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Using exchangeability as a statistical analog of neutrality, we derive a general- 
ized sampling distribution for neutral alleles. The distribution depends upon 
a parameter that determines the underlying marginal distribution of the number 
of copies of a neutral allele and that can range from zero to infinity. The sampling 
model of Ewens (1972) is a special case characterized by an extreme value (0) 
of this parameter. Two other special cases are considered, one of which seems 
to be applicable to populations with a structure like that of the Yanomama 
Indians of South America. We then investigate the expected frequency spectra 
under these three special cases and discover that all three models yield a broad 
range of possible spectra with overlap between the special cases. We finally 
show that Ewens’ sampling model cannot be used to construct tests of neutrality 
versus selection tending to maintain polymorphisms, but it can be used to 
construct tests of directional selection versus neutrality plus selection tending 
to yield polymorphic states. 

1. IN-I-R~DUCTI~N 

One impact of the use of electrophoresis to detect genetic variability in 
natural populations was to focus attention on the neutralist versus the selec- 
tionist hypotheses as explanations of genetic variability. This debate has caused 
several workers to propose a wide assortment of tests that could potentially 
distinguish between these hypotheses (Ewens, 1977). One such test is based 
on Ewens’ (1972) model of the sampling theory of selectively neutral alleles. 
This theory rests upon four basic assumptions: 
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0) neutrality of all alleles at a locus; 

(ii) a fixed population size that is large compared to the sample size; 

(iii) a stationary stochastic process of mutation and drift; and 

(iv) a potentially infinite number of alleles (only unique alleles result 
from mutation). 

Although additional assumptions are included in the development of the 
model, replacement of population size, N, with an effective population size, 
N, , generalizes the model sufficiently to serve a broadened class of applications. 
Ewens (1972) pointed out, however, that assumption (iv) is probably violated 
for electrophoretic data because electrophoretic techniques lack a total ability 
to differentiate alleles. Thus, the data consist of electromorph allele categories 
rather than unique alleles. However, in the past few years, the ability to resolve 
alleles has increased significantly (Coyne, 1976; Singh et al., 1976; Johnson, 
1977a). Consequently, Watterson (1978) applied Ewens’ sampling theory and 
some of his own extensions of this theory to these new data sets characterized 
by enhanced allelic resolution. Moreover, Kingman (1978a) has shown that 
Ewens’ formula is valid even when some allelic categories are pooled, due to 
lack of resolution, as long as the pooling is not too extensive. Consequently, 
the sampling theory for the infinite allele model is becoming more and more 
appropriate. It is therefore important to examine this sampling theory in more 
detail and, if possible, generalize it so as to be more robust when applied to 
“real” populations. 

Much work investigating the robustness and underlying assumptions of 
Ewens’ sampling theory has already been done. Watterson (1976) has shown 
that Ewens’ sampling formula can be obtained as the limit of a mixture of a 
multinomial with a Dirichlet. As discussed in the work of Rothman et al. (1974)? 
the multinomial-Dirichlet distribution has sufficient flexibility in its parameters 
to describe a wide range of underlying population structures. However, Ewens’ 
sampling formula is a specific limit of the multinomial-Dirichlet; in particular, 
it is the “Poisson-Dirichlet” limit (Kingman, 1977). Although the family 
of multinomial-Dirichlet distributions has great robustness, it is still not 
clear how robust the subfamily of Poisson-Dirichlet limits is and how applicable 
these limits are to “real” populations. 

In this regard, some simulations of an American Indian population are of 
interest (Li et al., 1978; Neel and Rothman, 1978). Although only certain 
aspects of Ewens’ model may be examined and although the simulations are 
themselves only “models” (though more complex), a lack of agreement is 
found. Specifically, Li et al. (1978) and Neel and Rothman (1978) are better 
able to estimate the expected time to extinction of a mutant allele and mutation 
rate by assuming that the number of copies produced by a mutant allele is 
distributed according to a geometric distribution. A consequence of this assump- 
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tion is that the joint distribution of the allele numbers in a population is of a 
form (Bose-Einstein) substantially different from Ewens’ model, as we will 
show in this paper. However, two restrictive comments are worthwhile: first, 
the joint distribution of all alleles was not obtained empirically for the simulation; 
and second, the simulation may, in fact, not be in better agreement with reality 
than Ewens’ model. A clearer distinction will hopefully be possible when 
more empirical data become available. Nonetheless, this result does indicate 
that certain population structures cannot be adequately described by Ewens’ 
sampling formula. 

Another difficulty in interpreting Ewens’ sampling formula was revealed by 
Gillespie (1977). He developed a model of selection in a random environment 
that yields Ewens’ sampling formula. Hence, the null hypothesis for Ewens’ 
sampling formula is apparently not neutrality, but neutrality plus some types 
of selection. Examining Gillespie’s selection model in more detail, we discovered 
that his model and Ewens’ model do share one assumption: the random variables 
(numbers in allele categories) are finitely exchangeable; i.e., the joint mass 
function of the allele numbers is invariant to permutations of the allele labels. 
.?\s Kingman (1978b) has pointed out, Ewens’ sampling formula (as well as 
a wide range of other possible sampling formulas we will develop in this paper) 
assumes exchangeability. Moreover, Watterson (1977) developed a model of 
symmetric overdominance that yields a sampling distribution different from 
Ewens’ formula, but nevertheless with the property of finite exchangeabilit!~. 

Whether or not this confoundment of neutrality with exchangeability is a 
critical problem when applied to real populations remains to be seen. It is 
certainly natural to assume that all neutral alleles must have the statistical 
property of exchangeability; in fact, exchangeability can be regarded as the 
very essence of neutrality. But as Gillespie’s and Watterson’s work demon- 
strates, the set of neutral alleles is only a subset of the exchangeable alleles. 
However, it is doubtful that selection will often result in the degree of svmmetrl- 
Gillespie (1977) and Watterson (1977) assumed, and consequently the number 
of selected systems that have allele exchangeability in real populations is probably 
quite small. Hence, we will develop in this paper a general sampling theory 
for neutral alleles under the assumption that exchangeability is an appropriate 
statistical analog to neutrality. In any event, this theory will be valid for neutral 
alleles since exchangeability is a fundamental property of neutrality. 

2. GENERAL MODEL 

We first provide a class of models for the selectively neutral hypothesis. 
This general class of models is obtained by noting that in a population of size 
2A’ with K alleles, K = 1, 2,..., 21V, the joint mass function of the allele 
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frequencies must be finitely exchangeable under neutrality. That is, for each K, 

P(f(Al) = fll ,.-a, f(4) = n, I K 2W 
= PCf(AL1) = n, ,...) f&A = Q I K 2W 

where the alleles are labeled A, , . . . . A,, f(AJ is the number of copies of Ai 
in the population, and L, ,..., L, is any permutation of the indices (1,2,..., K). 
The class of joint probability mass functions for finitely exchangeable random 
variables has been characterized by deFinetti (1931) to be mixtures of hyper- 
geometries. This may be written 

P(f(A,) = 121 I..., f(4 =4K,.JN) 

where the sum is over all vectors (Tr ,..., TK) 3 (nr ,..., Q) and C Tj = S. 
Here g(T5;..., TK) is a joint probability mass function, and (2.1) holds for all 
TZ, > l,‘&,lnk =2N. 

Although Eq. (2.1) is the most general form of a model for the selectively 
neutral hypothesis, we here restrict attention to a subset of models. The particular 
subset that we choose is sufficiently general so as to provide adequate approxima- 
tions to most models contained in (2.1). Furthermore we obtain Ewens’ model 
as a limiting case within this subset. 

The particular subset of interest is found first by choosing g as a mixture 
of a multinomial (S; p, ,..., pK) and an exchangeable Dirichlet. This is a special 
case of a model proposed for population structure in Rothman et al. (1974). It is, 

P(n, ,.*.1 

(202) 

where ni > 0 and ce, ?zi = 2N, and A > 0 is a parameter. (In this paper 
(i) means J’(o~ + l)/[r@ + 1) r(a - p + l)] where r(.) is the gamma function.) 
As already mentioned, Kingman (1977, 1978b) and Watterson (1976) have 
shown that Ewens’ sampling formula is a particular limit of (2.2). In the next 
two sections we study the properties of (2.2) and then turn to applications 
and discussion in the remaining section. 

3. GENESIS AND SOME SPECIAL CASES 

In the previous section, we argued that the property of exchangeability 
alone may require that the sampling formula of neutral alleles be of the form 
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(2.2). In this section we present another derivation of (2.2) that will provide 
more insight into the underlying population genetic assumptions. Moreover, 
we will examine three special cases of (2.2), one of which is the Ewens sampling 
formula. 

Many of the classical single-deme population models assume that the progeny 
distribution is Poisson (Karlin and McGregor, 1968). So, the marginal distribu- 
tion (i.e., not conditioned upon population size or other allele numbers) of 
the number of copies of a neutral allele at any point in time given the numbers 
in the previous generation is also Poisson distributed with a parameter depending 
upon the number of copies in the previous generation. Since the time of origin 
of a neutral allele is unknown, the progeny distribution itself may not be Poisson 
(Kojima and Kelleher, 1962), the population may be genetically subdivided 
(Rothman et aE., 1974), and the validity of the assumption of a constant Poisson 
mean may not be reasonable through time (Templeton, 1977) or space (Karlin, 
1969), it is very difficult to decide exactly what marginal distribution would 
be most appropriate for “real” populations. Therefore, we will generate a 
robust family of possible marginal distributions by regarding the Poisson 
parameter as a random variable. For convenience, suppose the Poisson mean, X, 
has a gamma distribution such that E(h) = x and ITar -= %/A. Mixing this 
gamma distribution with the Poisson implies the nj’s are marginally independent 
negative binomials; 

P(nj = k) = (” Afyy ‘)($-J(J$-J~ i = 1,2 )..., (3.1) 
L c 

where A (as will soon be evident) is the same A parameter appearing in (2.2). 
The parameter 1 will not appear in any of our final results since the number 
of alleles, K, in our finite sample of size 2N is a sufficient statistic. The formula- 
tion given by (3.1) now allows us to interpret A as a mixing parameter that 
defines the degree of variability present in the underlying Poissons. As 4 gets 
smaller, the amount of heterogeneity in the Poisson parameters increases. 

From the assumption that the joint distribution of n, , i = 1,2,..., are 
independently distributed according to (3.1), we can derive the distribution 
conditional on the sample size of 2N genes yielding K alleles such that IZ~ >, 0 
for all i to be 

As is evident, (3.2) is identical to (2.2) but with this derivation it is clear that 
the 4 parameter defines the underlying marginal distribution of the number 
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of copies of a neutral allele. We now examine three special cases of (3.2), two 
of which represent extreme values of the ,4 parameter (A -+ 0 and A -+ co) 
and one an intermediate A value (A = 1). 

Consider first the case A -+ 0. One can take the limit of (3.2) directly, but 
instead we return to (3.1). Taking the limit of the negative binomial as A -+ 0 
with the condition that ni > 0, we get that the tli’s have log series distributions 
(Fisher et al., 1943; Watterson, 1974): 

P(n, = j) = 
Bj 

j[ -ln( 1 - 6)] ’ 
j = 1, 2,... . 

Then the distribution of EL, ni is 

PK! ; s$) ) 
= 

(2N)! ’ 

where S&’ is a Stirling number of the first kind (cf. Abramowitz and Stegun, 
1965). From (3.3) and (3.4) we obtain 

P(n, ,..., ’ 
(2N)! 

nK 1 KY ZN) == jg / s;gJ , ’ fj % -l. 
( 1 

This is Ewens’ (1972) model which arose as a result of both a diffusion approxi- 
mation to a Markov chain and a combinatorial argument made precise in the 
accompanying paper by Karlin and McGregor (1972). This allelic distribution 
implies that the most likely assemblage involves many alleles at low frequency 
and a few at high frequency. 

The next case we consider is A = 1. Substituting A = 1 directly into (3.1) 
or (3.2) and noting that 

g (-l)K-’ (T)(j + ;;- 1) = (‘,“I;) (3.6) 

we obtain the Bose-Einstein allocation: 

An alternative derivation to (3.7) using a Galton-Watson branching process 
reveals more clearly our interest in this special case. First, assume the number 
of copies produced by an allele in a single generation has a geometric distribution, 
a special case of the negative binomial. (Recall that there is evidence for this 
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being the distribution for the simulated Indian population of Li et al., 1978.) 
Then, 

P(j copies) = 6cj-l, j = I, 2,..., 

P(0 copies) = 1 - A, 
(3.8) 

whereO<b<l-ccl. 
The number of copies in a Galton-Watson branching process at the tth 

generation is also geometric; 

P(j copies at t) = B, C:-l, 

P(0 copies at t) = 1 - * 
t 

111 F 1 

m = 1, 

??ZFl 

rn = 1 ) 

b s J--b--c 
cl c(1 - c) 

and m=(I-- 

j :-- 1, 2 )... 

t = 1) 2,..., 

Conditioning on K, 2N, and ni > 0 for all i yields (3.7) the Bose-Einstein 
distribution. Hence, the Bose-Einstein result may be more appropriate than 
Ewens’ formula when applied to populations with a structure like the simulated 
Indian population. Note that in constrast to the log series (Ewens’) model, 
the Bose-Einstein allocation places equal weight on all permutations. 

The last special case we consider is the limit A -+ co; that is, as (3.1) con- 
verges to a Poisson with no heterogeneity in its parameter. We may either 
take the limit of 3.2 as A --+ cc or simply start with the nits being uncondi- 
tionally independent Poissons. Conditioning first on & 7zi = 2N results in a 
multinomial distribution. Then conditioning on n, > 0 for all i, we have 

P(n, (2N)! 
. . . ndK 2N) = g-gtz.-&y 

2N z* 
(3.9) 

where ,8’;5) is a Stirling number of the second kind (Abramowitz and Stegun, 
1965). The distribution described by (3.9) is called the Maxwell-Boltzman 
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allocation. Under this allocation, the most likely configurations are such that 
all ni are approximately equal. 

The relations between the three sampling models (3.5), (3.7), and (3.9) are 
now evident. For Ewens’ formula, the marginal probability density function 
of n, is assumed to be log series, for Bose-Einstein it is geometric, and for 
Maxwell-Boltzman it is Poisson. All of these can be viewed as special cases 
or limits of the assumption that the ni are independent negative binomials. 
IMoreover, the ordering (3.5), (3.7), and (3.9) corresponds to decreasing 
heterogeneity in the parameters of the Poissons underlying the negative 
binomials. 

4. THE FREQUENCY SPECTRUM 

Let G(i), i = 1, 2 ,..., denote the number of alleles with i copies in the popula- 
tion. In this section we investigate the properties of these G(i) with a view 
toward furthering our understanding of the models developed in Section 3. 

First, in the general case where ni are independent negative binomials we 
obtain 

P(G(l), G(2) ,..., ( K, 2N) = p 
(4.1) 

where C G(i) = K and C iG(i) = 2ZV. 
For the three special cases considered in Section 3, we have from (4.1) 

Maxwell-Boltzman: 

P(G(l), G(2),..., I K, 2N) = K’(TG;)$)! . n [ (i 1 1), ]“*‘; (4.2) 

Bose-Einstein: 

P(G(l), G(2) ,..., / K, 2N) = & . 
’ ($,‘, 

; 

Ewens: 

(2N)! 
W(l), Wh-v I K, W = / s;g, / -&(q 

n (+)GY (4.4) 

All mass functions are defined for G(i) > 0, z G(i) = K, and C iG(i) = 2N. 
Suppose now that n1 ,..., nK are finitely exchangeable. Then, if a random sample 
is made, 

P(n, =F: i 1 C) = G(i)/K. 
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Thus, the marginal distribution of rzl is 

P(n, = i) = E(G(i)/K) 

with the expectation operator taken over the distribution of the G’s Hence, 
these expectations characterize the frequency spectrum of neutral alleles. 

Consider now the expected proportions of alleles with i copies given A- 
and K. These expectations are 

iliaxwell-Boltzman: 

Bose-Einstein: 

/2N-i- 11 

(4.5) 

(4.6) 

Ewens: 

Taking the limit of (4.5), (4.6), and (4.7) as N + 00 but with K/2N converging 
to a constant yO , we have 

Maxwell-Boltzman: 

Bose-Einstein: 

x -- ’ - Yo ; 
YO 

(4.8) 

E(q/K,2N)+r,(l --yo)‘-‘; (4.9) 

Ewens: 

E (9 1 K, 2N) + i&;l ro), , i = 1, 2 ,... . (4.10) 

Hence, the three models yield the truncated Poisson, geometric, and log series 
frequency spectra respectively, as expected from Section 3. 

The above frequency spectra all assume K/2N -+ ‘y. , a constant, as N --+ as. 
However, Kimura and Crow (1964) h ave shown that, under neutrality, the 
number of alleles in a finite population is a random variable, given 2N. Con- 
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sequently, under neutral theory, K/ZN may well converge to a random variable, 
given 2N, rather than a constant. Assume that Kj2N converges in law to a 
random variable y with distribution F(y). With this assumption, Hill (1970) 
has shown that as N---f co, the Bose-Einstein result yields 

E(TjK,2N)+[y(l -y)i-l&‘(y). (4.11) 

When F(y) = y (actually, only the behavior of F(y) near y = 0 must be of 
this form for large i, cf. Hill and Woodroofe, (1975)), we obtain Yules law 
(Yule, 1924): 

E(qiK,2N)7&, i= 1,2,.... 

More generally, if y has a Beta(or, /3) distribution, then 

(4.12) 

(4.13) 

Corresponding results can be achieved for the Maxwell-Boltzman and Ewens 
cases. It is also interesting to note that the log series frequency spectrum 
associated with Ewens’ model as N -+ co and K/2N -+ y,, can also result 
from the Maxwell-Boltzman case (Hill, 1970) by choosing 

W) = I", Inc]-l, 
Y<E O<E<l. 
Y>E 

In addition to the case in which K12N converges in law to a random variable, 
we also consider the case in which K cc In N for Ewens’ model. This case 
is of interest because under neutrality (Ewens, 1969) 

E(K) = 2NpWJ, (4.15) 

where p is the mutation rate and E(t,) is the mean time to extinction for a 
neutral mutant. As N gets large (such that 4Np = e), most neutral mutants 
are lost and E(t,) N 2 In N (Ewens, 1969). Hence, as N -+ CO, p + 0, and 
4Np + 0, we expect (Kimura and Ohta, 1969; Nei, 1977) 

E(K) 1( 6 In 2N. 

In this case, using the asymptotic expansion for Stirling numbers of the first 
kind given by Moser and Wyman (1958), we can show that, for Ewens’ model, 

E(G(i) j K, 2N) 3 O/i 
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with 0 the solution of K = e/e + e/(0 + 1) + ... + e/(0 + 2N - 1). Further- 
more, the rth factorial moment converges to 

Our final result in this regard is that the covariance between G(i) and G(j), 
i -f j, converges to zero. Thus, the G(i) will behave approximately like inde- 
pendent Poisson random variables with mean (and hence variance) e/i. 

One implication of these results is that for those cases with K/2N converging 
in probability to y0 , a constant, the variance of G(i)/K converges to zero; 
hence, a good fit to data of one of the marginal frequency spectra ((4.8), (4.9) 
or (4.10)) may be anticipated. On the other hand, where K a In N as N + co, 
or when K/2N converges in law to a random variable y with positive variance 
(the most likely outcomes under current neutral theory), the behavior of G(i), 
i small, will seem quite erratic and a good fit of one of the marginal frequency 
spectra should not be anticipated, even if the “correct” underlying model is 
chosen. 

Thus, depending upon the underlying model, the type of convergence of 
K/2N and, in the log series case, on the relative magnitudes of K and N, a 
wide variety of allelic abundances curves may be expected. These curves 
may be proportional to O/i; or P/i or l/i, etc. 

5. APPLICATIONS AND DISCUSSION 

An application of the results of Section 4 is found in Fig. 1 by using the 
Colius meadii data of Johnson (1977b) on the frequency spectrum of 103 
electrophoretic variants (using the gel seiving technique). The expected 
frequencies under the truncated Poisson, geometric, and log series models 
were obtained by using the maximum likelihood estimate of y,, in Eqs. (4.8), 
(4.9) and (4.10). In addition, Yule’s law (4.12) was used, but in that case no 
parameter needs to be estimated. As can be seen from Fig. 1, Ewens’ log series 
model and Yule’s law fit the data about equally well as both gave roughly 
equal, nonsignificant (at the 5 o/o level) goodness-of-fit chi-squares. However, 
the Poisson and geometric distributions fit the data very poorly. From this 
observation, it might be tempting to conclude that Ewens’ model is appropriate, 
while the Maxwell-Boltzman and Bose-Einstein models are not. However, 
recall that Yule’s law arose under very general conditions from the Bose- 
Einstein allocations. Moreover, the log-series spectrum also results from the 
Maxwell-Boltzman allocation when (4.14) holds. This illustrates the difficulty 
of trying to infer which underlying model is “correct” from the frequency 
spectrum; the wide variety of possible spectra makes such an inference virtually 
impossible to make. 
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FIG. 1. Frequency distribution of variants detected by gel sieving as reported in 
Johnson (1977). The histogram tabulates, for a sample of 14 loci examined in 20 indi- 
viduals, the number of observations in each frequency class. A truncated Poisson, 
geometric, and log series distributions were then fitted to the data using maximum 
likelihood estimates of the parameters. A Yule’s law distribution is also graphed, but 
in that case no parameter need be estimated. 

As mentioned in the Introduction, a possible application of Bose-Einstein 
statistics may be found in the simulation results of Li et al. (1978) of an American 
Indian population. The motivation for this application came not from a frequency 
spectrum, but rather from the observation that the number of copies produced 
by certain mutant alleles had a geometric distribution, a condition which we 
showed in Section 3 will lead to the Bose-Einstein allocation. Assuming the 
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Bose-Einstein model is appropriate for that simulated population, we can 
obtain an estimate of the expected time to extinction for neutral alleles. First, 
assume the singleton class (the class of alleles at a locus with only one copy in 
the population) is at equilibrium. Then, the expected number of copies entering 
this class represents a balance between new mutants and older ones that by 
chance enter the singleton class. Thus, given the number of alleles K and 
the mutation rate CL, then 

G(i) q+ x PilET= 
if1 

E q (1 - P,,), 

where Pi, = the probability that an allele with i copies in a given generation 
will yield one copy in the next generation. Now, assuming rare variants produce 
a geometric number of copies (i.e., with probability mass function bci--l, 
i = 1,2,...) and independence, then 

Finally, using the results of Section 4 that Bose-Einstein allocation under 
very general conditions yields Yule’s law, 

Using an estimate of b = 0.1768 obtained from the simulation of Li et al. 
(1978) and using the relationship between E(t,) and K/2N implied by (4.13, 
we obtain the estimate 

E(t,) N 3. 

This may be compared with the result of 2.82 using a more direct approach 
in Li et al. (1978). Th us, the assumption of Bose-Einstein allocation for this 
simulated population seems to work quite well. 

The motivation for Ewens’ model was to test the null hypothesis of neutrality. 
In this context, Ewens (1972) suggested that the information function 

I3 = -f xi In Xi 
i=l 

where xi = nJ2N could serve both as an index of neutrality and also as a 
test statistic for the hypothesis of neutrality. Ewens (1977) noted that this test 
(and others such as the “heterozygosity measure” H = x:, xi(l - xi)) would 
be too large under the null hypothesis of neutrality if heterosis were present 
(and we may add any other type of selection causing the allele distribution 
to be too even such as frequency-dependent selection favoring minority 
genotypes) and would be too small if there was selection for one allele and 
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against others. However, as mentioned in Section 3, the eveness of the allele 
frequency distribution increases as the parameter A increases. Hence, as 4 
increases, the expected values of both B and H (and related measures depending 
upon the eveness of the distribution) also would increase. Consequently, a 
large value of B or H does not necessarily imply selection, but could be inter- 
preted as meaning that a value of A greater than zero is more appropriate 
for describing the population. This means that Ewens’ test statistic and similar 
measures cannot be used to test for the presence of heterosis, frequency- 
dependent selection, certain types of stochastic selection (e.g., Gillespie (1977)), 
and other types of selection tending to yield polymorphic states. Ewens (1979) 
has recently derived a test of “generalized neutrality” for distinguishing 
neutrality plus directional selection from selection tending to maintain a 
polymorphic state. However, in view of the discussion above, this test is also 
confounded with the A parameter, making it difficult to assign a particular 
biological significance to a large test value. However, because Ewens’ model 
does represent an extreme value of the A parameter (A -+ 0), very small values 
of his original test statistic and similar statistics would be unlikely under any 
of the neutral models considered in this paper. Hence, Ewens’ statistic and 
similar measures can be used as a one-sided test of directional selection versus 
neutrality plus selection tending to maintain polymorphisms. Unfortunately, this 
contrast is not interesting with respect to the neutralist/selectionist controversy. 

A specific test of neutrality versus heterosis was suggested by Watterson 
(1977). Watterson obtained the sampling distribution under the assumption 
that all homozygotes have a relative fitness of 1 and all heterozygotes a fitness 
of 1 + S, with all other assumptions being essentially like those of Ewens 
(1972). On the basis of the Neyman-Pearson lemma that the most powerful 
test is based on the likelihood ratio, Watterson concluded that the most 

F? 
owerful 

test will be based upon the sample homozygosity statistic P = ‘& xi2 for 
testing H,,: s = 0 versus HI: s = sr . However, this conclusion depends upon 
the assumption that Ewens’ model adequately describes Ho . If the null sampling 
distribution is of the form (2.2), F va ues 1 will tend to be depressed relative 
to the expectation under Ewens’ model if A > 0, thus mimicking heterosis 
(S > 0) in Watterson’s model. For example, the ratio of (2.2) with A == 1 over 
A + 0 (the ratio of Bose-Einstein to Ewens’ model) is, for K CC In IV, 

(In 2N)K-1 fi ni 
i=l 

2N * 
( 1 K 

If the ai have a distribution that is fairly even (as measured by a low F), this 
ratio could be greater than one. Hence, a significantly low F could be inter- 
preted as either being due to heterosis or A > 0. Indeed, the richness of the 
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family of models defined by (2.2) and indexed by the parameter A indicates 
that a member of this family, given the data, will produce a satisfactory likelihood 
ratio when compared with a model for heterosis (S > 0) or any other type 
of selection model resulting in an allele distribution too even for Ewens’ model. 
Hence, it is best to restrict Watterson’s F statistics to a test of H,,: s > 0 versus 
H,: s < 0 rather than H,,: s = 0 versus H,: s # 0. 

As the above discussion illustrates, it is very difficult to construct a statistic 
based upon cross-sectional data that actually tests the null hypothesis of 
neutrality. Many types of selection, and in particular selection that tends to 
maintain allelic diversity, the primary focus of the neutralist-selectionist 
debate, are confounded with the A parameter; that is, with the ecological, 
geographical, and population structural constraints that also influence the allelic 
distribution. In view of the importance the rZ parameter plays in defining 
the sampling model, we end this paper with a conjecture which we hope to 
investigate in a subsequent paper. If the usual chi-square goodness-of-fit 
test for equal frequencies is less than the appropriate degrees of freedom, the 
maximum likelihood estimator of il is infinity. When the chi-square is large 

(how large must be determined), the maximum likelihood estimator of --I 
will be 0. Finally, in the intermediate case, the likelihood function will have 
a single mode, but will be quite flat, indicating that any choice of -4, in particular 

-4 = 1, is appropriate. 
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