
ECONQ~MY OF DESCRIPTION BY PARSERS,
DPDA’S, AND PDA’S*

Matthew M. GELLER’

L/rtitlevsify of Michigan. Ann Arbor. Ml -WICL~. U.S. A.

Thomas G. %?!%!Ab!SKS’ and Jeffrey D. ULLM,bN’
Princeton iiniversity, Princeton. .Y.? a ~+C-!O, U. S. A.

Communicated by A. Meyer

Received May 1976

Revised Stptcmher 1076

Abstract. It 14 shown that there is a sequence of languages E,. E’;, . . . such that tx’t‘r) correct

prefix 1 lrser (one which detects errors at the earliest possible momcn I, e.::.. LR or 1-L parsers) for

E, has six 2’“. yet a deterministic PDA rccogni/ing E, exists ir,sd has six O(n-‘). Thcrc is

another easily described scqucnce of languapc’s IV,. N,. . . . for whicl N, has a nondcterministic

PDA of size O(n’). but no deterministic PDA of size less than 2’“. It is shown moreover. that this
latter gap can be made arbitrarily large for different seyucnccs of languages.

11. Introduction

Meyer and Fischer [IO] attempted to analyze with respect to size certain systems for

expressing languages. They obtained various results showin,!: how specification of

certain languages was far more economical in e?ne system af specifbtion than

another. For example, they exhibit a family of languages {Iv8 1 n 2 1) for which the

size of finite ;rutc,mata needed to recognize languages of’ this family grc;ws dt~thl>

exf’0nentiallq in rt, whereas the size of DPDA’s recognizing I, grclw as O(rt “).

In this pap-c”, we exhibit several results of this flavor th,tlt relate to pushdou-n

automata (PDA’s). determinist is pushdown automata (DPD A’s), and parsers. The

results relatkg tc3 parsers are particularly interesting, as we show there can be ;tn

* A prellminar) version of thih report appeared in the ProctxdIngs of the !EEE 16th ,hnnual

Symposium on Foundations of Computer Scitvvx

’ Work \uppcjrtcd in part bj’ YS _ Grant ?4C+-7h-()7744.
’ Work supported tn part by U S. Army Contract DA-~1-123-Arf~O--tll-3~,Z.

’ Work supported in par! by NSF Grant DCR-73-21939.

M.M. Geller et al.

exponential difference between the size of a minimal DPDA for a language and the
size of an;? DPDA which behaves as an LR(k) parser for the s;lme langtiage. The
technique invoived in the proof makes use of an unusual “closure property” which
LR parsers possess but general DPDA’s do no.‘.

Geller and Harrison [3] present a model for comparing the size of the tables
required by different bottom-up parsing algorithms for a given language. In [4] it is
shown that a family of grammars, {G, 1 n a l}, exists, such that the size of
production prefix parsers for G, grows as O(d), yet the size of LR(0) parsers
grows as O(2”). The following question, however, still remained. Can we transform
each grammar G, to another grammar GL, generating the same language, such that
the size of LR(0) parsers recognizing G L grows polynomially iri *.? In this paper,
we answer that question in the negative. That is, a family of languages, L,, is given
for which there exists a family of grammars G,, with th,p: size of production prefix
parsers (or precedence parsers or strict deterministic parsers) growing as O(n’).
However, for any family of grammars generating L,, the size of LR(0) parsers (in
fact, the size of any correct prefix parser) grows as O(2’“) for some c > 0. The
correct prefix parsers include all parsers that halt as soon as an error has provably
occurred. These include LL(c(), SLR(k), LALR(k) and LR(k) parsers for all k. The
correct prefix property and its relation to error detection and recovery in compilers
is discussed in [I, 61.

VVe obtain several other results that relate the economy of description of certain
families of languages to PDA’s and DPDA’s. A simple sequence of languages with
an exponential size difference between PDA’s and DPDA’s recognizing them will
be exhibited, and a result of [lo] is generalized to show that there is, for example,
no recursive bound relating the csize of DPDA’s and PDA’s for the same reg;jlar set.

2. A family of language that need exponentially growing PDA’s for recognition

Definition 2.1. A scmning PDA is the standard PDA of Ginsburg [S] with the
following modifications:

(I) To each input string we add an endmarker, $.
(2) Acceptance occurs with only &, the bottom of stack marher, on the

pushdown store. the machine in a final state and the input tape empty.
(3) The stack can grow at most one symbol at a time. If it grows a symbol. the

previous top stack symbol is not changed. That is, in one move, stack symbol X can

be replaced by the empty string, by some other symbol Y or by X2 for some

symbol 2. We refer to the language accepted by A as i *(A). .

A configumtimz of a PDA will be denoted by a triple (4, a. w), where 4 is the

current state of the PDA, (Y is the contents of the pushdown stove (with the top of

the store on the right) and w is the “unprocessed” portion of the input tape. The

empty string will be denoted by .1. y (2) above, a string M: is accepted ya
scanning A if and only if

Economy of description by parsers, DPDA ‘s anti PC A ‘s 13s

where q, is the intitial state and qt is a final state of the rriichine.

By the size of an automaton or grammar, we mean the number of symbols used

to specify it. However, when dealing with PDA’s, the u$e of the state-symbol

product will be far more convenient. Since we are dealing w th exponential gaps in

this paper, we will be able to interchange these measures, as the following lemma

indic-ates.

Lemma 2.2. For a given input alphabet there are constants c i > 0 and c2 such that for
any scanning PLM with standard description of length n and : tate -symbol product In,

V
-

we hcrue cl 2 mSnsczm .

Proof. Let there be s btates and t stack symbols, so m = ;t. The standard list of

alternates for each state, input and stack symbol of a scanqing PDA can have at

most s(2t + 1) entries, since there are, by condition (3) of DC finition 2.1, only 2r + I

stack moves performable in any situation. Thus, n = O((sr)[s(2t + I)]) = O(m’).
For the lower bound on m simply observe that s and t are each no greater than n,

since each state and symbol must be mentioned in the :itandard representation of

the PDA. 0

Lemma 2.3. There is a constant c such that for any PL),q with standard description
of length n there is an equivalent scanning PDA with description of length at most
cn’.

Proof. The standard constructions of Ginsburg [S] suffice. Cl

From here on, we shall use “PDA” to mean scanning PD.4 and “size” to mean

state-symbo! product.

We next introduce the notion of a scan. A scan is a :Ipeciai kind of sequence of

moves in which the symbols below that symbol which was on top of the pushdown

store initially, have no effect on the behavior of the ma&ine.

Let A be a (scanning) PDA with state sIer Q, input alphabet 2’.

pushdown alphabet r, initial state qo, final state set F and Mtom of stack marker

& If p and q are in Q, X and Y are in f and w is in 5 * U 2’*$, we say that A
XpY scan on w provided there exist qf E E CY Z r* and f, z E 2” for

which

Z) ; (qf. 20, . I)

and in the sequence of moves

MM. Gcller 41 id.

(9. ax. W*); (p. aY, t)

the stack always contains at least ; tt,Y 1 elements.

WC next prove a technical lemma that ifflows us to infer that if some sufficiently

tong string causes a scan. c then it has c,olme substring of smaller length that also

causes a scan. In particular, we can find in any computation of a PDA a scan whose

length is within a factor 4 two of some diesired length. This lennm will be necessary

for a future combinatlorial argument, and it is a generalization of a lemma originally

appearing in Lewis. Stearns and Hart manis [9].

ft,emma 2.5. LUS A be a PC/A and let c be any constant betweerr 0 and I. Then if x is

any input of length al least 3/c which is accepted by A, we may write x$ = x,x2x1$
such fhar f;c ix ! S JxJ s c 1 x 1 and A makes a scan on x2 or x2$.

Proof. We constuct xz by the following, recursive algorithm. At all times we have a

substring y of x$!, with > c ix 1. on which A anakcs a scan. Initially y = x$.

Whenever the algorithm calls itself, it does so on a string with a shorter scan than

the given scan for y.

The scan on y can be of twi‘r types, depending on whether the first move grows

the stack or not.

Case 1. The scan of v uses an input :;~mbol before growing its stack. Then w

y = ay’. for some a E 21 and

(q.cuX. &q’.aX’. y$(p.nY, S).

Then A make?; ;I scan on substring y’ of x. If 1 y’j s c ix 1 o therl x2 is y’. Note in the

case where \?‘I 6 c Ix . we must have !y’i~&IxI. For /yl>clxj, so /y’l>
cix;-- I. If 1 y’! SC ;c a contradi&on of the hypothesis Ix 12 4/c is immediate.
If. an the other hand, 1 y” ‘r 01’ Ix 1, recursively apply the algorithm to y ‘.

Case 2. (The stack grows before the first use of an input symbol). Then we may

write y = b,y,b2yz, with b, and 6, each either in Z or equal toI -1, and the scan cf y

may be written

(Q. aX, y) ; (9”. aX’Z, .y, b2+) c* (9”. aX”Z’, bzy:) t- (9”‘. ax”, y?) F (p, c Y. .I).

l and y?.

recursively on y,. if jc j x 1 s 1 y, i s c 1 x 1, then

‘hr: onI>. case remaining is where 1 y, 1 < J c Ix 1.

the hyygthesis Ix 12 3/c,, together with the

to sho:v !b,y,bJa c 1x1. Thus, we may pick

<!c/xl. Then $J>~c~r!. If !y:lrcjx! we

Econorn y of d’twription by pnwrs, DPDA ‘s und PI IA ‘s 137

We no’w restrict ourselves to a special family of lalriguages. We let 2, =

1 al,..., a,,,}, and let L, be the set of permutations of 5,. !I 2 1.

We next wish to show that distinct permutations establish1 distinct scans when one

of the languages L, is being recognized.

Lemma 2.6. Let P be a P/CIA accepting L,,. If P makes pXq Y scans on two strings x
and y, then x and y a:e permutations of one another.

Proof. Otherwise, substitute y for x and accept a wo!:d rot in L,. 0

We are now ready to prove that PDA’s accepting 1”,, E row as 2’” in size.

Theorem 22. There exists a constant c > 0 such thrzt jar n 2 6, any PDA P
icccepting L, has size at least 2’“.

Proof. It suffices to show that for some d > 0 there are Zd” distinct strings, not’

permutations o6 one another, such that while accepting sor;e word, P makes scans

on those strim+ For then by Lemma 2.6, there must be 2d” quadruples qXpY such

that qXpY scans are performed by _P_ Therefore, the sizt: of P is at least 2dn’Z.

Construct a maximal ckjiiection of sets SI, $,. . . , S,, each1 included in Z,,, such that

(1) for each S,. there is some string w,, a permutation of S, such that P performs a

scan on w, or w,$, and

(2) t n s k, G $ n for all i, where li, is the size of S,.

The number of ctrings in L, that contain the symbols of S, as a substring is

k,! (n - k, + l)!. By condition (2), this number is at most (n/3)!((2n/3) + l)!. Thus, if

1
SC-----

n+l
n-+-l () n/3 ’

there is some string w in L, which contains none of S,, S, . . , S, as a substring. By

Lemma 2.5 with c = 2/3, w causes P to perform a scan o I a substring w’ or w ‘$,

where w’ is 0% length between f n and f n. By hypothesis, tlht: set S of symbols of w’

is none of S,, S1,. ‘ . , S,,. Thus {S,, S?, S,) was not maxirmr.1 as supposed. Hence

1 n+ 1‘ s s--
4 + 1

(
n/3

) 2 2d8’

for some $ > 0. 0

We also wish to consider another family of languages, namely Q, =

(x # x 1 x E (0, 1)“). Note that words in Q, are of length 31 + 1. We get z similar

result, namely:

There exists a consrant c :> 0 such that for t;~ 3 8, any PDA wcogniz -
ing Q, has sire at least 2““.

148 M.M. Geller et al.

Proof. As in Lemma 2.6, we can show that a PDA P accepting 0, cannot make

@@Y scans on two distinct strings whose lengths do not exceed n + 1. (Note t’ha!

this result does not hold for strings of greater length, as the strings could contain

corresporlding symbols of the two copies of x in JC # x$).

Thus, consider a maximal set of strings y,, y,, . . . ,% yy in (0 + I)* that

(I) For each yi there is a string in 0, on which P makes a scan, and

(2) (n-U)/2Sfy,)SnrI I’orall i.

Any wcrd in (3, is determined by knowing any tl + 1 consecutive positions. Each

yS is there fore a substring of at most 2”’ ‘-‘yj s 2(“+ ‘I” words of Q,. By Lemma 2.5

with c = (lt + I),/(2n + 1) we may use the technique of Theorem 2.7 to show
> 2’” + IV2 L.!

S--)ior n 2 8. The balance of the argument follows Theorem 2.7. [z1

We now need a lemma relating a closure property to the growth rate of

sequences of PDA’s.

Lemma 2.9. Let {M, 1 n 3 1) be some family of languages and {R, 1 n 2 I) a family
of regular sets. ,4sstime that there exists a constant c > 0 such that for sufficiently large
n, any PDA recopzizing M, n R, is of sire greater than 2’“. Also assume there exists
some functkn f(n), such that for sujkiently large n some finite automaton
recognizing R, $ ttas at most f (n) states. Then for sufficiently large n, any PDA
recognizing M,, is of size greater than F/f(n).

Proof. If not, then the standard “cross product of states” construction [5] provides

a PDA recognizing fUm n R, with size less than 2’“. Cl

We now give two examples where this lemma is applied.

Example 2.10. We let M” = {the set of strings in Z’z containing at least one
instance of each symbol}. We know L, = M” n (XJ, and (.Z,)“$ is recognized by
an n + 2 state automaton. Therefore, it follows from Theorem 2.7 and Lemma 2.9
that there exists a constant c >O such that for- sufficiently large n, any PDA
recognizing Ra, is of size greater than 2’“. This example will be useful later on in
examining the applications of the results of this section to parsing.

Exampk 2.61. Leet P, = {x12x22 l l l 2xk 22x, i xi E (0, I}” for 1 S j S k, 1 s i s k, and
regarded as &zly integers, x, < x, + 1 for lai<k}. Consider
E, rT (0 -+ I)“Z?(C? + I)“, which is essentially Q,. Therefore, it follows from Theorem
2 42 and Lemma 2.9 that there exists a constant c >O such that for sufficiently large

n, any PDA recognizing P, is of size greater than 2’“. This example resolves a

conjecture of Meyer and Fischer [lo].

Economy of dcscriptiorl by purser.~, DPDA ‘s urld PDA ‘s 1-W

3. The size of minimal PDA’s recognizing languages compared with the size of
minimal DPDA’s and other deterministic devices

In this section, we first demonstrate a particular family of languages N,, for which
the size of PDA’s accepting N, grows polynomially in n, yet the size of DPDA’s
recognizing N n grows exponentiallv in n. We then show that no recursive function
can bound the gain in enconomy ‘of PDA’s over DPDA’s.

emma 3.1. Let L C 2” be a language act e p ted by a DPDA P of sire m. Then z is
accepted by a DPDA of sire 3m.

Proof. Delete from the description of P any transition S(q,,I,X) if for every i,
there exists a state p and non-empty string y such that (4, X, il) F (p, y, .I). The test
for such transitions can in fact be performed in polynomial time, although this fact
is irrelevant to the present proof. The resulting DPDA has no loops. Then use the

construction of (51 to complement the language accepted by the DPDA. q

This result leads to the following theorem, which shows that there exists a natural

cequence of lnnguages for which small PDA’s exist, yet for which DPDA’s must be

large.

Theorem 3.2. Thert
DPDA P accepting

N, = {a,,cltl

has sire at least 2’“.

exists a constant c :’ 0 such that for sufficiently large n, any

l l c~,,&,,b,, 9 l 9 b,, 1 1 c ik s n, 1 G jk 6 n and (3r)(Vs) i,# jS}

Proof. By Lemma 3.1, given P we may construct F”, of size polynomial In the size

of P, accepting TO. Construct DPDA P” to simulate P’ on (imaginary) input

ala2 l a - a,, and then read a (real) input string of b’s, again simulating P’. The size of

P” is also polynomial in the size of P. But P” accepts the language M, of Example

2.10, with a’s recoded as b’s, which we showed requires exponentially sized

PDA‘s. 0

Comparison of the size of DPDA‘s and PDA’s fo: context free grammars reveals

a property displayed hc Meyer and Fischer [IO] between finite automata and
context free grammars. That is, the gain in economy k:an be arbitrary’. We prove a

considerably stronger result, in fact.

’ A.R. Meyer points out that this result follows from Meyer and Fischer [IO] and the result of Stearns

[12). which showed a recursive relationship txrween the sizes of minimal finite automata and DPDA’s

for a given language.

Lemma 3.3. [101. Let j be any recursive junction. Then there is a Turing machine T,

which on any input of length n accepts ajter a sequence of at least j(n) moves.
Moreover, there is a constant k such that jar each input x of length n there is a context

jree grammar G,. L oj size at most kn. which generates the nofncomputations of Tf on

input x.

Note that L(G,.,) is a single string of length at least jl(n). vwhenewr j(n) is

defined.

Lemma 3.6. Let 91 be any class oj language descriptors, e.g.. DPDA ‘s. Suppose that
for any D E 9 ther\a exis.fs D’ E 55 defining the complement oj L (D), the language

defined Ay D, and c (n) is a total recursive junction such that site (Cl’) < c (site (D)).
Further, let t (n) be a total recursive junction such that ij L (D)I bus a word x bj length
greater than i(sire(D)), then L(D) has some wolrd besides x, i.e., x can be

“pumped.” Then there is no total recursive junction g such that for every CFG G oj

sire m generating a regular set trkere is a descriptor D E 57 defining L(G), with
size(D)s g(m).

Pasof. Suppose there were such a g, and let j(n) = scg(n’). Ely L:em*na 3.3, there is

an integer k and a sequence of context free grammars G,. G2.. . . , where G, is of
size at most ki and generates a language whose complement is one string of length

at least j(i). By hypothesis,, there is a descriptor D,, such that L(D,) = L(G,J and

siz@(D,) s g(k,‘). Then there is a descriptor D, !I;uch that 14(D2) = L(Gk), and

size(D,)s cg(k’). --
If zcg(k')s j(k j, then L(Gk) contains more than one string, so j(k)< zcg(k’).

But j(k)= zcg(k’) by definition. Hence, g does not exist. D

Thttsrem 3.5. For regular sets there is no recursive relationship between the sizes of a

context-jree grammar for PDA) lznd rhe smallest equivarfent finite automaton,
DPDA or 1 wav deterministic stack automaton. *

Prcmf. Closure of one way deterministic stack automata under ccmplement is eas!,.

“Pumping” for these devices follows from [1 f].

Independently. Valiant fZ3j has obtained a related result, that there is no

recursive relationship between the sizes of anambigious context free grammars and

e same language. Close examination of Valiant’s construction

lved are actually deterministic gram-

has thu:; shwv~ that no recursive

between the skits of a determinislic grammar and the smallest

4. Applications to parsing

We now wish to apply the results we have obtained I:(;, pars@ Geiier, Graham and

Harrison [3] Glow that there exist families of grammars {G, 1 n 2 1) for which the

size of production prefix parsers grows as cn’, while SLW(L) parsers grow as 2’“. In

this section, we shall show that for this family of grammars, for any grammars

gcnerijting the same language, SLR(k) parsers must grow as 2’“.

This result will follow from the fact that by nature of the correct prefix property

(cf. Graham and Rhodes [6]) correct prefix parsers have the task of recognizing two

distinct languages. That is, the parsers must halt with the correct parse after reading

a correct inp’clt, and must also halt and declare error on an inplut as soon as the input

has been found incorrect. We shall exhibit a seequonce of languages which can be

recognized by a sequence of DPDA% growing pofynomiaily in size, ;‘et any

sequence of PDA’s recognizing the set of input strings on jwhich the parser first

declares error grows exponentiailv in size. First, we neeci some definitions. .

Definition 4.1. Let L C

and only if there exists

Definition 4.2. If & is a

a, J* is a correct prefix

Z* be a language. Then x E 2 * i5 a currect prefix of L if

some 2 E 2 ’ such that xz E L.

deterministic CFL, let I(L) = {x 1 :c = ya for some symbol

of L, but x is not}.

Definition 4.3. Let* A he a DPDA acting as a parser for L. Then A is a correct prefix

parser if by changing the set of final statles of A we produce a recognizer for I(I_.).

Note that many types :jf parsers are correct prefix parsers. hportant examples are

LR!k). LL(k.)* ?&R(k) and LALR(k).

It follows b* definition that:

Lemma 4.4. Lut L he a detsrministic CFL. Then the smuC1er.t correct prefix parser $or
L is no smaller than the smallest DPDA for I(I,).

We can apply Lemma 3.3 to exhibit a specific ~~equence of languages having an

c.uponmtiai ga:T between the sizes of their smallest DPDA’s and smallest correct

prefix parsers.

Theorem 3. There is a constant c such that for suficiergttlv large 82, every correct .

pwfix parser f0 r tha ~(~~~~~~~~~~~

E, = (~,,a,, l - l a,,b, 1 1 s ikr j 6 n and j # i, for uny r} _

Ijos size at leust 2““.

*
152 M.M. Gdler et al.

Pro& We see that I (E, j fI 2 z - I l a, = Mm - I l a,, where A&-i is the language of
Example 2,lO. By an arguElent similar to that of Example 2.10, there is a constant c
such that for sufficiently large n, every L)PDA recognizing M, I l CR, has size at least
2’“. But, hy Lemmas 2.9 and 4,4, every correct prefix property parser for E,, is at
least as large as any DPDA recognizing M,, i l Q,. Cl

There are, however, strict deterministic and production prefix parsers for each
E,, n 2~ 1 with size O(n’).

Thearem 4.6. Consider the sequence of grammars

G,,=(V,,&P,,S) wherenal,r.={a,,b,Itgi~n) and

,~~a,A,~i~i,j~n.j#i}U~kl~b,Il~i~n)

U(S-*.4,IlGiGn). *
Then :

(I) L(G,)= En for all n 2 1.
(2) 7kre exist production prefix and strict determ/inistic parsers for G, with size

O(n’).

Prosf. (1) IS easy to show.
(2) Is found in [4].

Remark. It is eisy to show the converse to Theorems 4.5 and 4.6, that is, for every
DPDA X there is an equivalent correct prefix parser at most cxponentiaiiy larger
iban X. By way of proof. consider the construction of the “predicting machine”
in 181.

In summary, we have exhibited families of languages with the following behaviors:

sho~+~~ one I;>f the conjectures

Ac know leclgesnen t

The authors would like to thank the referees and Albert Meyer for their helpful
comments on an early draft of this paper.

References

(I) A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation, Lind Compiling, Vols. I and 11
(Prentice Hall, Englewood Cliffs, NJ. 1972 and 1973).

[2] M. M. Geller, Compact parser .3 for deterministic Iangauges, Ph.D. Thesis, Universitv of California. r
Berkeley (1975).

131 M.M. Ge!!cr and M.A. lbr ,+son. Stricj determi . .._. a. nit+ versus LR(G,I parsing, Conf. Record ACM

Symp. PrincB+s of Programming Languages (1973) 22--X.

(31 M.M. Geller, S.L. Graham and M.A. Harrison, Production prefix parsing, Second Colloq.
Automafa, Languages and Prngrsmrr*!ing c! 973) 9.32-24 1,

IS] S. Ginsburg. The Markematrcial Theorv of Context-Free Language: (McGraw-Hill, NY, 1966). .
[(i) S.L. Graham and S.P. Rhodes. Practical syntactic error recovery. Comm. ACM 18 (11) (107s)

639=4!50.

(71 M.A. Harrison and I.M. Havel, Strict deterministic grammars. 9. Compur. System Sci 7 (1973)

237. -277.

(81 J.E. Hopcroft and J.D. Ullm;dn, Formal Languages and heir Reration to Automuta (Addison-

Wesley, ReaJing. MA, 1969)

[9j P.M. Lewis II, R.E. Sterns and J. Hartmanis, Memory hounds for ttxognition of cc)ntext-free and

context-ser.sitive languages, flZEE C’onf. Record 6th. Ann. S!~mp. Switching Circuil!’ Theory and
Logical Dbzsign (1966) l9l-2OZ.

[IO) A.R. Mever and M.J. Fischer, Economy of description hv autrlmata, grammars, and formal

systems. c(onf. Record 1971 Ann. Symp. Switching and A~uth-r~arn Theory. (1971) /23%IL)f,
11 I] W. Ogden. Intercalation theorems for stack languages, P’roc. AC’14 Symp. Theory of Computing

(1969) 31-42.

[121 R.E. Stearns, A r>t’gularitv test for pushdown machines. Informarrion and Control II (2) (1967)
X3-330.

[131 L.G. Valiant, A succinctness re,sult for descriptions of deterministic languages, TR 70, Universir-. 4

Leeds, (July., 1975).

