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Abstract-A structural theory is presented for the large static plastic deformation of space frames composed 
of thin waged members. ~spIacements comparable to the overall structurai d~ansions are con~mpla~. 
The frame is considered to consist of an arbitrary number of beam elements connected at node points. The 
analysis assumes that plastic deformation is confined to idealized hinges located at the node points. As a basis 
for a general frame computer program, the equations for a beam element are derived as a relationship 
between appropriate generalized force and deformation rates. The structural constitutive theory employed 
for the plastic hinge includes biaxial bending, torsion, and axial extension. It accounts for reduction in the 
load carrying capacity of the hinge due to local deformation. Predicted force-deformation curves for a space 
frame are in good agreement with experimental results. 

INTRODUCTON 

Over @e last few decades structural plasticity has proved remarkably effective in the analysis of 
structures. The foun~tions of the subject are well documented in a number of textbooks[l-31. 
Of particular interest here is the concept of limit analysis of frames. Using the ide~~tions of 
perfect plasticity and plastic hinges (collapse mechanism), it permits the relatively simple 
determination of the collapse load. In the classical formulation deformation prior to collapse is 
neglected, The effect on the collapse load of interaction between bending and axial extension has 
been reviewed by Jones[4]. Gtirkiik and Hopkins[5] have considered the effect of finite 
deflections on the load carrying capacity of rigid plastic simply supported beams. 

Recent interest in vehicle crashworthiness suggests a new area of application for structural 
plasticity. In contrast to most previous applications, however, the determination of the collapse 
load itself is of little direct interest. It is the behavior of the frame during collapse that is the 
central issue. Thus there is a need to predict the force-deformation characteristics of complex 
frames during collapse where the total “crush” of the structure is of the same order as the original 
overall tensions. 

Dynamic plastic collapse of simple structures has been considered by several authors. An 
analytical study for a planar beam has been presented by Jones 161. Although non-linear effects 
are considered, the analysis is restricted to small rotations at the plastic hinges. Youngdahl[7J has 
obtained a large deformation solution for a beam constrained as a side of a symmetrically 
deforming hexagonal frame, Numerical solution procedures for large plastic deformation of 
planer beams and rings have been developed by Witmer et al. [8] and Krieg and Duffy[9]. In these 
programs continuum constitutive equations are employed necessitating numerical quadrature 
through the thickness at each step. 

In the present paper a structural theory is presented for the static analysis of large plastic 
&formations of space frames. The frame may consist of an arbitrary number of beam elements 
that are connected at nade points. External loads are assumed concentrated at the nodes. For the 
frame s~~~es contemplated plastic defo~ation is generally local&d even at large 
deflections. Thus the present theory assumes that plastic deformation is confined to idealized 
hinges which may form at any node. The governing equations for a beam element are derived as a 
relation between generalized force rates and rates of kinematic variables associated with the 
nodes. It should be noted that the concept of a plastic hinge necessarily introduces discontinuities 
in the rotation and displacement rates, the discontinuities representing the plastic deformation 
rates. Thus some care must be taken in introducing appropriate nodal variables. 

For the range of deformation contemplated here both open and closed thin wall beams 
typically exhibit local collapse of the cross section at the hinge. This local deformation 
significantly affects the overall structural behavior. Typical behavior is illustrated in Fii. 1 which 
shows the experimental force-deflection curve for a cantilever beam loaded by a vertical force at 
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Fig. 1. ~orce~e~eetion curve for a cantilever beam. 

the tip. The initial elastic response is followed by an elastic-plastic region of increasing load. The 
maximum load is within 1% of the theoretical limit load, P, = MJI, where MO is the fully plastic 
moment. 

If large deformation is considered, we would anticipate an increasing load as finite rota~ons 
occur since the force must increase to maintain the yield moment. Instead we observe a marked 
“softening”, the load carrying capacity dropping to 50% of its maximum value. This reduction is 
due to the local collapse of the cross section at the hinge. The non-linear geometry effects are 
present, but are completely dominated by the local deformation except at very large rotations. 

This local deforma~on cannot, of course, be computed within the context of a structural 
theory. In a companion paper [ lo], however, it is shown that the reduced load carrying capacity 
can be accounted for by appropriate modification of the yield function. Constitutive equations for 
such “generalized plastic hinges” are developed in a later section. 

The present static analysis is directed toward prediction of the force-deflection characteristics 
of complex frames. In addition the rate formulation may readily be extended to the dynamic case. 
A discussion of the dynamic aspects has been published elsewhere 1111, 

NOTATION 

We consider an elastic beam element which may form ideal plastic hinges at its end node 
points. The motion of the beam may consist of elastic deformation, rigid body motion of the node 
points, and rigid body motion of the beam relative to the node points due to plastic ~fur~ation at 
the hinges. The necessary reference frames for describing this motion are shown in Fig. 2. The 
nodes are represented by point masses to which are fixed reference frames M, and M,. Two 
additional reference frames, denoted Fi and Pi, are fixed to the beam end points. The origin of 
these frames is at the shear center of the beam cross section; the x3 axis is tangent to the beam 
axis and x1 and x2 are along the principal axes of the cross section. A subscript “0” denotes the 
initial position and orientation of the respective frames. 

The positions of E and F; with respect to the fixed global system are denoted by x’ and X’ 
respectively. Likewise the positions of M, and M, are denoted by Y’ and Y’. The orientations of 
the four frames with respect to the global system are specified by the direction cosine matrices 
LMI, LM,, LE_, LF, respectively. The components of LF are 
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(1) 

where Fei and ej are the base vectors of the frame F and the global frame respectively. 
In general we will use the notation Fv’ for column matrices whose elements denote vector 

components. The superscript “i” denotes the node associated with the vector and the superscript 
“P” denotes the frame in which the vector components are expressed. If “F” is the global frame, 
the superscript will be suppressed. 
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Fig. 2. Kinematics of deformation. 

Associated with each node we introduce the generalized displacement rate 

(2) 

where u is the nodal displacement and n the rotation rate of the node frame. We also introduce a 
generalized force rate associated with the beam element at the point i as 

ii= r [ I M' (31 

where F’ is the resultant force and M’ the resultant couple acting on the beam at point i. The usual 
beam theory sign convention is employed. 

With this we introduce the generalized displacement rate and force rate vectors for the beam 
element as 

Our immediate goal is to relate R to b. 

(4) 

KINEMATICS OF DEFORMATION 

Referring to Fii. 2 we can visualize the deformation from the initial state to the current 
configuration as a rigid body motion of the beam frames E and F, plus an elastic deformation. 
The rigid body motion may be due to both overall rigid body motion of the system and to plastic 
rotation and extension of the hinges at node i and/or node j. In the deformed configuration the 
node frames are at Y’, Y’ and the beam frames at X’, X’ relative to the global frame. 
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The origins of beam and mass frames may differ by plastic displacements occurring at the 
hinges. Thus 

X’=y’+u’P 

xi=yi _U” (3 

where V and VP denote the plastic displacements referred to the global frame. Also 

X’ =x’ +(L~)Tr+Ue (6) 

in which the superscript “T” denotes the transpose, U” is the elastic displacement of the end j 
with respect to the end i, and r is the vector 

(7) 

where 1 is the beam length. 
In the initial configuration1 

Equations (5) through (8) can be combined to give 

ui -u’ = [(LFi)T -fLFi~)T]r-l-U” +Vp +U”” 

(8) 

(9) 

where 

ui =y’-y;, & =yJ -yoj, (10) 

A rate equation for the node frame displacements is now obtained by ~eren~ati~ (9). In 
carrying out the calculations we recall that 

L$= W(LF) (~I) 

where W is the skew-symmetric rotation matrix 

in which “Al, represent the components of the rotation rate of the F frame with fespect to-the F 
frame. With this it can be shown that 

(Lfi)Tr = (HR)o’ (13) 

where the 3 x 3 matrix HR is defined in the Appendix and u’ denotes the rot&ion rate of the Fi 
frame. 

We also note that the plastic displacements are due to plastic extension of the beam. Thus the 
extension rate is always directed along the current x3 axis of the beam frame, i.e. 

where p and @’ are the scalar axial plastic extension rates. 
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ij -ii = (HR)u’ + (LFi)TiOiP f (LFj)=iIjJp + ir.. (15) 

A second kinematic equation is obtained by recognizing that the E and FJ beam frames differ 
only due to elastic deformation. Thus the beam frame rotation rates are related by 

in which oc denotes the elastic rotation rate of the F, frame relative to the F; frame. 
Finally we wish to express (15) and (16) in terms of the node frame rotation rates. The 

difference in orientation of the node and beam frames is due to plastic rotation at the hinges. 
Introducing the plastic rotation rates gives 

where the superscript “p” denotes the hinge ro~on rate. Using (17) to eliminate the beam frame 
rates in (15) and (16) yields 

The left hand sides of (18) involve components of the generalized displacement rate D, 
whereas the right hand sides involve the elastic deformation of the beam and the plastic 
deformation occurring at the nodes. It remains to relate these deformation quantities to the 
generalized forces acting on the beam at the node points. 

EQUILIBRIUM 

Introducing the generalized force defined in (3), the equations of equilibrium can be expressed 
as 

“R’ = (A + U)FiR’ (19) 

where A is the 6 x 6 constant matrix 

in which I is the 3 x 3 identity matrix and E is the 3 x 3 matrix 0 1 0 

E=I [ -1 0 0. 1 000 

The 6 x 6 matrix U is a function of the elastic displacement. It is 

0 0 
lJ= -iFi a E 11 

in which 

(20) 

(21) 

(22) 

(23) 
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We now obtain a rate equation by differentiating (19). In carrying out this computation we 
must account for the change in orientation of the F< frame. This is most conveniently done by 
expressing (19) in the global system. We obtain 

R’ = (Tfi)=(A + U)(TFi)R’ (24) 

where TF denotes the 6x6 transformation matrix 

It can be shown that 

(T&)=U(TE)= UG (26) 

where 

in which 

(27) 

(28) 

Also it follows from (25) and (11) that 

T&= (TW)( TF) 

(T&*= -(T~)T(TW) (29) 

where TW is the 6 x 6 rotation matrix 

TW = of+]. (30) 

Introducting (26) into (24), differentiating, and using (29) gives after some algebraic manipulation 

ii = (Tfi)‘A(TE:)l$ +J,o’ +(UG)l& +&iJ=. (31) 

The 6 x 3 matrices Jt and Jz involve the stress resultants at point j and are given in the Appendix. 
We now eliminate the beam frame rotation rate through (17). With this (31) becomes 

J,ni = -[(TF,)TA(TE)+ UG]& t-k -Jzw’” -J,irc. (32) 

CONSTITUTIVE EQUATIONS FOR GENERALIZED PLASTIC HINGES 

We must relate the plastic deformation rates in (18) and (32) to the generalized forces acting 
on the beam. As discussed in the Introduction local collapse of the beam cross section 
significantly affects the load carrying capacity of the ‘hinge. This detailed behavior cannot, of 
course, be computed within the context of a structural theory. Nevertheless it is shown in 1101 
that its effect on the load carrying capacity of the hinge has characteristic features that may be 
accounted for by the introduction of additional parameters in the generalized yield function. 
These “hinge parameters” are functions of the a~~rn~at~ plastic deformation, and in the 
structural sense may be viewed as co~stitutive properties of the hinge. Their dete~ina~on from 
standardized tests is discussed in [lo]. 
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Here we develop appropriate constitutive equations for the ith node. We assume the behavior 
of the hinge is determined by a scalar generalized yield function 

f’W) = 1 (33) 

where 5’ are appropriate normalized stress resultants in the local beam coordinates. We assume 
that the yield function is independent of the transverse shear forces, and let yi’ (j = 1,2, 3,4) 
denote the last four elements of FIR’. Thus 

# = y;‘,q j = 1,2,3,4. (34) 

The scaling parameters are considered as a four element vector of “hinge parameters”. We define 

Sj = 
I 

“/1(:/df, j= 1,2,3,4 (35) 
0 

where K; are the elements of the plastic deformation rate vector 

(36) 

Thus fli represents the accumulated plastic deformation in extension, biaxial bending, or torsion 
relative to the local beam c~rdinates. We now assume 

As shown in [IO] the four functions (37) are characteristic of a given cross section and may be 
determined from s~ndardized tests. 

In effect (Y changes the shape of the yield function in the physical stress resultant space. 
Alternatively the components of a! may be considered as “damage measures” which control the 
load carrying capacity of the hinge. From this view~int the assumption embodied in (37) is that 
the maximum principal moment, for example, is a function only of the accumulated plastic 
rotation about the corresponding principal axis. This is obviously a simplifying hypothesis, but 
appears reasonable during collapse of the cross section. It has been experimentally veritkd for 
nonpro~rtion~ loading in [lo]. It validity for reverse plastic defo~a~n is considerably more 
speculative. For the applications of interest, however, this is seldom an issue, i.e. once the cross 
section has collapsed we are usually not interested in reverse deformation. Finally it should be 
noted that the uncoupling of the damage measures inherent in (37) does not imply uncoupling of 
the stress resultants. In general their current value depends upon the entire deformation history. 

To complete the analysis the plastic deformation rate is related to the yield function through a 
normality condition,t i.e. we postulate 

Ki _-aihi 
(38 

where A’ is the scalar magnitnde and a’ is the normalized gradient 

in which V is the gradient operator in the normalized stress resultant space. The scalar magnitude 
is determined from the condition 

i’=o. (40) 

It can be shown that (40) leads to 

A’ = [(CR*)& +(GB')Sl'J (41) 

tit should be emphasized that this is a strong assumption since the usual stability arguments for normality are not 
necessarily applicable here. 
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where 
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GR’ = - D-‘(iUR)(TE), 

GB’ = - D-‘(~R)B~(~~) (42) 

in which D is the scalar 

II = [(MR)(OIBi)~MB]ai. (43) 

In (42) the subscript R denotes the last four rows of the transformation matrix (25). The 4 x 3 
matrix B’ depends upon the current generalized forces and is listed in the Appendix for 
reference. The I x 4 matrices MR and MB are 

j = 1,2,3,4 (44 

where a; is the jth element of ai. Substituting (41) into (38) gives the final result for the plastic 
deformation rates. It is convenient to partition (38) and express separately the extension rate and 
the plastic rotation rate in the global frame. Recalling (14) we obtain 

where 

EH’= (LE)Tial’(GRi) 

EHB’= (LF~)%z,‘(GB’) (46) 

HP’= ~~~)ra~(G~i), HPB’ = (LE)TaRi(GBt) 

in which the subscript R denotes the last three elements of a’. 
Analogous relations may be derived for the node j. They may be obtained by repla~~g i with j 

in eqns (33) through (46) and changing the signs of GR’, GB’ and h4B in (42) and (43). The 
sign change occurs because of the kinematic definition of oi in (17). 

ELAST~~DEFORMAT~ONRATE~QUATrONS 

We also need elastic constitutive relations expressed in rate form. From elastic beam theory 
we have relative to the current configuration beam frame Fi 

QF = (KE-‘)“‘R’ (47) 

where R’D’ is the generalized elastic displacement of the j end relative to the i end and KE-’ is 
the inverse of the elastic stiffness matrix (given for reference in the Appendix). A rate equation is 
obtained by ~~erent~ation. As in the equilibrium equations we must account for the rotation of 
the E frame, This introduces the rotation rate w’ which is eliminated through (17) Equation (45) 
is then used to eliminate w @. After considerable algebraic manipulation, the final result expressed 
in the global frame is 

& = (KT)R i(KRT)l? +(KRTB)ni (48) 

where 

KT= (T~)~(K~-‘)(T~) 

KRT= (TFi)=(KR)(LFi)HP’ 

KRTB=(TE:)=(KR)(LFI)[I+HPB’) 

(49) 
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in which ICR is a 6 x 3 matrix depending upon the generalized forces and elements of the elastic 
stiffness matrix. It is given for reference in the Appendix. 

ELEMENT STIFFNESS MATRIX 

Equations (18) and (32) represent twelve equations involving the twelve components of the 
generalized nodal displacement rate D and the generalized force rate t. We eliminate the elastic 
and plastic deformation rates in these equations through (48) and (45) respectively. We obtain 

The subscripts U and L denote the upper three rows and the lower three rows respectively of the 
corresponding matrix. Equations (50) have the matrix form 

Hk = SD. ($1) 
Thus 

%=Ri) (52) 

where the “element stiffness matrix” is 

K = W’B. (53) 

APPLICATION TO GENERAL FRAMES 

A computer program for computing the large plastic deformation of general frames has been 
developed based on the above theory. The global frame equations are assembled in the usual way 
from consideration of equilibrium of the node points (expressed in rate form). External loads are 
assumed to be applied at the nodes. Displacement boundary conditions including imposed 
~spla~ments are handled by contraction of the global matrix. The final system of equations has 
the form 

(KG@ = @ 154) 

where U is the unknown geueralixed nodal disphteement rate a&is a known vector of loading 
and imposed diiacemtnt rates. 

The analysis has becna ,formulat&d as rate equations. For numerical solution (54) is expressed 
in incremental form. We let 

AC+, = U&+1) - IN) 

AFk+x = F&+,)-IV,:)* 
(5.9 

Evaluat&rg (54) at t&&e &, rephtcfng the derivatives by forward differences, and using (55) then 
gives 

~~G(~*~~AU~+~ = AI%+,. (56) 

After each .forward stq the matrix KG must be upd&ed. In part.ic&ar we must update the 
direction cosine m 
LP by 

dk&i* the beamruf&enee frames. I&r thi$ purpose we woximate 

L&R) =&R~+I) - LF(rk)l/At. (57) 

Also we ietrodw &~imXeme&al rotation vector 

PA@ = ParAt. 

IKS Vol. 13, No. 3-D 

(58) 
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In~odu~~~ (57) into (1 l), multipIying through by At, and using (58) then yields 

where 

LF(Q+J=(WB)LF(f) (S9) 

(60) 

The use of the approximation (S8) implies that //A@]~ * 1s small compared to unity. Basically this 
requirement is used to determine the step size of the incremental process. 

Although the analysis leading to (52) is the fundamental basis of the computer program, there 
are additional considerations which must be implemented in the program development. The 
stiffness matrix was derived on the basis that the plastic hinges at the beam nodes are operating. 
If the hinge is not operating, the plastic cont~bution can be eliminated by setting the GR and GB 
matrices associated with the node to zero. 

It is necessary, however, to monitor in the program the operation of the hinges, Initially the 
GR and GB matrices are set to zero. At the end of each forward integration step, the yield 
function f is computed at each node. If it is less than unity, the computation proceeds to the next 
step. If it exceeds unity at some node, the step size is reduced until the yield function is satisfied. 
At the next step the CR and GB matrices for the appropriate node are included in the 
compu~tion. 

Elastic unloading is included by monitoring the rate of energy dissipation at the hinge. The 
dissipation rate is 

d = (Y)Tfc. 61) 

At each time step d is computed from (51). If d > 0, the compu~~on proceeds to the next step. If 
d ~0, the GR and GB matrices for that node are set to zero before proceeding. 

COMPARISON WITH EXPERIMENT 

The experimental force-displacement curve was obtained from a static crush test for the 
welded space frame shown in Fig. 3. The members are 1 in x 1 in x 0.075 in 1040 structural steel 

Fig. 3. Space frame before deformation. 
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tubhg. The con&m&on is similar to a scaled vehicie frame used in model testing[l2). It 
consists of a forestructure welded to a rigid plate which is connected to a second pIate through a 
rear sauce. The retu plate was clamped to the bed of the testing machine, and the frame was 
movexl in the negative X, d&e&ion (Pi. 5) against a rigid pole indenter. The rear structure 
remained elastic, but the forestructure was crushed longitudinally about 4.8 in which is over 50% 
of the or-i&al forestructure dimensions. The final deformed configuration is shown in Fig. 4. 

The model employed for the computer simulation is shown in Fig. 5. It consists of 15 nodes, 12 

Fii. 4. Space frame after defo~ation. 

Fii. 5. Frame model. 
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beam elements and 2 rigid plate elements. Elastic properties were computed from cross sectional 
dimensions. The constitutive properties of the plastic hinges were taken from [lo]. 

The experimental force-deformation curve is given by the circled points in Fig. 6. The 
anomalous behavior of the test in the region of maximum load is best explained by Fii. 7 which 
shows the transverse displacement of the contact node U, versus the lo~~~n~ displacement 
Uz. Initially the transverse displacement was evidently constrained. A sudden slipping of the 
contact node along the indentor occurred at about 0.75 in of longitudinal displacement. This 
sudden slip is accompanied by a sharp drop in load. The transverse displacement then increases 
monotonically as the deformation proceeds. It should be noted that the experimental transverse 
displacement is subject to a fairly large relative error. Due to severe local defo~ation at the 
contact node, accurate measurement of the nodal displacement was difhcult. 

It is clear that thetest boundary conditions aE the contact node are comp&. To examine the 
effect of bounty portions, p~l~in~y compu~tions were made for two different cases: 

(i) Ttransverse Force F1 = 0 
(ii) Transverse ~splacement U, = 0. 

In both cases the contact node was assumed free to rotate. The computed results for the first two 

m TEST RESULTS 
-.-__ u, 20 
-__-*_- Ft i 0 

------- Uf = lJ1 1U21 

F. ItIt i ri 11 

LON&~“DINAL*&‘LACE%NT U2 (4.kiESl 
5.0 

Fig. 6. Experimental and computed force deformation curve. 

- EXPERIMENT 
- - - - APPROXIMATION 

LONGITUDINAL DISPLACEMENT Up 1INCHES) 

Fii. 7. Ex~~rnen~ transverse vs loa~tu~n~ displacement, 



Plastic collapse of general frames 209 

inches of crush are shown in Fig. 6. As anticipated these limiting cases bracket the experimental 
result. 

As a more severe test of the theory, a third case was considered in which the transverse 
displacement U, was specified by the piece-wise linear approximation to the experimentally 
observed curve shown in Fig. 7. It was again assumed that the contact node was free to rotate. 
The predicted force-deformation curve is shown as the dashed curve in Fig. 6. The most 
pronounced discrepancy is that the computed result shows a greater softening rate for 
displacements in the range of 1.5 to 2.5 in. In general, however, the overall agreement is good. 

Computations were carried out on The University of Michigan IBM 370174 computer. The 
4.8 in of crush required 125 steps. Total CPU time was 87 sec. 
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APPENDIX 

In the following we list for completeness the various matrices arising in the derivation. The 3 x 3 orientation matrix HR is 

HR = (LF,)“B(LF,) (Al) 

where 

0 
1 -1 

1 
E=I 0 

0 0 

The 6 x 3 matrices Jt and 1; in the equ~b~um eqns (31) are 

0 
0. 

1 
642) 

0 

(A3) 

where the 3 x 3 matrices are 

in which 

JR, = (LF,)9B(LF,) (A41 

and 

(AS) 

(A61 

The 4x 3 matrix B’ appearing in (42) is 

F’ -R, R, 0 
B’= ;-p_; 

[ 1 -It: R. o4 (A71 
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The elastic compliance matrix in (47) is 

KE-’ = 

in which 

-k, 0 0 0 k, 0 
0 k, 0 k, 0 
0 0 k, 0 0 
0 k, 0 k, 0 
k, 0 0 0 k, 0 

-0 0 0 0 0 

Lw 

k, = 13/3EI,, k2= 1’/3El,, k, = l/EA 

k,= lIEI,, k,=lIEI,, k,=l/GJ 

k, = 1=/2EI,, k, = - P/2EI, 

649) 

where E is the elastic modulus, G is the shear modulus, I, and 1, are the principal moments of inertia, A is the cross section 
area, J is the polar moment of inertia, and I is the beam lenth. The 6 x 3 matrix KR in (49) is 

KR = 

-(k, - k,)R, (k, - kdR, - (k, f k&R, ’ 
- ksR, (ka - MR, + (k, + k,)R, 

-(k, - MR, - k,R, 
- fk, - k,)R, -(k.+kdR,~~k+-MR, 

- k,R, (k, - k,)R, •t (k, + k&R, 
-(t - k,)R, - ksR, 0 I. 


