpha||\beta|=|\alpha|+C \epsilon|\alpha|^{2},
$$

as asserted.

Proposition 4.3. Let $0 \leqslant \epsilon<\frac{1}{2}$, and consider the reflection $\alpha \rightarrow \beta^{\prime}$ on $x=0$ at $t=n h$, where $\alpha \in S_{1}, \beta^{\prime} \in S_{2}$. Then if $|\gamma|=2 \max \left(0, u_{1}\left(a_{0, n+1}\right)-u_{1}\left(a_{0, n}\right)\right)$, we have

$$
\begin{equation*}
\left|\beta^{\prime}\right| \leqslant|\alpha|+|\gamma|+C \epsilon|\alpha|^{2} \tag{9}
\end{equation*}
$$

where C is a positive constant, independent of $\alpha, \beta^{\prime},|\gamma|$, and ϵ (see Proposition 4.1).
Proof. The reflection $\alpha \rightarrow \beta^{\prime}$ is described by the diagram in Fig. 10, where $u_{-}=u_{1}\left(a_{0, n}\right), \bar{u}=u_{1}\left(a_{0, n+1}\right)$.

We let $\left(r_{ \pm}, s_{ \pm}\right)=\left(r\left(v_{ \pm}, u_{ \pm}\right), s\left(v_{ \pm}, u_{ \pm}\right)\right)$and $(r, \bar{s})=(r(\bar{v}, u \bar{u}), s(\bar{v}, \bar{u}))$. First consider the case when $\bar{u}<u_{-}$. If we refer to Fig. 7 , we see that the region $r+s<2 \bar{u}$ lies below the line $r+s=2 u_{-}$, so that the starting point of the shock β^{\prime} lies below the line $r+s=2 u_{-}$. Now we construct β, α^{\prime} as in Lemma 4.2,

Figure 10

Figure 11

Figure 12
and let $\beta^{\prime \prime}$ denote the S_{2} as in Fig. 11, (| $\alpha^{\prime}\left|=\left|\beta^{\prime \prime}\right|\right)$. Then using Proposition 4.1, we have the estimate,

$$
\left|\beta^{\prime}\right| \leqslant\left|\beta^{\prime \prime}\right| \leqslant|\alpha|+C \epsilon|\alpha|^{2},
$$

so that (9) holds if $\bar{u} \leqslant u_{\ldots}$. Suppose now that $\bar{u}>u_{-}$. If we refer to Fig. 12, we see that

$$
\left|\beta^{\prime}\right|<\left|\beta^{\prime \prime}\right|+\psi \leqslant|\alpha|+C \epsilon|\alpha|^{2}+\psi
$$

But from Lemma 2.1, we have $\psi<2\left(\bar{u}-u_{-}\right)$so that (9) holds and the proof is complete.

5. Convergence of the Approximating Solutions

We shall now obtain uniform bounds on the total variation of the approximating solutions using Glimm's method. That is, if J_{1} and J_{2} are two I curves with J_{2} an immediate successor to J_{1}, we shall show that $F\left(J_{2}\right) \leqslant F\left(J_{1}\right)$ provided that $\epsilon F(\mathcal{O})$ is sufficiently small. The interactions which do not involve reflections of shock waves at the boundary $x=0$ are quite the same as in [5]; we need only consider the case where J_{1} and J_{2} differ only on $a_{0, n} \leqslant t \leqslant a_{0, n+1}, 0 \leqslant x \leqslant a_{1, n}$, and $\alpha+\gamma \rightarrow \beta^{\prime}$ (cf. Fig. 13, where $\gamma=\gamma(n h)$). For this interaction, we note that α and γ cross J_{1} but not J_{2} and β^{\prime} crosses J_{2} but not J_{1}. We have

$$
L\left(J_{2}\right)-L\left(J_{1}\right)=\left|\beta^{\prime}\right|-|\alpha|-|\gamma|
$$

where of course, $\gamma=\gamma(n h)$ is a contribution due only to the boundary data, and

$$
\begin{aligned}
Q\left(J_{2}\right)-Q\left(J_{1}\right)= & \left|\beta^{\prime}\right| \sum\left|\alpha_{l}\right|-|\alpha| \sum\left|\alpha_{l}\right|-\frac{1}{2}|\alpha|^{2}-|\alpha||\gamma| \\
& -|\alpha| \sum\left|\gamma_{j}\right|-|\gamma| \sum\left|\alpha_{l}\right|
\end{aligned}
$$

so that using Proposition 4.3 , where ${ }^{3} K=4 C \epsilon$

$$
\begin{aligned}
F\left(J_{2}\right)-F\left(J_{1}\right)= & \left|\beta^{\prime}\right|-|\alpha|-|\gamma|-(K / 2)|\alpha|^{2} \\
& +K\left\{\left(\left|\beta^{\prime}\right|-|\alpha|-|\gamma|\right) \sum\left|\alpha_{l}\right|-\left(|\gamma|+\sum\left|\gamma_{j}\right|\right)|\alpha|\right\} \\
\leqslant & C \epsilon|\alpha|^{2}-(K / 2)|\alpha|^{2}+K C \epsilon|\alpha|^{2} \sum\left|\alpha_{l}\right| \\
\leqslant & |\alpha|^{2}\left\{C \epsilon+C \epsilon K F\left(J_{1}\right)-(K / 2)\right\} \\
\leqslant & |\alpha|^{2}\{C \epsilon(1+K F(\mathcal{O}))-(K / 2)\} \\
\leqslant & 0
\end{aligned}
$$

if $K F(\mathbb{C}) \leqslant 1$ and $K=4 C \epsilon$; i.e., $\epsilon F(\mathcal{O}) \leqslant(4 C)^{-1}$. We have thus proved.
Lemma 5.1. If $0 \leqslant \epsilon<\frac{1}{2}$, and $\epsilon F(\mathcal{O})$ is sufficiently small, then $F\left(J_{2}\right) \leqslant F\left(J_{1}\right)$, where $J_{i}(i=1,2)$, are two I curves, and J_{2} is an immediate successor to J_{1}.

From this lemma, it follows that $F(J) \leqslant F(\mathcal{O}) \leqslant 2 L(\mathcal{O}) \leqslant$ const $\cdot T V\left\{v_{0}, u_{0}, u_{1}\right\},{ }^{4}$ for any I curve J. This estimate yields a uniform bound on the total variation of any of our approximating solutions, on each line $t=$ const >0. We thus have the following theorem.

Theorem 5.1. Let the data functions $\left(\rho_{0}(x), u_{0}(x), u_{1}(t)\right)$ each have bounded total variation, and be bounded; i.e., $\left|u_{0}(x)\right|+\left|u_{1}(t)\right| \leqslant M, 0<\rho_{-} \leqslant \rho_{0}(x) \leqslant$ $\rho_{+}<+\infty$. Then there exists a constant $\gamma_{0}, 1<\gamma_{0}<2$ such that for $\gamma \in\left[1, \gamma_{0}\right]$, the mixed problem (1)-(3) has a global (weak) solution which has bounded total variation on each line $t=$ const $>0 . \gamma_{0}$ depends on the total variation of the data.

We remark here that the extension to $\gamma_{0} \geqslant 2$ is considered in Section 9.

6. An Example

Consider the system (1) in the region $0<x<1, t>0$, with initial data (2) in $0 \leqslant x \leqslant 1$, and boundary data

$$
\begin{equation*}
u(0, t)=u_{1}(t), \quad u(1, t)=u_{2}(t), \quad t \geqslant 0 \tag{10}
\end{equation*}
$$

Such a problem is not well posed, if one does not provide supplementary conditions on the boundary data. To see this, consider the case where $\epsilon=0$, $\left(u_{1}(t), u_{2}(t)\right) \equiv\left(u_{1}, u_{0}\right)$, where u_{1}, u_{0} are constants with $u_{1}-u_{0}=1$. Suppose

[^2]

Figure 14

Figure 15
further that $\left(v_{0}(x), u_{0}(x)\right) \equiv\left(v_{0}, u_{0}\right)$, where v_{0} is a constant. Using Lemma 2.1, we see that an S_{2} shock wave shoots out of the corner (0,0), and impinges on the boundary $x=1$. It is then reflected as an S_{1} shock wave which impinges on the boundary $x=0$; this shock in turn is reflected as an S_{2}, and so on (see Figs. 14, 15). If we let $U_{i}-\left(v_{i}, u_{i}\right), i-0,1,2, \ldots$, then we see that $u_{z n}-u_{v}, u_{z n+1}-u_{i}$, $n=0,1,2, \ldots$.

We have, with $p(v)=v^{-1}$,

$$
-\left[\left(v_{1}-v_{0}\right)\left(p\left(v_{0}\right)-p\left(v_{1}\right)\right)\right]^{1 / 2}=u_{0}-u_{1}=-\left[\left(v_{1}-v_{2}\right)\left(p\left(v_{2}\right)-p\left(v_{1}\right)\right)\right]^{1 / 2}
$$

so that if we square and collect terms, we get $v_{1}{ }^{2}=v_{2} v_{\mathrm{n}}$. Similarly, $v_{2}{ }^{2}=v_{1} v_{3}$ so that $v_{1} / v_{3}=v_{0} / v_{2}=K>1$. Then $v_{3}=K^{-1} v_{1}, v_{5}=K^{-2} v_{1}, \ldots$, and in general, $v_{2 n+1}=K^{-n} v_{1}$; likewise $v_{2 n}=K^{-n} v_{0}$. If we let the shock speed s_{n} be defined by

$$
s_{n}\left(v_{2 n+1}-v_{2 n}\right)=-\left(u_{1}-u_{0}\right)=-1
$$

then $s_{n} K^{-n}\left(v_{1}-v_{0}\right)=-1, s_{n}=K^{n}\left(v_{0}-v_{1}\right)^{-1}$. If we let σ_{n} denote the
shock speed of the S_{1} shocks, we have $\sigma_{n}=K^{n}\left(v_{2}-v_{1}\right)^{-1}$. If Δ_{n} and J_{n} are defined as in Fig. 14, then

$$
T=\sum \Delta_{n}+\bar{\Delta}_{n}=\left(v_{0}-v_{2}\right) \sum_{n=0}^{\infty} K^{-n}=v_{0}<\infty
$$

Since $v_{n} \rightarrow 0$ as $n \rightarrow \infty$, we see $p\left(v_{n}\right) \rightarrow \infty$, as $n \rightarrow \infty$. Thus, the pressure becomes infinite after a finite time!

To analyze this example, we write the system in Eulerian coordinates

$$
\rho_{t}+(\rho u)_{q}=0, \quad(\rho u)_{t}+\left(\rho u^{2}+p(\rho)\right)_{q}=0
$$

and for simplicity, we assume $u_{0}=0, u_{1}=1$. Here q is the position of the gas particle, and q and x are related by

$$
x=\int_{0}^{q} \rho(s, t) d s>0
$$

Also, $\partial q / \partial t=u, \partial q / \partial x=\rho^{-1}, u_{x}=v_{t}$. 'Thus,

$$
q(x, t)=q(x, 0)+\int_{0}^{t} u(x, t) d t
$$

so $q(x, t)$ labels the q position of that point where the amount of gas between that point and 0 is x; the piston corresponds to $x=0$. The piston path is

$$
q(0, t)=q(0,0)+\int_{0}^{t} u(0, t) d t=\int_{0}^{t} u_{1} d t=t
$$

Figure 16

Figure 17

If we set $q(1,0)=\int_{0}^{1} \rho^{-1}(\xi, 0) d \xi$, then the wall is given by $q(1, t)$, and we have

$$
q(1, t)=q(1,0) \mid-\int_{0}^{t} u(1, t) d t \equiv Q+\int_{0}^{j} u(1, t) d t
$$

Thus, in Eulerian coordinates, the piston moves with velocity 1, and the piston path is given by $q(0, t)=t$; see Fig. 17. Our example corresponds to the triangular region $O P Q$ in Eulerian coordinates; i.e., the piston collides with the wall at a finite time, $t=Q$. This is physically impossible, for at this time, $\rho=+\infty, p=+\infty$, so that the force on the piston is infinite.

From this example, we see that the trouble is that the piston collides with the wall. It is thus natural to assume that both boundaries $q(0, t)$ and $q(1, t)$ do not collide in finite time. Hence, it is necessary to impose the following restriction on the boundary data (1): For all $t \geqslant 0, q(0, t)<q(1, t)$; i.e.,

$$
\begin{equation*}
\int_{0}^{t} u_{1}(s) d s<Q+\int_{0}^{t} u_{2}(s) d s \tag{11}
\end{equation*}
$$

where Q is defined by

$$
Q=\int_{0}^{1} \rho_{0}^{-1}(\xi) d \xi=\int_{0}^{1} v_{0}(\xi) d \xi
$$

Observe that (11) fails for our example since here $Q=\boldsymbol{v}_{0}$, and (11) yields

$$
t=\left(u_{1}-u_{0}\right) t<v_{0}
$$

That is, (11) does not hold for $t \geqslant v_{0}$, and as we have seen earlier, blow-up occurs precisely at time v_{0}.

Next, we also cannot admit boundary data which allows the pistons to move infinitely far apart from each other, since generally speaking, this will lead to $\rho \rightarrow 0$ as $t \rightarrow \infty$. For example, suppose that we consider the problem (1)-(4) where we take $p(v)=v^{-1}, u(0, t)=-1, u(1, t)=0$, and $(v(x, 0), u(x, 0))=$ (1,0). Then from (11) we see that $q(1, t)-q(0, t)=1+t \rightarrow+\infty$ as $t \rightarrow+\infty$. Moreover, an analysis similar to that given above shows that an R_{2} rarefaction wave shoots out of the corner $(0,0)$ and impinges on the boundary $x=1$. It then gets reflected as an R_{1}, and so on. ${ }^{5}$ Here we see that $v \rightarrow+\infty$ as $t \rightarrow \infty$,

[^3]

Also, we may note that for $p(v)=v^{-(1+2 \epsilon)}, \epsilon>0$, it can happen that $v=+\infty$ for all $t>0$ (cf. Lemma 2.1 in case $u_{+}>u_{-}, s_{-}-r_{+}<2\left(u_{+}-u_{-}\right)-\left[2 K \gamma^{1 / 2} / \epsilon\right]$).
i.e., $\rho \rightarrow 0$ as $t \rightarrow+\infty$. Thus, in order to avoid ρ coming arbitrarily close to 0 , it is necessary to bound $q(1, t)-q(0, t)$ from above; i.e., it is necessary that

$$
\int_{0}^{1} v_{0}(\xi) d \xi+\int_{0}^{t}\left[u_{2}(s)-u_{1}(s)\right] d s \leqslant \mathrm{const}
$$

for all $t>0$. In the next section we shall see that this condition, together with (11) yields a global existence theorem for the problem (1)-(4).

7. Preliminaries to the Existence Theorem in $0 \leqslant x \leqslant 1$

For the problem in $0 \leqslant x \leqslant 1$, we define a solution of (1), (2), (10) to be a pair of bounded, measurable functions u, v satisfying the pair of equations

$$
\begin{align*}
\int_{0}^{T} \int_{0}^{1}\left(v \phi_{t}-u \phi_{x}\right) d x d t & -\int_{j=T} v \phi d x+\int_{t=0} v_{0} \phi d x \\
& +\int_{x=1} u_{2} \phi d t-\int_{x=0} u_{1} \phi d t=0 \tag{12a}
\end{align*}
$$

for all $T>0$ and for all $\phi \in C^{1}$, and

$$
\begin{equation*}
\int_{t>0} \int_{0}^{1}\left(u \psi_{t}+p(v) \psi_{x}\right) d x d t+\int_{t=0} u_{0} \psi d x=0 \tag{12~b}
\end{equation*}
$$

for all $\psi \in C_{0}{ }^{1}$, satisfying $\psi(0, t)=\psi(1, t)=0$ for all $t \geqslant 0$. Here we tacitly assume that $\int_{t=T} v \phi d x$ is defined for all $T>0$; in fact, we shall obtain a (weak) solution which is a continuous function in $t \geqslant 0$ with values in $L^{1}(0,1)$.

In order to solve this problem, we shall again use Glimm's method, together with the functional introduced by DiPerna in [1], now supplemented by the boundary terms. We assume that the initial conditions $v_{0}(x), u_{0}(x)$ and the boundary conditions $u_{1}(t)$ and $u_{2}(t)$ are bounded and have finite total variation; we also assume that $0<\mathrm{v} \leqslant v_{0}(x) \leqslant \bar{v}<\infty$.

Let

$$
\begin{equation*}
Q(t)=\int_{0}^{1} v_{0}(x) d x+\int_{0}^{t}\left(u_{2}(s)-u_{1}(s)\right) d s \tag{13}
\end{equation*}
$$

From the examples in the last section, we see that in order to avoid the vacuum ($\rho=0$) in the solution and to avoid the collision of the boundaries $(\rho=+\infty)$ for all time, it is necessary to assume that there exist constants Q_{1}, Q_{2} such that

$$
\begin{equation*}
0<Q_{1} \leqslant Q(t) \leqslant Q_{2}<+\infty \tag{14}
\end{equation*}
$$

for all $t \geqslant 0 .{ }^{6}$ In what follows, we shall actually prove that (14) is also sufficient

[^4]for global existence of a solution for the problem (1)-(4), provided that $\epsilon T_{2}<$ const.

We note here that for a weak solution of (1)-(4) in $0 \leqslant x \leqslant 1,0 \leqslant t \leqslant T$, Eq. (12a) with $\phi \equiv 1$ yields the equality

$$
\begin{equation*}
\int_{0}^{1} v(t, x) d x=\int_{0}^{1} v_{0}(x) d x+\int_{0}^{t}\left(u_{2}(s)-u_{1}(s)\right) d s=Q(t) \tag{15}
\end{equation*}
$$

for $0 \leqslant t \leqslant T$. It follows from (14) and the finiteness of the total variation of u_{1} and u_{2} that the following limits exist:

$$
\begin{align*}
& v_{\infty}=\varlimsup_{t \rightarrow \infty} Q(t)<\infty \\
& u_{\infty}=\lim _{t \rightarrow+\infty} u_{2}(t)-\lim _{t \rightarrow+\infty} u_{1}(t) \tag{16}
\end{align*}
$$

We let L be the following line segment in the r, s plane:

$$
\begin{equation*}
L=\left\{(r, s): \frac{1}{2} Q_{1} \leqslant v \leqslant Q_{2}+\frac{1}{2} Q_{1}, u=u_{\infty}\right\} \tag{17}
\end{equation*}
$$

where $r=r(v, u), s=s(v, u)$ are the Riemann invariants.
We choose the space mesh length $l=1 / 2 M$, where M is an integer; the time mesh length $h=h(l)$ will be chosen later. We set

$$
\tilde{Y}=\{(m, n): m=1,3,5, \ldots, 2 M-1, n=1,2,3, \ldots\}
$$

and

$$
\tilde{A}=\Pi\{\{(m-1) l,(m+1) l\} \times\{n h\}:(m, n) \in \tilde{Y}\}
$$

Let $\left\{\alpha_{n}\right\}$ be a random sequence in $(-1,1)$ as in Section 3, and let $a_{m, n}$ be the mesh points, where $a_{m, n}=\left(m l+\alpha_{n} l, n h\right),(m, n) \in \tilde{Y}, a_{0, n}=\left(0, n h-\frac{1}{2} h\right)$, $n=1,2, \ldots, a_{2 M, n}=\left(1, n h-\frac{1}{2} h\right), n=1,2, \ldots, a_{m, 0}=(m l, 0), m=1,3, \ldots$, $2 M-1$. The I curve $\tilde{\mathscr{O}}$ is any space-like curve joining the points $a_{m, 0}, m=1$, $3, \ldots, 2 M-1$, and not containing points $((m+1) l, 0), m=1,3, \ldots, 2 M-3$, which lies in $0 \leqslant t \leqslant h$ if $l \leqslant x \leqslant(2 M-1) l$, and which also includes the two half-rays $t \geqslant \frac{1}{2} h, x=0$, and $t \geqslant \frac{1}{2} h, x=1$, and the straight-line segments joining $a_{1,0}$ to $a_{0,1}$ and $a_{2 M-1,0}$ to $a_{2 M, 1}$. The I curves J are defined in an analogous manner; see Section 3 and Fig. 18.

We now recall the main theorem in [1] concerning the transformation from the Riemann invariants r, s to the generalized Riemann invariants $\phi(r), \psi(s)$. Let

$$
\begin{align*}
& \sigma=2\left(u-u_{\infty}\right)=r+s-2 u_{\infty} \tag{18}\\
& \eta=\left(2 K \gamma^{1 / 2} / \epsilon\right) \rho^{\epsilon}=s-r+\left(2 K \gamma^{1 / 2} / \epsilon\right)
\end{align*}
$$

and

$$
W(k, \Theta)=\left\{(\sigma, \eta):|\sigma|<k \eta, c_{1}<\Theta \eta<c_{2}\right\}
$$

where $1>k>0, \Theta>0, c_{1}, c_{2}>0$ (see Fig. 19).
Let us consider the following transformation from (r, s) to $(\phi(r), \psi(s))$:

$$
T_{\theta}:\left\{\begin{array}{l}
\sigma^{\prime}=\exp \theta(\eta+\sigma)-\exp \theta(\eta-\sigma) \tag{19}\\
\eta^{\prime}=\exp \theta(\eta+\sigma)+\exp \theta(\eta-\sigma)-2
\end{array}\right.
$$

Figure 18

Figure 19
where $\sigma^{\prime}=\phi+\psi, \eta^{\prime}=\psi-\phi$ gives $\phi=\phi(r), \psi=\psi(s)$. For this transformation applied to the system (1) we have the following properties [1]:
(i) $T_{\Theta} W \supset W^{\prime}=\left\{\left(\sigma^{\prime}, \eta^{\prime}\right):\left|\sigma^{\prime}\right|<k \eta^{\prime}, d_{1}<\eta^{\prime}<d_{2}\right\}, d_{1}=d_{1}\left(c_{1}\right)$, $d_{2}=d_{2}\left(c_{2}\right)$.
(ii) The shock curves S_{1} and S_{2} in the r, s plane, $s_{0}-s=g_{1}\left(r_{0}-r ; \rho_{0}\right)$, and $r_{0}-r=g_{2}\left(s_{0}-s ; \rho_{0}\right)$, are transformed by T_{Θ} to curves

$$
\psi_{0}-\psi=G_{1}\left(\phi_{0}-\phi ; \eta_{0}^{\prime}\right) \quad \text { and } \quad \phi_{0}-\phi=G_{2}\left(\psi_{0}-\psi ; \eta_{0}^{\prime}\right)
$$

respectively. Let the shock strengths of S_{1} and S_{2} in terms of ϕ, ψ be $\Delta \phi=\phi_{0}-\phi$ and $\Delta \psi=\psi_{0}-\psi$, respectively. If we take k sufficiently small, $c_{1}=c_{1}(k)$ and $c_{2}=c_{2}(k)$, then the shock waves in the region W^{\prime} do not increase in strength (measured in terms of ϕ, ψ) after interacting with each other.
(iii) As $k \rightarrow 0, c_{1}$ and d_{1} remain finite, but

$$
\lim _{k \rightarrow 0} c_{2}(k)=+\infty, \quad \text { and } \quad \lim _{k \rightarrow 0} d_{2}(k)=+\infty
$$

In the next section we shall apply these results to our problem.

8. Solution of Problem (1)-(4)

We now return to our problem. We set

$$
\begin{align*}
\eta_{\infty} & =\eta\left(\rho_{\infty}\right), \quad \rho_{\infty}=1 / v_{\infty} \tag{20}\\
\theta & =\left[c_{1}+c_{2}(k)\right] / 2 \eta_{\infty}
\end{align*}
$$

The line segment L (see (17)) becomes, in terms of σ, η,

$$
L-\left\{(\sigma, \eta): \sigma-0,0<\eta_{1} \leqslant \eta \leqslant \eta_{2}<+\infty\right\}
$$

where $\eta_{1}<\eta_{\infty}<\eta_{2}$, and so

$$
L^{\prime}: \equiv T_{\Theta} L=\left\{\left(\sigma^{\prime}, \eta^{\prime}\right): \sigma^{\prime}=0,0<\eta_{1}^{\prime} \leqslant \eta^{\prime} \leqslant \eta_{2}^{\prime}<+\infty\right\} .
$$

Hence for sufficiently small k, we have, using (iii) and (20), that

$$
L^{\prime} \subset W^{\prime}=\left\{\left(\sigma^{\prime}, \eta^{\prime}\right):\left|\sigma^{\prime}\right|<k \eta^{\prime}, d_{1}<\eta^{\prime}<d_{2}\right\} ;
$$

that is, $d_{1}<\eta_{1}{ }^{\prime}<\eta_{\infty}{ }^{\prime}<\eta_{2}{ }^{\prime}<d_{2}$, where $\left(0, \eta_{\infty}{ }^{\prime}\right)=T_{\theta}\left(0, \eta_{\infty}\right)$. Therefore, we may put, for small k

$$
\begin{equation*}
S=\frac{1}{4} \operatorname{dist}\left\{L^{\prime}, \partial W^{\prime}\right\}>0 \tag{21}
\end{equation*}
$$

where ∂W^{\prime} is the boundary of W^{\prime} and, as usual, $\operatorname{dist}\left\{\left(\phi_{1}, \psi_{1}\right),\left(\phi_{2}, \psi_{2}\right)\right\}=$ $\left|\phi_{1}-\phi_{2}\right|+\left|\psi_{1}-\psi_{2}\right|$. Hereafter we fix k small as above.

We set

$$
\bar{\lambda}=\left|\lambda\left(\rho=\left[c_{2}(k) / 2 K \gamma^{1 / 2}\right]^{1 / \epsilon}\right)\right|
$$

and we take the time mesh length to be

$$
h=l / \bar{\lambda}
$$

where we note that when ϵ is small, Θ is small and has the same order as ϵ in view of (18) and (20).

In order to define the functional F on J, we set (see Fig. 20)

$$
\begin{align*}
\sigma_{i}(t) & =2\left(u_{i}(t)-u_{\infty}\right), & & i=1,2, \\
\sigma_{i}^{\prime}(t) & =\theta\left(2+d_{2}\right) \sigma_{i}(t), & & i-1,2 . \tag{22}
\end{align*}
$$

Figure 20
We remark that the indices 1 and 2 in the $\sigma-\eta$ plane in Fig. 20 refer to just the two values of σ on $x=1$, and are independent of those of $\sigma_{i}(t), i=1,2$. Furthermore, the two S_{1} shock waves S_{A} and S_{B} having the same strength $\Delta \sigma$ are transformed by T_{0} into $S_{.1}^{\prime}$ and S_{B}^{\prime}, respectively, which have different strength in terms of the σ^{\prime} coordinate.

We now define the functional F on J :

$$
\begin{equation*}
F(J)=\sum_{S_{1} \in J \cap\{0<x<1\}} \Delta \phi+\sum_{s_{2} \in J \cap\{0<x<1\}} \Delta \psi+\sum_{J \cap\{x=0\}} \Delta \sigma_{1}{ }^{\prime}+\sum_{J \cap\{x=1\}} \Delta \sigma_{2}^{\prime}, \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta \sigma_{1}{ }^{\prime}=\max \left\{0, \sigma_{1}{ }^{\prime}\left(n h+\frac{1}{2} h\right)-\sigma_{1}{ }^{\prime}\left(n h-\frac{1}{2} h\right)\right\} \tag{24}\\
& \Delta \sigma_{2}{ }^{\prime}=\max \left\{0, \sigma_{2}{ }^{\prime}\left(n h-\frac{1}{2} h\right)-\sigma_{2}{ }^{\prime}\left(n h+\frac{1}{2} h\right)\right\} .
\end{align*}
$$

Lemma 8.1. Let the image under T_{Θ} of the approximate solution $\left\{v_{l}, u_{l}\right\}$ on J be denoted by $\left\{\phi_{l}=\phi\left(v_{l}, u_{l}\right), \psi_{l}=\psi\left(v_{l}, u_{l}\right)\right\}$. If $\left\{\phi_{l}, \psi_{l}\right\} \in W^{\prime}$, then

$$
\begin{equation*}
F\left(J_{2}\right) \leqslant F\left(J_{1}\right) \tag{25}
\end{equation*}
$$

for J_{2} being an immediate successor of J_{1}. Also for $J=\widetilde{\mathcal{O}}$, we have

$$
\begin{align*}
F(\tilde{\mathcal{O}}) & \leqslant T V\left\{\phi(x, 0), \psi(x, 0), \sigma_{1}^{\prime}(t), \sigma_{2}^{\prime}(t)\right\} \\
& \leqslant \Theta M \cdot T V\left\{v_{0}(x), u_{0}(x), u_{1}(t), u_{2}(t)\right\} \tag{26}
\end{align*}
$$

where M is a constant depending only on W^{\prime}.
Proof. The estimate (25) comes from (ii) and the argument in [1, 4]. Here we must always keep in mind that the boundary conditions on $x=0$ and $x=1$ are given by $u=u_{i}(t), i=1,2$, and we can solve the simples piston problem, as in Lemma 2.1 at $x=0,1$ and $t=n h$ with data $u_{i}(t)$. But for the solution we have the estimates

$$
\Delta \psi \leqslant \Delta \sigma_{1}{ }^{\prime} \quad \text { near } \quad t=n h, \quad x=0 \quad \text { for } \quad S_{2},
$$

and

$$
\Delta \phi \leqslant \Delta \sigma_{2}^{\prime} \quad \text { near } \quad t=n h, \quad x=1 \quad \text { for } \quad S_{1},
$$

as in Lemma 2.1. Since the solution is contained in W^{\prime}, the strength of the shock coming off the boundary is dominated by $\Delta \sigma_{i}{ }^{\prime}$ (cf. Fig. 20). For example, if we consider an S_{1} coming off $x=1$, we have, from Fig. 21,

$$
\begin{aligned}
\Delta \phi=\phi_{2}-\phi_{1}= & \frac{1}{2}\left\{\sigma_{2}{ }^{\prime}(A)-\eta_{2}{ }^{\prime}(A)-\left(\sigma_{1}{ }^{\prime}(A)-\eta_{1}{ }^{\prime}(A)\right)\right\} \\
= & \frac{1}{2}\left\{\sigma_{2}{ }^{\prime}(A)-\sigma_{1}{ }^{\prime}(A)+\eta_{1}{ }^{\prime}(A)-\eta_{2}{ }^{\prime}(A)\right\} \\
\leqslant & \frac{1}{2}\left\{\sigma_{2}{ }^{\prime}(A)-\sigma_{1}{ }^{\prime}(A)+\sigma_{2}{ }^{\prime}(A)-\sigma_{1}{ }^{\prime}(A)\right\}=\sigma_{2}{ }^{\prime}(A)-\sigma_{1}{ }^{\prime}(A) \\
\leqslant & \sigma_{2}{ }^{\prime}\left(d_{2}\right)-\sigma_{1}{ }^{\prime}\left(d_{2}\right)=\left(\tanh \theta \sigma_{2}\right) d_{2}+2 \tanh \theta \sigma_{2} \\
& -\left[\left(\tanh \theta \sigma_{1}\right) d_{2}+2 \tanh \theta \sigma_{1}\right] \\
\leqslant & \theta\left(2+d_{2}\right)\left(\sigma_{2}-\sigma_{1}\right) \equiv \theta\left(2+d_{2}\right) \Delta \sigma_{2} \equiv \Delta \sigma_{2}{ }^{\prime} .
\end{aligned}
$$

Figure 21
(Here our notation $\Delta \sigma_{2}$ and $\Delta \sigma_{2}{ }^{\prime}$ is consistent with that of (22) and (24) since we are considering an S_{1} shock coming out of $x=1$.)

Now as soon as we know that our approximate solution $\left\{\phi_{l}, \psi_{l}\right\}$ on J lies in W^{\prime}, we can estimate the total variation of $\left\{\phi_{l}, \psi_{l}\right\}$ on J by $F(J)$ as follows. Since $\lim _{t \rightarrow+\infty} \sigma_{i}{ }^{\prime}(t)=0$, for $\sigma_{l}{ }^{\prime}=\sigma^{\prime}\left(v_{l}, u_{l}\right), \eta_{l}^{\prime}=\eta^{\prime}\left(v_{l}, u_{l}\right)$, we have

$$
\begin{aligned}
T V\left\{\sigma_{\ell}^{\prime}\right\} & \left.=2 \text { (decreasing variation of } \sigma_{\ell}^{\prime} \text { on } J\right) \\
& \leqslant 2\left\{\sum_{J \cap\{x=0\}} \Delta \sigma_{1}^{\prime}+2 \sum_{J \cap\{0<x<1\}}(\Delta \phi+\Delta \psi)+\sum_{J \cap\{x=1\}} \Delta \sigma_{2}^{\prime}\right\} \\
& \leqslant 4 F(J)
\end{aligned}
$$

and

$$
T_{J} V\left\{\eta_{l}^{\prime}\right\} \leqslant T_{J}\left\{\sigma_{l}^{\prime}\right\} \leqslant 4 F(J)
$$

Hence from Lemma 8.1, we have

$$
\begin{equation*}
T V\left\{\phi_{l}, \psi_{l}\right\}=T V\left\{\sigma_{J}{ }^{\prime}, \eta_{l}{ }^{\prime}\right\} \leqslant 8 F(J) \leqslant 8 F(\tilde{\mathcal{O}}) \tag{27}
\end{equation*}
$$

It follows, then, that we must find conditions both on the initial and boundary data and on the time interval, so that the approximate solutions belong to W^{\prime} for that time interval. This is provided by the following lemma.

Lemma 8.2. Suppose that initially $\left\{\phi_{l}, \psi_{l}\right\}_{\tilde{\mathscr{O}}} \subset W^{\prime}$ and that

$$
\begin{equation*}
F(\tilde{\mathscr{O}}) \leqslant \frac{1}{4} S \tag{28}
\end{equation*}
$$

If in addition the approximate solution satisfies

$$
\begin{equation*}
\frac{1}{2} Q_{1} \leqslant Q_{l}(t)=\int_{0}^{1} v_{l}(x, t) d x \leqslant \frac{1}{2} Q_{1}+Q_{2} \tag{29}
\end{equation*}
$$

then the approximate solutions $\left\{\phi_{l}, \psi_{l}\right\}$ are contained in W^{\prime}.
Proof. It follows from the definition of L (see (17)) and the assumption (29) that $\left(Q_{l}(t), u_{\infty}\right)$ lies on L, and that

$$
\begin{equation*}
T_{\Theta}\left(Q_{l}(t), u_{\infty}\right) \in L^{\prime} \tag{30}
\end{equation*}
$$

We set

$$
\operatorname{dist}_{J}\left\{\left\{\phi_{l}, \psi_{l}\right\}, L^{\prime}\right\} \equiv \sup _{(x, t) \in J \cap\{0<x<1\}} \operatorname{dist}\left\{\left\{\phi_{l}(x, t), \psi_{l}(x, t)\right\}, L^{\prime}\right\} .
$$

Using (30) and the fact that $\lim _{t \rightarrow+\infty} \sigma_{i}^{\prime}(t)=0$, we have

$$
\begin{aligned}
\underset{J}{\operatorname{dist}\left\{\left\{\phi_{l}, \psi_{l}\right\}, L^{\prime}\right\}} & =\operatorname{dist}_{J}\left\{\left\{\sigma_{l}^{\prime}, \eta_{l}^{\prime}\right\}, L^{\prime}\right\} \\
& \leqslant T V\left\{\sigma_{l}^{\prime}, \eta_{l}^{\prime}\right\} \\
& \leqslant 8 F(J) \leqslant 8 F(\tilde{\mathcal{O}}) \leqslant 2 S .
\end{aligned}
$$

Here we have also used (27), (28), and the hypothesis $\left\{\phi_{l}, \psi_{l}\right\}_{\mathcal{O}} \subset W^{\prime}$. Therefore by (2I) we conclude that $\left\{\phi_{l}, \psi_{l}\right\}, \subset W^{\prime}$. This completes the proof.

Now in view of (26), we can choose Θ_{0} so small that for any $\Theta, 0<\Theta \leqslant \Theta_{0}$, we have (28). The fact that $\left\{\phi_{l}, \psi_{2}\right\} \subset W^{\prime}$ follows from (14) at $t=0$, and the finiteness of the total variation of $v_{0}(x), u_{0}(x), u_{1}(t), u_{2}(t)$, together with (16), (20), and (21), for $0<\Theta \leqslant \Theta_{0}$; i.e., for $0<\epsilon \leqslant \epsilon_{0}$. Hereafter, we only consider ϵ in $\left(0, \epsilon_{0}\right]$.

Lemma 8.3. Let $0<\epsilon \leqslant \epsilon_{0}$; then the mean velocity $Q_{l}(t)$ of the approximate solution $\left\{v_{l}(t, x), u_{l}(t, x)\right\}$ satisfies the inequality (29) for $0 \leqslant t \leqslant t_{0}$, where t_{0} depends only on $W^{\prime \prime}$ and ϵ_{0}. Moreover, the following estimate holds for the approximate solution on $0 \leqslant t \leqslant t_{0}$:

$$
\begin{equation*}
\underset{0<x<1}{T V}\left\{r_{l}, s_{l}\right\} \leqslant C_{0} T V\left\{v_{0}(x), u_{0}(x), u_{1}(t), v_{1}(t)\right\} \tag{31}
\end{equation*}
$$

where C_{0} is a constant depending only on W^{\prime} and ϵ_{0}.
Proof. When the approximate solutions $\left\{\phi_{l}, \psi_{l}\right\}$ are contained in W^{\prime}, we can estimate the total variation of the approximate solutions $\left\{r_{l}, s_{l}\right\}$ as follows, using (25), (26), and (27):

$$
\begin{aligned}
\theta \cdot T V\left\{r_{l}, s_{l}\right\} & \leqslant C T V\left\{\phi_{l}, \psi_{l}\right\} \leqslant 8 C F(J) \\
& \leqslant 8 C F(\widetilde{\mathcal{O}}) \leqslant 8 C 0 M \cdot T V\left\{v_{0}, u_{0}, u_{1}, u_{2}\right\}
\end{aligned}
$$

This then yields (31). Next, for $n=1,2, \ldots$ we have

$$
\begin{aligned}
\int_{0}^{1} & \left|v_{l}(x, n h+0)-v_{l}(x, n h-0)\right| d x \\
& =\sum_{m=1,3, \ldots}^{2 M-1} \int_{(m-1) l}^{(m+1) l}\left|v_{l}\left(a_{m, n}\right)-v_{l}(x, n h-0)\right| d x \\
& \leqslant \sum_{m=1}^{2 M-1} T V\left\{v_{l}(t, x):(m-1) l<x<(m+1) l\right\} \cdot 2 l \\
& =2 l \operatorname{TV}_{0 \leqslant x \leqslant 1}\left\{v_{l}(t, x)\right\} \\
& \leqslant C l T V\left\{r_{l}, s_{l}\right\} \\
& \leqslant C_{0} C \ell T V\left\{v_{0}, u_{0}, u_{1}, u_{2}\right\} .
\end{aligned}
$$

Since $\left\{v_{l}, u_{l}\right\}$ is a weak solution in the strip $(n-1) h<t<n h$, it follows from (15) that

$$
\int_{0}^{1} v_{l}(x, n h-0) d x=\int_{0}^{1} v_{l}(x,(n-1) h+0) d x+\int_{(n-1) h}^{n h}\left\{u_{2, l}(s)-u_{1, l}(s)\right\} d s
$$

Therefore,

$$
\left|\int_{0} v_{l}(x, t) d x-\int_{0}^{1} v_{0, l}(x) d x-\int_{0}^{t}\left[u_{2, l}(s)-u_{1, l}(s)\right] d s\right| \leqslant C \bar{\lambda} t \leqslant \frac{1}{4} Q_{1}
$$

for $t \leqslant t_{0} \equiv Q_{1}(4 \bar{\lambda} C)^{-1}$. Furthermore, there exists an $l_{0}>0$, such that

$$
\left|\int_{0}^{1} v_{l}(x, t) d x-\int_{0}^{1} v_{0}(x) d x-\int_{0}^{t}\left[u_{2}(s)-u_{1}(s)\right] d s\right| \leqslant \frac{1}{2} Q_{1}
$$

for all $l \leqslant l_{0}$, because

$$
\begin{gathered}
\lim _{l \rightarrow 0}\left\{\int_{0}^{1} v_{0, l}(x) d x+\int_{0}^{t}\left[u_{2, l}(s)-u_{1, l}(s)\right] d s\right\} \\
=\int_{0}^{1} v_{0}(x) d x+\int_{0}^{j}\left[u_{2}(s)-u_{1}(s)\right] d s
\end{gathered}
$$

This completes the proof of the lemma.
From Lemmas 8.1, 8.2, and 8.3, we conclude that there exists an $\epsilon_{0}>0$ such that for any $\epsilon, 0<\epsilon<\epsilon_{0}$, the approximate solution $\left\{\phi_{l}, \psi_{l}\right\} \subset W^{\prime}$ and so $T V\left\{r_{l}, s_{l}\right\} \leqslant C$ for $0 \leqslant t \leqslant t_{0}$. Therefore Glimm's argument for the convergence of the approximate solutions yields a weak solution to the problem (1), (2), (10) in the region $0 \leqslant t \leqslant t_{0}, 0 \leqslant x \leqslant 1$. Since the limit is also L^{1} continuous in t, the equality (15) holds for $0 \leqslant t \leqslant t_{0}$ and so we also have

$$
\begin{equation*}
0<Q_{1} \leqslant Q(t) \leqslant Q_{2}<+\infty, \quad 0 \leqslant t \leqslant t_{0} \tag{32}
\end{equation*}
$$

for our weak solution. We now can proceed to construct the weak solution on $t_{0} \leqslant t \leqslant 2 t_{0}$, and so on. In fact, since we can assume that there exist integers $n=n(l)$ such that $t_{0}=n h$ for $l=2^{-j}, j=1,2, \ldots$, the new "initial" data $v\left(t_{0}, x\right), u\left(t_{0}, x\right)$ can be approximated by a subsequence of the piecewise constant functions $v_{l}\left(t_{0}+0, x\right), u_{l}\left(t_{0}+0, x\right)$, which are given by

$$
\left\{v_{l}\left(t_{0}+0, x\right), u_{l}\left(t_{0}+0, x\right)\right\}=\left\{v_{l}\left(a_{m, n}\right), u_{l}\left(a_{m, n}\right)\right\}
$$

in $(m-1) l<x<(m+1) l, m=1,3, \ldots, 2 M-1$. The fact that the approximate solutions $\left\{\phi_{l}, \psi_{l}\right\}$ are contained in W^{\prime} in $0 \leqslant t \leqslant t_{0}$ gives us

$$
\begin{aligned}
F\left(J_{2}\right) & \equiv F\left(J:\left\{v_{l}\left(t_{0}+0, x\right), u_{l}\left(t_{0}+0, x\right)\right\}\right) \\
& \leqslant F\left(J:\left\{v_{l}\left(t_{0}-0, x\right), u_{l}\left(t_{0}-0, x\right)\right\}\right) \equiv F\left(J_{1}\right) \leqslant F(\tilde{\mathcal{O}})
\end{aligned}
$$

That is, $F(J)$ can be considered as an a priori bound, which together with the successive use of (32), enables us to extend the weak solution for all $t \geqslant 0$. We thus have our main theorem.

Theorem 8.4. Let the initial conditions $v_{0}(x), u_{0}(x)$, and the boundary conditions $u_{1}(t), u_{2}(t)$ be bounded and have finite total variation. Also assume $0<\mathrm{v} \leqslant v_{0}(x)$, for $\mathbf{v}=$ const., and let (14) hold. Then there exists $a \gamma_{0}>0$, depending only on the variation of the data, such that for any $\gamma \in\left(1, \gamma_{0}\right]$, the mixed problem (1)-(4) has a weak solution defined for all time. The solution has (uniformly) bounded total variation on each line $t=$ const. >0.

9. Tue Extension to $\epsilon \geqslant \frac{1}{2}$

In the previous sections, our results were only valid for $\gamma=1+2 \epsilon \leqslant 2$. That is, the piston problem is solvable if $\epsilon T_{1}<C_{1}=$ constant, and $0 \leqslant \epsilon<\frac{1}{2}$. The reason that we had to take $\epsilon<\frac{1}{2}$ is due to the fact that such a restriction was needed for the estimates of [5] to be valid. We shall now show how to remove this restriction. To see this, we note that $\epsilon<\frac{1}{2}$ was used only on [$5, \mathrm{p} .188$] in order to prove the two inequalities

$$
\begin{equation*}
0 \leqslant(Y-1)(Y+1)^{-1} \leqslant 1 \quad \text { and } \quad(Y+1)^{-2} \leqslant Y^{-2} \leqslant \alpha^{-1} \tag{33}
\end{equation*}
$$

Here Y is defined by

$$
Y=\left[\gamma \alpha^{\nu}(\alpha-1) / \alpha^{\gamma}-1\right]^{1 / 2}, \quad \alpha>1, \quad \gamma=1+2 \epsilon, \quad \epsilon \geqslant 0
$$

Now it is a fairly straightforward calculation to check that $Y \geqslant 1$, and thus the first set of inequalities (33) is valid. On the other hand,

$$
(Y+1)^{-2} \leqslant Y^{-2}=\frac{\alpha^{\gamma}-1}{\gamma \alpha^{\nu}(\alpha-1)} \leqslant \frac{\gamma \alpha^{\gamma-1}(\alpha-1)}{\gamma(\alpha-1) \alpha^{\nu}}=\alpha^{-1},
$$

so that the second set of inequalities in (33) is also valid. It follows from this that the piston problem (1)-(3) is solvable provided that $\epsilon T_{1}<C_{1}$, where $\epsilon \geqslant 0$. The fact that the double piston problem is solvable provided that (14) holds and $\epsilon T_{2}<C_{1}, \epsilon>0$, follows from [1].

We must still check the double piston problem when $\epsilon=0$. But for $\epsilon=0$, the usual Riemann invariants and our arguments in Sections 7 and 8 yield the existence theorem. In fact, for this case, as was pointed out in [4], the interaction of shocks of the opposite family do not increase in strength in terms of the classical Riemann invariants.

References

1. R. DiPerna, Existence in the large for quasilinear hyperbolic conservation laws, Arch. Rat. Mech. Anal. 52 (1973), 244-257.
2. J. Glimm, Solutions in the large for nonlinear hyperbolic systems, Comm. Pure Appl. Math. 18 (1965), 697-715.
3. J. Kassin, Ph.D. thesis, New York University, 1965.
4. T. Nishida, Global solutions for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Japan Acad. 44 (1968), 642-648.
5. T. Nishida and J. A. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws, Comm. Pure Appl. Math. 26 (1973), 183-200.
6. M. Yamaguti and T. Nishida, On some global solution for the quasi-linear hyperbolic cquations, Funkcial. Ekvac. 2 (1968), 51-57.

[^0]: * Smoller's research was supported by the Air Force Office of Scientific Research, Contract Number AFOSR-71-2122, and Nishida's research was supported in part by a Sloan Postdoctoral Fellowship at the Courant Institute of Mathematical Sciences.

[^1]: ${ }^{1} S_{i}$ denotes an i shock, and R_{i} denotes an i rarefaction wave $i=1,2$ (see [5]).

[^2]: ${ }^{3}$ This comes from the interactions in $x \geqslant a_{1, n}$, as in [5].
 ${ }^{4} \mathrm{By} T V(f, g\}$, we mean $\operatorname{Tot} \operatorname{Var} f+\operatorname{Tot} \operatorname{Var} g$.

[^3]: ${ }^{5}$ The solution to this problem can be constructed via the methods in [6]. That is, we can consider this mixed problem as an initial-value problem as follows (where for brevity, we merely sketch the solution).

[^4]: ${ }^{6}$ Note that (14) holds in the case of "rigid walls"; namely $u_{1}(t)=u_{2}(t)=0$.

