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Abstract. It 14 shown that there is a sequence of languages E,. E’;, . . . such that tx’t‘r) correct 

prefix 1 lrser (one which detects errors at the earliest possible momcn I, e.::.. LR or 1-L parsers) for 

E, has six 2’“. yet a deterministic PDA rccogni/ing E, exists ir,sd has six O(n-‘). Thcrc is 

another easily described scqucnce of languapc’s IV,. N,. . . . for whicl N, has a nondcterministic 

PDA of size O(n’). but no deterministic PDA of size less than 2’“. It is shown moreover. that this 
latter gap can be made arbitrarily large for different seyucnccs of languages. 

11. Introduction 

Meyer and Fischer [IO] attempted to analyze with respect to size certain systems for 

expressing languages. They obtained various results showin,!: how specification of 

certain languages was far more economical in e?ne system af specifbtion than 

another. For example, they exhibit a family of languages {Iv8 1 n 2 1) for which the 

size of finite ;rutc,mata needed to recognize languages of’ this family grc;ws dt~thl> 

exf’0nentiallq in rt, whereas the size of DPDA’s recognizing I, grclw as O(rt “). 

In this pap-c”, we exhibit several results of this flavor th,tlt relate to pushdou-n 

automata (PDA’s). determinist is pushdown automata (DPD A’s), and parsers. The 

results relatkg tc3 parsers are particularly interesting, as we show there can be ;tn 

* A prellminar) version of thih report appeared in the ProctxdIngs of the !EEE 16th ,hnnual 

Symposium on Foundations of Computer Scitvvx 
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exponential difference between the size of a minimal DPDA for a language and the 
size of an;? DPDA which behaves as an LR(k) parser for the s;lme langtiage. The 
technique invoived in the proof makes use of an unusual “closure property” which 
LR parsers possess but general DPDA’s do no.‘. 

Geller and Harrison [3] present a model for comparing the size of the tables 
required by different bottom-up parsing algorithms for a given language. In [4] it is 
shown that a family of grammars, {G, 1 n a l}, exists, such that the size of 
production prefix parsers for G, grows as O(d), yet the size of LR(0) parsers 
grows as O(2”). The following question, however, still remained. Can we transform 
each grammar G, to another grammar GL, generating the same language, such that 
the size of LR(0) parsers recognizing G L grows polynomially iri *.? In this paper, 
we answer that question in the negative. That is, a family of languages, L,, is given 
for which there exists a family of grammars G,, with th,p: size of production prefix 
parsers (or precedence parsers or strict deterministic parsers) growing as O(n’). 
However, for any family of grammars generating L,, the size of LR(0) parsers (in 
fact, the size of any correct prefix parser) grows as O(2’“) for some c > 0. The 
correct prefix parsers include all parsers that halt as soon as an error has provably 
occurred. These include LL(c(), SLR(k ), LALR(k ) and LR(k) parsers for all k. The 
correct prefix property and its relation to error detection and recovery in compilers 
is discussed in [ I, 61. 

VVe obtain several other results that relate the economy of description of certain 
families of languages to PDA’s and DPDA’s. A simple sequence of languages with 
an exponential size difference between PDA’s and DPDA’s recognizing them will 
be exhibited, and a result of [lo] is generalized to show that there is, for example, 
no recursive bound relating the csize of DPDA’s and PDA’s for the same reg;jlar set. 

2. A family of language that need exponentially growing PDA’s for recognition 

Definition 2.1. A scmning PDA is the standard PDA of Ginsburg [S] with the 
following modifications: 

(I) To each input string we add an endmarker, $. 
(2) Acceptance occurs with only &, the bottom of stack marher, on the 

pushdown store. the machine in a final state and the input tape empty. 
(3) The stack can grow at most one symbol at a time. If it grows a symbol. the 

previous top stack symbol is not changed. That is, in one move, stack symbol X can 

be replaced by the empty string, by some other symbol Y or by X2 for some 

symbol 2. We refer to the language accepted by A as i *(A). . 

A configumtimz of a PDA will be denoted by a triple (4, a. w ), where 4 is the 

current state of the PDA, (Y is the contents of the pushdown stove (with the top of 

the store on the right) and w is the “unprocessed” portion of the input tape. The 

empty string will be denoted by .1. y (2) above, a string M: is accepted ya 
scanning A if and only if 
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where q, is the intitial state and qt is a final state of the rriichine. 

By the size of an automaton or grammar, we mean the number of symbols used 

to specify it. However, when dealing with PDA’s, the u$e of the state-symbol 

product will be far more convenient. Since we are dealing w th exponential gaps in 

this paper, we will be able to interchange these measures, as the following lemma 

indic-ates. 

Lemma 2.2. For a given input alphabet there are constants c i > 0 and c2 such that for 
any scanning PLM with standard description of length n and : tate -symbol product In, 

V 
- 

we hcrue cl 2 mSnsczm . 

Proof. Let there be s btates and t stack symbols, so m = ;t. The standard list of 

alternates for each state, input and stack symbol of a scanqing PDA can have at 

most s(2t + 1) entries, since there are, by condition (3) of DC finition 2.1, only 2r + I 

stack moves performable in any situation. Thus, n = O((sr)[s(2t + I)]) = O(m’). 
For the lower bound on m simply observe that s and t are each no greater than n, 

since each state and symbol must be mentioned in the :itandard representation of 

the PDA. 0 

Lemma 2.3. There is a constant c such that for any PL),q with standard description 
of length n there is an equivalent scanning PDA with description of length at most 
cn’. 

Proof. The standard constructions of Ginsburg [S] suffice. Cl 

From here on, we shall use “PDA” to mean scanning PD.4 and “size” to mean 

state-symbo! product. 

We next introduce the notion of a scan. A scan is a :Ipeciai kind of sequence of 

moves in which the symbols below that symbol which was on top of the pushdown 

store initially, have no effect on the behavior of the ma&ine. 

Let A be a (scanning) PDA with state sIer Q, input alphabet 2’. 

pushdown alphabet r, initial state qo, final state set F and Mtom of stack marker 

& If p and q are in Q, X and Y are in f and w is in 5 * U 2’*$, we say that A 
XpY scan on w provided there exist qf E E CY Z r* and f, z E 2” for 

which 

Z ) ; (qf. 20, . I ) 

and in the sequence of moves 
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(9. ax. W*); (p. aY, t) 

the stack always contains at least ; tt,Y 1 elements. 

WC next prove a technical lemma that ifflows us to infer that if some sufficiently 

tong string causes a scan. c then it has c,olme substring of smaller length that also 

causes a scan. In particular, we can find in any computation of a PDA a scan whose 

length is within a factor 4 two of some diesired length. This lennm will be necessary 

for a future combinatlorial argument, and it is a generalization of a lemma originally 

appearing in Lewis. Stearns and Hart manis [9]. 

ft,emma 2.5. LUS A be a PC/A and let c be any constant betweerr 0 and I. Then if x is 

any input of length al least 3/c which is accepted by A, we may write x$ = x,x2x1$ 
such fhar f;c ix ! S JxJ s c 1 x 1 and A makes a scan on x2 or x2$. 

Proof. We constuct xz by the following, recursive algorithm. At all times we have a 

substring y of x$!, with > c ix 1. on which A anakcs a scan. Initially y = x$. 

Whenever the algorithm calls itself, it does so on a string with a shorter scan than 

the given scan for y. 

The scan on y can be of twi‘r types, depending on whether the first move grows 

the stack or not. 

Case 1. The scan of v uses an input :;~mbol before growing its stack. Then w 

y = ay’. for some a E 21 and 

(q.cuX. &q’.aX’. y$(p.nY, S). 

Then A make?; ;I scan on substring y’ of x. If 1 y’j s c ix 1 o therl x2 is y’. Note in the 

case where \?‘I 6 c Ix . we must have !y’i~&IxI. For /yl>clxj, so /y’l> 
cix;-- I. If 1 y’! SC ;c a contradi&on of the hypothesis Ix 12 4/c is immediate. 
If. an the other hand, 1 y” ‘r 01’ Ix 1, recursively apply the algorithm to y ‘. 

Case 2. (The stack grows before the first use of an input symbol). Then we may 

write y = b,y,b2yz, with b, and 6, each either in Z or equal toI -1, and the scan cf y 

may be written 

(Q. aX, y ) ; (9”. aX’Z, .y, b2+) c* (9”. aX”Z’, bzy:) t- (9”‘. ax”, y?) F (p, c Y. .I ). 

l and y?. 

recursively on y,. if jc j x 1 s 1 y, i s c 1 x 1, then 

‘hr: onI>. case remaining is where 1 y, 1 < J c Ix 1. 

the hyygthesis Ix 12 3/c,, together with the 

to sho:v !b,y,bJa c 1x1. Thus, we may pick 

<!c/xl. Then $J>~c~r!. If !y:lrcjx! we 
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We no’w restrict ourselves to a special family of lalriguages. We let 2, = 

1 al,..., a,,,}, and let L, be the set of permutations of 5,. !I 2 1. 

We next wish to show that distinct permutations establish1 distinct scans when one 

of the languages L, is being recognized. 

Lemma 2.6. Let P be a P/CIA accepting L,,. If P makes pXq Y scans on two strings x 
and y, then x and y a:e permutations of one another. 

Proof. Otherwise, substitute y for x and accept a wo!:d rot in L,. 0 

We are now ready to prove that PDA’s accepting 1”,, E row as 2’” in size. 

Theorem 22. There exists a constant c > 0 such thrzt jar n 2 6, any PDA P 
icccepting L, has size at least 2’“. 

Proof. It suffices to show that for some d > 0 there are Zd” distinct strings, not’ 

permutations o6 one another, such that while accepting sor;e word, P makes scans 

on those strim+ For then by Lemma 2.6, there must be 2d” quadruples qXpY such 

that qXpY scans are performed by _P_ Therefore, the sizt: of P is at least 2dn’Z. 

Construct a maximal ckjiiection of sets SI, $,. . . , S,, each1 included in Z,,, such that 

(1) for each S,. there is some string w,, a permutation of S, such that P performs a 

scan on w, or w,$, and 

(2) t n s k, G $ n for all i, where li, is the size of S,. 

The number of ctrings in L, that contain the symbols of S, as a substring is 

k,! (n - k, + l)!. By condition (2), this number is at most (n/3)!((2n/3) + l)!. Thus, if 

1 
SC----- 

n+l 
n-+-l ( ) n/3 ’ 

there is some string w in L, which contains none of S,, S, . . , S, as a substring. By 

Lemma 2.5 with c = 2/3, w causes P to perform a scan o I a substring w’ or w ‘$, 

where w’ is 0% length between f n and f n. By hypothesis, tlht: set S of symbols of w’ 

is none of S,, S1,. ‘ . , S,,. Thus {S,, S?, . . . . S,) was not maxirmr.1 as supposed. Hence 

1 n+ 1‘ s s-- 
4 + 1 

( 
n/3 

) 2 2d8’ 

for some $ > 0. 0 

We also wish to consider another family of languages, namely Q, = 

(x # x 1 x E (0, 1)“). Note that words in Q, are of length 31 + 1. We get z similar 

result, namely: 

There exists a consrant c :> 0 such that for t;~ 3 8, any PDA wcogniz - 
ing Q, has sire at least 2““. 
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Proof. As in Lemma 2.6, we can show that a PDA P accepting 0, cannot make 

@@Y scans on two distinct strings whose lengths do not exceed n + 1. (Note t’ha! 

this result does not hold for strings of greater length, as the strings could contain 

corresporlding symbols of the two copies of x in JC # x$). 

Thus, consider a maximal set of strings y,, y,, . . . ,% yy in (0 + I)* that 

(I) For each yi there is a string in 0, on which P makes a scan, and 

(2) (n-U)/2Sfy,)SnrI I’orall i. 

Any wcrd in (3, is determined by knowing any tl + 1 consecutive positions. Each 

yS is there fore a substring of at most 2”’ ‘-‘yj s 2(“+ ‘I” words of Q,. By Lemma 2.5 

with c = (lt + I),/(2n + 1) we may use the technique of Theorem 2.7 to show 
> 2’” + IV2 L.! 

S-- )ior n 2 8. The balance of the argument follows Theorem 2.7. [z1 

We now need a lemma relating a closure property to the growth rate of 

sequences of PDA’s. 

Lemma 2.9. Let {M, 1 n 3 1) be some family of languages and {R, 1 n 2 I) a family 
of regular sets. ,4sstime that there exists a constant c > 0 such that for sufficiently large 
n, any PDA recopzizing M, n R, is of sire greater than 2’“. Also assume there exists 
some functkn f(n), such that for sujkiently large n some finite automaton 
recognizing R, $ ttas at most f (n ) states. Then for sufficiently large n, any PDA 
recognizing M,, is of size greater than F/f(n). 

Proof. If not, then the standard “cross product of states” construction [5] provides 

a PDA recognizing fUm n R, with size less than 2’“. Cl 

We now give two examples where this lemma is applied. 

Example 2.10. We let M” = {the set of strings in Z’z containing at least one 
instance of each symbol}. We know L, = M” n (XJ, and (.Z,)“$ is recognized by 
an n + 2 state automaton. Therefore, it follows from Theorem 2.7 and Lemma 2.9 
that there exists a constant c >O such that for- sufficiently large n, any PDA 
recognizing Ra, is of size greater than 2’“. This example will be useful later on in 
examining the applications of the results of this section to parsing. 

Exampk 2.61. Leet P, = {x12x22 l l l 2xk 22x, i xi E (0, I}” for 1 S j S k, 1 s i s k, and 
regarded as &zly integers, x, < x, + 1 for lai<k}. Consider 
E, rT (0 -+ I )“Z?(C? + I)“, which is essentially Q,. Therefore, it follows from Theorem 
2 42 and Lemma 2.9 that there exists a constant c >O such that for sufficiently large 

n, any PDA recognizing P, is of size greater than 2’“. This example resolves a 

conjecture of Meyer and Fischer [lo]. 
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3. The size of minimal PDA’s recognizing languages compared with the size of 
minimal DPDA’s and other deterministic devices 

In this section, we first demonstrate a particular family of languages N,, for which 
the size of PDA’s accepting N, grows polynomially in n, yet the size of DPDA’s 
recognizing N n grows exponentiallv in n. We then show that no recursive function 
can bound the gain in enconomy ‘of PDA’s over DPDA’s. 

emma 3.1. Let L C 2” be a language act e p ted by a DPDA P of sire m. Then z is 
accepted by a DPDA of sire 3m. 

Proof. Delete from the description of P any transition S(q,,I,X) if for every i, 
there exists a state p and non-empty string y such that (4, X, il ) F (p, y, .I ). The test 
for such transitions can in fact be performed in polynomial time, although this fact 
is irrelevant to the present proof. The resulting DPDA has no loops. Then use the 

construction of (51 to complement the language accepted by the DPDA. q 

This result leads to the following theorem, which shows that there exists a natural 

cequence of lnnguages for which small PDA’s exist, yet for which DPDA’s must be 

large. 

Theorem 3.2. Thert 
DPDA P accepting 

N, = {a,,cltl 

has sire at least 2’“. 

exists a constant c :’ 0 such that for sufficiently large n, any 

l l c~,,&,,b,, 9 l 9 b,, 1 1 c ik s n, 1 G jk 6 n and (3r)(Vs) i,# jS} 

Proof. By Lemma 3.1, given P we may construct F”, of size polynomial In the size 

of P, accepting TO. Construct DPDA P” to simulate P’ on (imaginary) input 

ala2 l a - a,, and then read a (real) input string of b’s, again simulating P’. The size of 

P” is also polynomial in the size of P. But P” accepts the language M, of Example 

2.10, with a’s recoded as b’s, which we showed requires exponentially sized 

PDA‘s. 0 

Comparison of the size of DPDA‘s and PDA’s fo: context free grammars reveals 

a property displayed hc Meyer and Fischer [IO] between finite automata and 
context free grammars. That is, the gain in economy k:an be arbitrary’. We prove a 

considerably stronger result, in fact. 

’ A.R. Meyer points out that this result follows from Meyer and Fischer [IO] and the result of Stearns 

[ 12). which showed a recursive relationship txrween the sizes of minimal finite automata and DPDA’s 

for a given language. 



Lemma 3.3. [ 101. Let j be any recursive junction. Then there is a Turing machine T, 

which on any input of length n accepts ajter a sequence of at least j(n) moves. 
Moreover, there is a constant k such that jar each input x of length n there is a context 

jree grammar G,. L oj size at most kn. which generates the nofncomputations of Tf on 

input x. 

Note that L(G,.,) is a single string of length at least jl(n). vwhenewr j(n) is 

defined. 

Lemma 3.6. Let 91 be any class oj language descriptors, e.g.. DPDA ‘s. Suppose that 
for any D E 9 ther\a exis.fs D’ E 55 defining the complement oj L (D ), the language 

defined Ay D, and c (n ) is a total recursive junction such that site (Cl’) < c (site (D)). 
Further, let t (n ) be a total recursive junction such that ij L (D )I bus a word x bj length 
greater than i(sire(D)), then L(D) has some wolrd besides x, i.e., x can be 

“pumped.” Then there is no total recursive junction g such that for every CFG G oj 

sire m generating a regular set trkere is a descriptor D E 57 defining L(G), with 
size(D)s g(m). 

Pasof. Suppose there were such a g, and let j( n ) = scg(n’). Ely L:em*na 3.3, there is 

an integer k and a sequence of context free grammars G,. G2.. . . , where G, is of 
size at most ki and generates a language whose complement is one string of length 

at least j(i). By hypothesis,, there is a descriptor D,, such that L(D,) = L(G,J and 

siz@(D,) s g(k,‘). Then there is a descriptor D, !I;uch that 14(D2) = L(Gk), and 

size(D,)s cg(k’). -- 
If zcg(k')s j(k j, then L(Gk) contains more than one string, so j(k)< zcg(k’). 

But j(k)= zcg(k’) by definition. Hence, g does not exist. D 

Thttsrem 3.5. For regular sets there is no recursive relationship between the sizes of a 

context-jree grammar for PDA ) lznd rhe smallest equivarfent finite automaton, 
DPDA or 1 wav deterministic stack automaton. * 

Prcmf. Closure of one way deterministic stack automata under ccmplement is eas!,. 

“Pumping” for these devices follows from [ 1 f]. 

Independently. Valiant fZ3j has obtained a related result, that there is no 

recursive relationship between the sizes of anambigious context free grammars and 

e same language. Close examination of Valiant’s construction 

lved are actually deterministic gram- 

has thu:; shwv~ that no recursive 

between the skits of a determinislic grammar and the smallest 



4. Applications to parsing 

We now wish to apply the results we have obtained I:(;, pars@ Geiier, Graham and 

Harrison [3] Glow that there exist families of grammars {G, 1 n 2 1) for which the 

size of production prefix parsers grows as cn’, while SLW(L) parsers grow as 2’“. In 

this section, we shall show that for this family of grammars, for any grammars 

gcnerijting the same language, SLR(k) parsers must grow as 2’“. 

This result will follow from the fact that by nature of the correct prefix property 

(cf. Graham and Rhodes [6]) correct prefix parsers have the task of recognizing two 

distinct languages. That is, the parsers must halt with the correct parse after reading 

a correct inp’clt, and must also halt and declare error on an inplut as soon as the input 

has been found incorrect. We shall exhibit a seequonce of languages which can be 

recognized by a sequence of DPDA% growing pofynomiaily in size, ;‘et any 

sequence of PDA’s recognizing the set of input strings on jwhich the parser first 

declares error grows exponentiailv in size. First, we neeci some definitions. . 

Definition 4.1. Let L C 

and only if there exists 

Definition 4.2. If & is a 

a, J* is a correct prefix 

Z* be a language. Then x E 2 * i5 a currect prefix of L if 

some 2 E 2 ’ such that xz E L. 

deterministic CFL, let I(L) = {x 1 :c = ya for some symbol 

of L, but x is not}. 

Definition 4.3. Let* A he a DPDA acting as a parser for L. Then A is a correct prefix 

parser if by changing the set of final statles of A we produce a recognizer for I(I_.). 

Note that many types :jf parsers are correct prefix parsers. hportant examples are 

LR!k ). LL( k. )* ?&R(k) and LALR(k ). 

It follows b\* definition that: 

Lemma 4.4. Lut L he a detsrministic CFL. Then the smuC1er.t correct prefix parser $or 
L is no smaller than the smallest DPDA for I( I, ). 

We can apply Lemma 3.3 to exhibit a specific ~~equence of languages having an 

c.uponmtiai ga:T between the sizes of their smallest DPDA’s and smallest correct 

prefix parsers. 

Theorem 3. There is a constant c such that for suficiergttlv large 82, every correct . 

pwfix parser f0 r tha ~(~~~~~~~~~~~ 

E, = (~,,a,, l - l a,,b, 1 1 s ikr j 6 n and j # i, for uny r} _ 

Ijos size at leust 2““. 
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Pro& We see that I (E, j fI 2 z - I l a, = Mm - I l a,, where A&-i is the language of 
Example 2,lO. By an arguElent similar to that of Example 2.10, there is a constant c 
such that for sufficiently large n, every L)PDA recognizing M, I l CR, has size at least 
2’“. But, hy Lemmas 2.9 and 4,4, every correct prefix property parser for E,, is at 
least as large as any DPDA recognizing M,, i l Q,. Cl 

There are, however, strict deterministic and production prefix parsers for each 
E,, n 2~ 1 with size O(n’). 

Thearem 4.6. Consider the sequence of grammars 

G,,=(V,,&P,,S) wherenal,r.={a,,b,Itgi~n) and 

,~~a,A,~i~i,j~n.j#i}U~kl~b,Il~i~n) 

U(S-*.4,IlGiGn). * 
Then : 

(I) L(G,)= En for all n 2 1. 
(2) 7kre exist production prefix and strict determ/inistic parsers for G, with size 

O(n’). 

Prosf. (1) IS easy to show. 
(2) Is found in [4]. 

Remark. It is eisy to show the converse to Theorems 4.5 and 4.6, that is, for every 
DPDA X there is an equivalent correct prefix parser at most cxponentiaiiy larger 
iban X. By way of proof. consider the construction of the “predicting machine” 
in 181. 

In summary, we have exhibited families of languages with the following behaviors: 

sho~+~~ one I;>f the conjectures 
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