Theorcticai Computer Science 4 (1977) 143-153.

'C: North-Holland Publishing Company

ECONOMY OF DESCRIPTION BY PARSERS,
DPDA’S, AND PDA’S*

Matthew M. GELLER'
University of Michigan., Ann Arbor, MI 48105, U.S.A.

Harry B. HUNT, NI
Harvard University, Cambridge, MA 02138, U.S. A.

Thomas G. SZYMANSKI' and Jeffrey D. ULLMAN®
Princeton Uiniversity, Princeton, N.J . 540, U.5. A.

Communicated by A. Mever
Received May 1976
Revised September 1976

Abstract. It 1« shown that there is a sequence of languages E,. E.. ... such that every correct
prefix { arser (one which detects errors at the earliest possible moment, e.:t., LR or L1 parsers) for
E, has size 27, yet a deterministic PDA recognizing E, exists aad has size O(n®). There is
another eastly described sequence of languages N, N,..... for whic1 N, has a nondeterministic
PDA of size O{n"). but no deterministic PDA of size less than 2. It is shown moreover, that this
latter gap can be made arbitrarily large for different sequences of languages.

1. Introduction

Meyer and Fischer [10] attempted to analyze with respect to size certain systems for
expressing languages. They obtained various results showinz how specification of
certain languages was far more economical in one system of specification than
another. For example, they exhibit a family of languages {I, | n = 1} for which the
size of finite automata needed to recognize languages of this family grows doubly
exponentially in n, whereas the size of DPDA’s recognizing I, grow as O(n").

In this paper, we exhibit several results of this flavor that relate to pushdown
automata (PD'A’s). deterministic pushdown automata (DPD A’s), and parsers. The
results relatirg to parsers are particularly interesting, as we show there can be an

* A preliminary version of this report appeared in the Proceedings of the IEEE 16th Annual
Symposium on Foundations of Computer Science.

" Work supported in part by NSF Grant MCS-76-07744.

* Work supperied in part by US. Army Contract DA-31-124-ARO-[1-402.
* Work supported in part by NSF Grant DCR-74-21939.

143

144 M.M. Geller et al.

exponential difference between the size of a minimal DPDA for a language and the
size of any DPDA which behaves as an LR(k) parser for the sume language. The
technique invoived in the proof makes use of an unusual “closure property™ which
LR parsers possess but general DPDA’s do not.

Geller and Harrison [3] present a model for comparing the size of the tables
required by different bottom-up parsing algorithms for a given language. In [4] it is
shown that a family of grammars, {G.|n =1}, exists, such that the size of
production prefix parsers for G, grows as O(n°), yet the size of LR(0) parsers
grows as O(2"). The following question, however, still remained. Can we transform
each grammar G, to another grammar G ,, generating the same language, such that
the size of LR(0) parsers recognizing G . grows polynomially ir: ..? In this paper,
we answer that question in the negative. That is, a family of languages, L,, is given
for which there exists a family of grammars G,, with the size of production prefix
parsers (or precedence parsers or strict deterministic parsers) growing as O(n?).
However, for any family of grammars generating L,, the size of LR(0) parsers (in
fact, the size of any correct prefix parser) grows as O(2*) for some ¢ >0. The
correct prefix parsers include all parsers that halt as soon as an error has provably
occurred. These include LL(k), SLR(k), LALR(k) and LR(k) parsers for all k. The
correct prefix property and its relation to error detection and recovery in compilers
is discussed in [1, 6].

We obtain several other results that relate the economy of description of certain
families of languages to PDA’s and DPDA’s. A simple sequence of languages with
an exponential size difference between PDA’s and DPDA'’s recognizing them will
be exhibiied, and a result of [10] is generalized to show that there is, for example,
no recursive bound relating the size of DPDA’s and PDA’s for the same reg:ilar set.

2. A family of languages that need exponentially growing PDA’s for recognition

Definition 2.1. A scanring PDA is the standard PDA of Ginsburg [5] with the
following modifications:

(1) To each input string we add an endmarker, $.

(2) Acceptance occurs with only Z, the bottom of stack marker, on the
pushdown store. the machine in a final state and the input tape empty.

(3) The stack can grow at most one symbol at a time. If it grows a symbol, the
previous top stack symbol is not changed. That is, in one move, stack symbol X can
be replaced by the empty string, by some other symbe! Y or by XZ for some
symbol Z. We refer to the language accepted by A as 1°(A).

A configuration of a PDA will be deunoted by a triple (g, a. w), where q is the
current state of the PDA, a is the contents of the pushdown store (with the top of
the store on the right) and w is the “‘unprocessed” portion of the input tape. The
empty string will be denoted by A. By (2) above, a string w is accepted by a
scanning PDA if and only if

Economy of description by parsers, DPDA"sand PCA"s 145

((Im Zo, W$) lt (Qf. Zo, A),

where q, is the intitial state and g, is a final state of the rachine.

By the size of an automaton or grammar, we mean the number of symbols used
to specify it. However, when dealing with PDA’s, the use of the state-symbol
product will be far more convenient. Since we are dealing w th exponential gaps in

this paper, we will be able to interchange these measures, as the following lemma
indicates.

Lemma 2.2. For a given input alphabet there are constants ¢, >0 and c: such that for

any scanning PDA with standard description of length n and : tate -symbol product m,
we have c,Vm<n <c.m’.

Proof. Let there be s states and t stack symbols, so m = it. The standard list of
alternates for each state, input and stack symbol of a scanaing PDA can have at
most s(2¢ + 1) entries, since there are, by condition (3) of D¢finition 2.1, only 2 + 1
stack moves performable in any situation. Thus, n = O((s1)[s(2t + 1)]) = O(m"?).

For the lower bound on m simply observe that s and ¢ are each no greater than n,

since each state and symbol must be mentioned in the standard representation of
the PDA. [

Lemma 2.3. There is a constant ¢ such that for any PDA with standard description
of length n there is an equivalent scanning PDA with description of length at most
cn’,

Proof. The standard constructions of Ginsburg [5] suffice. O

From herc on. we shall use “*‘PDA" to mean scanning PD A and *'size’” to mean
state-symbo! product.

We next introduce the notion of a scan. A scan is a special kind of sequence of
moves in which the symbols below that symbol which was on top of the pushdown
store initially, have no effect on the behavior of the mactine.

Definition 2.4. Let A be a (scanning) PDA with state set Q, input alphabet 2,
pushdown aiphabet I, initial state q,. final state set F and hottom of stack marker
Z,.1fp and q arein Q, X and Y are in I" and w isin X~ U X*§, we say that A
makes a gXpY scan on w provided there exist g € F. a =™ and t, z € X" for
which

(. Zo.twZ) F (q. aX. wz).t (p.aY.z): {g. 2. 1)

and in the sequence of moves

jd6 M.M. Geller et al.

(q.aX. wz)F (p.aY.z)

the stack always contains at least | aX| elements.

We next prove a technical lemma that allows us to infer that if some sufficiently
long string causes a scan, then it has come substring of smaller length that also
causes a scan. In particular, we can find in any computation of a PDA a scan whose
length is within a factor of two of some desired length. This lemma will be necessary
for a future combinatorial argument, and it is a generalization of a lemma originally
appearing in Lewis, Stearns and Hartmanis [9].

LLemma 2.5. Let A be a PDA and let ¢ be any constant between () and 1. Then if x is
any input of length at least 4/c which is accepted by A, we may write x$ = x,x.x.$
such that ‘cix! < |x.!s cl|x| and A makes a scan ¢n x; or x.$.

Proof. We constuct x; by the following recursive algorithm. At all times we have a
substring y of x$, with |y|>c¢ x|, on which A inakes a scan. Initially y = x§.
Whenever the algorithm calls itself, it does so on a string with a shorter scan than
the given scan for y.

The scan on y can be of two types, depending on whether the first move grows
the stack or not.

Case 1. The scan of y uses an input symbol before growing its stack. Then
y = ay’. for some a € 3, and

{q.aX, y)t (9. aX', y'); (p.aY, 1)

Then A makes a scan on substring y' of x. If 'y’ < ¢ [x|, then x,is y’. Note in the

case where [v'I<clx|. we must have 'v'|=!c|x!|. For [y|>c|x]. so |y'|>
cix/—1.Ifly’{<ic|x!, acontradiction of the hypothesis | x | = 4/c is immediate.
If. on the other hand, |y’ >« x|, recursively apply the algorithm to y'.

Case 2. (The stack grows before the first use of an input symbol). Then we may
write y = b,y,b.y., with b, and b, each either in I or equal to A, and the scan of y
may be written '

(g.aX.y)F(q".aX'Z. y,b.y)F (@". aX"Z' by)F(@".aX . y:)F (p.a Y. 1),

where scans are made on b,y,b.. y, and y..

If 'y.!>cix . call the algorithm recursively on y,. if icix!<|y,j<c|x], then
choose x. = y,. and we are done. The only case remaining is where |y,|<!cix]|.
Sappose ibyyb.!=!cix|. Given the hypothesis |x|=4/c, together with the
assumption 'y, <lclx! it is easy to show |b,y,b.| < c|x]|. Thus, we may pick
b.y.b. for x,. Thus assume b,y,b./<'clx!. Then!y.!>icix!. Ifly.!<clx! we
are done; if not. apply the algorithm to y.. Note that y. may be y. but the scan
(¢" aX".y.jrip.aY. 1) is shorter than the given scan for y, so the algorithm will
converge.]

Economy of description by parsers, DPDA’s and PI’A s 147

We now restrict ourselves to a special family of languages. We let 3, =
{a\,....a.}. and let L, be the set of permutations of X,, 1=1.

We next wish to show that distinct permutations establish distinct scans when one
of the languages L, is being recognized.

Lemma 2.6. Let P be a PDA accepting L,. If P makes pXqY scans on two strings x
and y, then x and vy are permutations of one another.

#roof. Otherwise, substitute y for x and accept a word rot in L,. [

We are now ready to prove that PDA’s accepting I, grow as 27 in size.

Theorem 2.7. There exists a constant ¢ >0 such that for n =6, any PDA P
accepting L, has size at least 2.

Proof. It suffices to show that for some d >0 there are 2% distinct strings, not
permutations of one ancther, such that while accepting sorie word, P makes scans
on those strings. For then by Lemma 2.6, there must be 2** quadruples ¢XpY such
that gXpY scans are peiformed by P. Therefore, the size of P is at least 2",
Construct « maximal coliection of sets §,, S.. ..., S,, each included in I, such that

(1) foreach S, there is some string w,, a permutation of S, such that P performs a
scan on w, or w,$, and

(2) in <k, <in for all i, where k, is the size of §.
The number of strings in L, that contain the symbols of S, as a substring is
k,'(n — k, +1)!. By condition (2), this number is at most (n/3)'((2n/3) + 1)!. Thus, if

1 n+1
s<n,+l(n/3)’

there is some string w in L, which contains none of S,, S:, .., S, as a substring. By

Lemma 2.5 with ¢ = 2/3, w causes P to perform a scan 01 a substring w’ or w'§,
where w' is of length between in and in. By hypothesis, the set S of symbols of w’
isnoneof S,, S.,....,S,. Thus{S..S-..... S.} was not maximal as supposed. Hence

1 n+ 1
> - =2
S>n+l (n/3)

for some d >0. [

We also wish to consider another family of languages, namely Q.=
{x # x | x €{0, 1}"}. Note that words in Q, are of length 2r + 1. We get & similar
result, namely:

Theorem 2.8. There exists a constant ¢ >0 such that for n = 8, any PDA recogniz -
ing Q, has size at least 2"

148 M.M. Geller et al.

Proof. As in Lemma 2.6, we can show that a PDA P accepting Q. cannot make
gXpY scans on two distinct strings whose lengths do not exceed n + 1. (Note tha:
this result does not hold for strings of greater length, as the strings could contain
corresponding symbols of the two copies of x in x # x§).

Thus, consider a maximal set of strings y,, y2.....y. in (0+ 1)* that

(1) For each y; there is a string in Q, on which P makes a scan, and

@) (n+DR2<|y|<n+1iorali

Any werd in Q, is determined by knowing any nr + 1 consecutive positions. Each
y. is therefore a substring of at most 2"*'™* < 2" words of Q,. By Lemma 2.5
with ¢ =(n +1)/(2n +1) we may use the technique of Theorem 2.7 tc show
s =2"*" jor n = 8. The balance of the argument follows Theorem 2.7. [

We now need a lemma relating a closure property to the growth rate of
sequences of PDA’s.

Lerama 2.9. Let {M, | n = 1} be some family of languages and {R,, | n = 1} a family
of regular sets. Assume that there exists a constant ¢ > 0 such that for sufficiently large
n, any PDA recognizing M, N R, is of size greater than 2". Also assume there exists
some function f(n), such that for sufficiently large n some finite automaton
recognizing R.$ has at most f(n) states. Then for sufficiently large n, any PDA
recognizing M, is of size greater than 2" /f(n).

Proof. If not, then the standard *‘cross product of states’ construction [5] provides
a PDA recognizing M, N R, with size less than 2. [J

We now give two examples where this lemma is applied.

Example 2.10. We let M, = {the set of strings in X% containing at least one
instance of each symbol}. We know L, = M, N (3,)", and (3.)"$ is recognized by
an n + 2 state auiomaton. Therefore, it follows from Theorem 2.7 and Lemma 2.9
that there exists a constant ¢ >0 such that for sufficiently large n, any PDA
recognizing M, is of size greater than 2. This example will be useful later on in
examining the applications of the results of this section to parsing.

Example 2.11. Let P, = {x,2x,2- - - 2x,22x, |'x,- ef{0,1}"forlsj<k l<i<k,and
regarded as binaiy integers, x,<yx,., for 1<j<k}. Consider
P, N (0-+1)"22(C + 1)", which is essentially Q.. Therefore, it follows from Theorem
2 % and Lemma 2.9 that there exists a constant ¢ > 0 such that for sufficiently large
n, any PDA recognizing P, is of size greater than 2. This example resolves a
conjecture of Meyer and Fischer [10].

Economy of description by parsers, DPDA s and PDA s 149

3. The size of minimal PDA’s recognizing languages compared with the size of
minimal DPDA’s and other deterministic devices

In this section, we first demonstrate a particular family of languages N, for which
the size of PDA’s accepting N, grows polynomially in n, yet the size of DPDA’s
recognizing N, grows exponentially in n. We then show that no recursive function
can bound the gain in enconomy of PDA’s over DPDA’s.

Lemma 3.1. Let L C 3* be a language accepted by a DPDA P of size m. Then L is
accepted by a DPDA of size 3m.

Proof. Delete from the description of P any transition 8(q, A, X) if for every i,
there exists a state p and non-empty string y such that (q. X, A)¥ (p, v,.1). The test
for such transitions can in fact be performed in polynomial time, although this fact
is irrelevant to the present proof. The resulting DPDA has no loops. Then use the
construction of [5] to complement the language accepted by the DPDA. [

This result lcads to the following theorem, which shows that there exists a natural
sequence of innguages for which small PDA’s exist, yet for which DPDA’s must be
large.

Theorem 3.2. There exists a constant ¢ >0 such that for sufficiently large n, any
DPDA P accepting

N, ={a.a., - abb. - b. l1<ii<n 1=j. <nand (3r)(Vs) i #j}

has size at least 2.

Proof. By Lemma 3.1, given P we may construct P’, of size polynomial in the size
of P, accepting N,. Construct DPDA P” to simulate P’ on (imaginary) input
a.a:- - - a, and then read a (real) input string of b’s, again simulating P’. The size of
P" is also polynomial in the size of P. But P” accepts the language M, of Example

2.10. with a’s recoded as b's. which we showed requires exponentially sized
PDA's. OO

Comparison of the size of DPDA's and PDA’s for context free grammars reveals
a property displayed by Meyer and Fischer [10] between finite automata and
context free grammars. That is, the gain in economy can be arbitrary’. We prove a
considerably stronger result, in fact.

' A.R. Meyer points out that this result follows from Meyer and Fischer [10] and the result of Stearns
[12]. which showed a recursive relationship between the sizes of minimal finite automata and DPDA’s
for a given language.

150 M M. Geller et al.

Lemma 3.3. [10]. Let f be any recursive function. Then there is a Turing machine T,
which on any input of length n accepts after a sequence of at least f(n) moves.
Moreover, there is a constant k such that for each input x of length n there is a context
free grammar Gy . of size at most kn, which generates the noncomputations of T; on
input x.

Note that L(G;.) is a single string of length at least f(n), whenever f(n) is
defined. '

Lemma 3.4. Let & be any class of language descriptors, e.g.. DPDAs. Suppose that
for any D € Q there exists D' € & defining the complement of L(D), the language
defined by D, and c(n) is a total recursive function such that size(D') < c(size(D)).
Further, let z(n) be a total recursive function such that if L(D) has a word x of length
greater than ((size(D)), then L(D) has some word besides x, i.e., x can be
“pumped.” Then there is no total recursive function g such that for every CFG G of
size m generating a regular set there is a descripior D € & defining L(G), with
size(D)<g(m).

Proof. Suppose there were such a g, and let f(n) = zcg(n”). By Lemma 3.3, there is
an integer k and a sequence of context free grammars G,, G....., where G, is of
size at most ki and generates a language whose complement is one string of length
at least f(i). By hypothesis, there is a descriptor D, such that L(D,)= L(G.) and
size(D,) < g(k?’). Then there is a descriptor D, such that L(D.)= L(G), and
size(D,) < cg (k).

If zcg(k?) < f(k), then —I;_(E;:—) contains more than one string, so f(k)< zcg(k?).
But f(k)= zcg(k?) by definiiion. Hence, g does not exist. [J

Theorem 3.5. For regular sets there is no recursive relationship berween the sizes of a
context-free grammar {or PDA) and the smallest equivalent finite automaton,
DPDA or 1 way deterministic stack automaton.

Proof. Closure of one way deterministic stack automata under ccmplement is easy.
“Pumping” for these devices follows from [11].

Independently. Valiant [13] has obtained a related result, that there is no
recursive relationship between the sizes of anambigious context free grammars and
DPDA’s for the same language. Close examination of Valiant’s construction
reveals that the unambiguous grammars involved are actually deterministic gram-
mars, that is, grammars which are LR. He has thus shown that no recursive
relationship holds between the sizes of a deterministic grammar and the smallest
equivalent DPDA. [J

Economy of description by parsers, DPDA s and PDA s 151
4. Applications to parsing

We now wic.h to apply the results we hav(e obtained to parsing. Geller, Graham and

14} St Iam gram IS {41, | 1Cl
. vl .
c17e of nraductinn nre arcere ornwe ac rn- whiie ST R/L\ narcarc garaw ac 2" In
Jild.Ww 8 }’Il'uu&ll\}ll r’lb €2EJ%1 D ¥V I > o 15 L’Ll.l\"\ ’ }]ul-’\rlu) 5.\’" QA & ARl

z-

generating the same language, SLR(k) parsers must grow as 2.

This result will follow from the fact that by nature of the correct prefix property
(cf. Graham and Rhodes [6]) correct prefix parsers have the task of recognizing two
vistinct languages. That is, the parsers must halt with the correct parse after reading
a correct input, and must also halt and declare error on an input as soon as the input

has been found incorrect. We shall exhibit a seequence of languages which can be
cognized hv a sequence of DPDA’g gro Wi ng pg}vnnmn"v in size, vet

L5582 RS bbb i hlFAw

f

conmnancra nf PN Ac racnanizing tho cat nf inmiit ctrinoec nn which tha nare
SCQUENCC O /A 5 TECOZNIZIMNE A 58 O INput Siings O Wil i pars H
A nlnear seeas aemiaic Avseneaamtsall - 2rn Elect w20 sennar]l camen Al citines
UCLIAICS CHiuUl P21UWY CApOIN lllld"y HI SILC. 'iIdL, WO FICCLU DULNNIC UCH IV

Definition 4.1, Let L C X* be a language. Then x € X* is a correct prefix of L if
and only if there exists some z € X * such that xz € L.

Definition 4.3. Le: A he a DPDA acting as a parser for L. Then A is a correct prefix
parser if by changing the set of final states of A we produce a recognizer for I(L).
Note that many types of parsers are correct prefix parsers. Important examples are
LR(k), LL(k). SLR(k) and LALR(k).

It follows h\ definition that:

Lemma 4.4. Let L be a deterministic CFL. Then the smallest correct prefix parser for
L is no smaller than the smallest DPDA for I(L).

We can apply Lemma 4.4 to exhibit a specific sequence of languages having an
exponential gap between the sizes of their smallest DPIDA’s and smallest correct

Theorem 4.5. There is a constant ¢ such that for sufficiently large n, every correct
prefix parser for the language

E, ={a,a. - ab |1 <i.j<nandj#i for any r}

182 M.M. Geller et al.

Proof. We see that I(E,)N X7 ,-a, = M,_,-a. where M, _, is ilie language of
Example 2.10. By an arguraent similar to that of Example 2.10, there is a constant ¢
such that for sufficiently laige n, every DFDA recognizing M, - 4, has size at least
2. But, by Lemmas 2.9 and 4.4, every correct prefix property parser for E, is at
least as large as any DPDA recognizing M, -a.. U

There are, however, strict deterministic and production prefix parsers for each
E., n:=1 with size O(n°).

Theorem 4.6. Consider the sequence of grammars
G.=(V.3.P.,5) wheren=1,3,={a.b i Isisn} and

P,={A,—»aA|l<ijsn j#i}UlA —b|l<i<n)}
U{S— A, |Isisn}

Then:

(1) L(G.)=E, foralln=1.

(2) There exist production prefix and strict deterministic parsers for G, with size
O(n’).

Proof. (1) Is easy to show.
(2) Is found in [4]. O
3
Remark. It is easy to show the converse to Theorems 4.5 and 4.6, that is, for every
DPDA X there is an equivalent correct prefix parser at most exponentially larger
than X. By way of proof, consider the construction of the **predicting machine”’
in [8].

5. Conclusions

In summary, we have exhibited families of languages with the foliowing behaviors:

minimum

size correct minimum size minimum size

prefix parser DPDA PDA or CFG
L.M., O, 2 2" 2"
‘e 2 2 <cn’
E, 2 < cn? < cn’

We have shown one of the conjectures of Meyer and Fischer [10] to be true. In
addition. we have shown that the gain in economy of description of a PDA over a
DPDA or even over a one way deterministic stack automaton can be arbitrary.

oS = PN

Econcomy of descripiion by parsers, DPDA s and PDA ‘s 153

Acknowledgement

The authors would like to thank the referees and Albert Meyer for their helpful
comments on an carly draft of this paper.

it} A.V. Aho and J.D. Uliman, The
{Prentice Hall, Englewood

{2} M M. Geller, Com mpact

Ve, iVa., IS &7

Berkeley (1975).

[3] M.M. Geller and M.A. Haisison, Strici deterministic versus LR(G) parsing, Conf. Record ACM
Symp. Principles of Programming Languages (1973) 22--32.

{4] M.M. Geller, S.L. Graham and M.A. Harrison, Production piefix parsing, Second Collog.
Automata, Languages and Programming (1474) 237-041,

ey

AN 1
arsel s for deterministic langauges, Ph.D. Thesis llnnmruh; of California
sets for deterministy gauges, Fh. 1) Thesis, Un M Catiforma

18 © £ le. . ipsse ndrrnal Thormee: A8 et s D nnnnnnnnn P 0 I LSA Y4 1£0C L
l." 9. Uln\UUIg. "l(‘V'“ U fiGilican s "['U”V Uj CUricxi-no iee A-unguusc‘ \iVlk\Jl(lW l]l". T, 1T7O0).
{} S.I.. Graham and S.P. Rhodes, Practical syntactic error recovery, Comm. ACM 18 (11) (1975)

[7] M.A. Harrison and 1.M. Havel. Strict deterministic grammars, J. Comput. System Sci 7 (1973)
237.-277.

[8] J.E. Hopcroft and J.D. Ullman, Formal Languages and their Reiation to Automara (Addison-
Wesley, Reading. MA, 1969).

{9} P.M. Lewis i1, R.E. Sterns and J. Hartmanis, Memory bounds for recognition of coniext-free and
AAAAAA ¢ ane itinia Jamaiinmar T £awl Dannsd Lol
Ll"ll‘-h‘ \C“‘“l"c talipuagpcy, L vony. N~

Logical Design (1966) 191- 282,

cnrliss LAN3SRT

Py . Asssr Coraee Crvivondaions M TLhores: maesd
CLuUrd AN, sange. Ji”l’l leltfll'ls Ll'tul l’lt’(l'y uariu

[10] A.R. Meyer and M.J. Fischer, Economy of descripiion by autcomata, grammars, and formal
systems, Conf. Record 1971 Ann. Symp. Switching and Automata Theory. (1971) 188-191.

[11] W. Ogden. Intercalation theorems for stack languages, Proc. ACH Symp. Theory of Computing
(1969) 31-42.

femt N o oA oL e VY P B R e AN R NS Y4 AN
[1<) K.E. Dtearns, A 'rx.gmamv test for pusnuuwn machines, IN]UV'”!UHIUR ana conirot 13 (O) (1vn7)
221313240

[13] L.G. Valiant, A succinctness result for descriptions of deterministic languages. TR 70. Universit- of
Leeds, (July. 1975).

