ANNALS OF PHYSICS 128, 491-500 (1980)

Note on the Fried-Yennie Gauge*
Yukio ToMOZAWA

Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109
Received July 27, 1979

1t is pointed out that'the renormalization constants and the finite parts of the self energy
and the vertex corrections in the infrared-free Fried—Yennic gauge are different, by finite
amounts, from those which are computed as the limit of the general covariant gauge.
This discrepancy occurs because of the appearance of an infrared divergence in the on-
mass-shell renormalization. This note provides an example where extra caution is needed
in handling the limiting procedure, where an infrared divergence is involved.

I. INTRODUCTION

Renormalization in quantum electrodynamics in general introduces infrared
divergences due to an expansion on the mass shell. While gauge invariance guarantees
the cancellation of such divergences in the computation of observable quantities,
individual diagrams are subjected to this complication and must be treated with some
care. An exceptional case is the Fried-Yennie (FY) gauge [1] in which infrared diver-
gences do not appeart even for individual diagrams.

The photon prb_pégator in the FY gauge is expressed as

k. k
k2

Du(k) = 75 (B + 25052), (1.1)

which is a special case of the propagator in the general covariant gauge

k.k,
12

DL = T (B + 6252 (1.2)
where a nondimensional constant ¢ is the gauge parameter. In this article, it is shown
that, although £ = 2 is not a singular point of Eq. (1.2), special care is needed when
the results of the FY gauge and the general covariant gauge are compared. Some
complication stems from the interplay of the infrared divergence and the one-mass-
shell expansion. Tn Section 11, the renormalization of the self energy in lowest order
in o is discussed. ‘A similar problem is considered for the vertex diagram in Section I1I.
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q

Fic. 1. The lowest-order radiative correction: (a) self energy, (b) vertex correction.

11. Tae SELF ENERGY

The self energy in lowest order, shown in Fig. la, is expressed as

— "‘ieg 1 Suv gkukv
ﬂm—-@ﬂubwﬂp*ky+m—k74kt+ﬂ—k'*@L+M—4&)
N d*k
= Z(p) + £X(p), 2.1)

where dimensional regularization [2] is used, u is an undefined quantity of the dimen-
sion of mass and A is the photon mass. Whenever ““harmless,” the limits & — 2 and
A — 0 are understood. Using the Feynman parameterization and the integrals in the
Appendix, we obtain
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<l 41{];2 )" F(iw(_z)w) 2i(1 — o)1 — X yp — 20m]]  (22)

and
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FRIED-YENNIE GAUGE

where
Him? = px(1 — x) + x* + v(1 — x)
and
p2 + m2
p="—, v = A2/m?

Noting the formulae

(—IL)M “1- Q2w

H
T ) + 0@ —
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and

I'Q2— w) =

+ $(1) + 02 — w),

2—w
the coefficients in the expansion
Z9(p) = A; + Bliyp + m) + CGiyp + mpt,  i=1,2
can be calculated [3]
am
Ay = y= (3D + 9,

B1=%(D+4+2lnv),

€= 2 [%(11,0 - (21:?)) Inp)

+ (—iyp + m) (—4+3P +4“4P-lenp——lnv)]

pm 2(1 —p) 2(1 — p)®

and

A, =0,

B, :Zaﬂ_—(D—-lnv),

C = o [lilp + (5 i,o + (1—pp)2)“"’

e = "TR | &
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493

2.4)

2.5

(2.6)

@7

(2.8)

29

(2.10)



494 YUKIO TOMOZAWA

where
H() = —y = —0.57721...

and

4'n'y,

D =

5= (2.11)

represents the ultraviolet divergent term in the renormalization constants. The fact
that 4, = 0 can be seen from the identity

1 4k
s l]i w l . l d Wi
_lfk4 d2k+if(zyp—}—m)i( T T
. 1 d2k
— —i(iyp + m) f S O 2.12)

A few comments are in order. First, we notice that the infrared divergences in
Egs. (2.9) and (2.10) are introduced by the on-mass-shell expansion, Eq. (2.8). In
fact, they can be rewritten as

2U(py = —={m(3D + 4) -F (iyp + m)(D + 2)

2
I—p

+p(iyp+m)[llp+( +(1£p)2)lnpg

+pm§—11p+(1_2_p—(]fp)2)1npg] 2.13)

and

£0(p) = = [yp + m)D +2)

2
I—p

+p(iyp+m)§lip+( +

a —Pp)z)lnpg

+(11p ‘}‘(li)p)g)lnp”, (2.14)

_mgl
pm T

which are free of infrared divergences. However, they cannot be expanded in powers
of (iyp 4+ m) because of singularities at p = 0, unless a photon mass is introduced.
The logarithmic singularities in p in Eqs. (2.13) and (2.14) are intimately related to the
infrared divergence, In v terms in Eqgs. (2.9) and (2.10).

An inspection of Egs. (2.9) and (2.10) reveals further singularities at p = 0 in the
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expressions for C; and C,, but they are due to the limit taken in the evaluation of the
integrals. For example, the computation of C, involves the integral

11 X s
I(P)ZEL (Px(l_x)+x2+y(1—x) XAl —x)

) dx, (2.15)

which is regular at p = 0 as long as v # 0. If, however, we are interested in evaluating
I(p) for p # 0, the infrared parameter v in the first term of the integrand can be set
equal to zero, leading to

1p —1I i
I(p):;[l plnp+§lnv], p 0. (2.16)

This is the source of the apparent singularities in C, (and likewise in C,).

Finally we can easily see that the infrared singularities disappear in the renormaliza-
tion expansion in the full self energy for £ = 2. In other words B; + 2B, and C; + 2C,
are free of infrared divergence (the FY gauge).

From Egs. (2.9) and (2.10) or Egs. (2.13) and (2.14) it follows that

Doy =20 L 2F®

— o [BD + 4y m + 3Dyp -+ m)

L (z‘yp’:m)2 % 3:':1) (5 1p + 52 ln p)ﬂ , @.17)
where the identity
pm = 2iyp + m) — (iyp + m)*/m (2.18)
is used. Defining
Zpy = Ary -+ Bey(iyp + m) + Cey(ipy + m), (2.19)

we have

am
Apy = e (3D + 4),

Bpy = % 3D,

_3ayp 1 P
CFY*47Tm2(1—~p * (1~p)2lnp)~
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Note that
Bey = B, + 2B, — 5,
(2.21)
Cry = Cy + 2G5 -+ = (iyp + m)™!
and

lim Cpy is finite.
typ+m=0

Of course, the equality 2py = 2W 4 23®
Bey + (iyp + m) Cpy = (B, -+ 2By) + (iyp + m)(C, + 2Cy) (2.22)

is maintained. As is clear by now, the discrepancy, Eq. (2.21), is due to the limiting
procedure involving the infrared divergence and the one-mass-shell expansion in the
renormalization scheme. In fact, the source of the discrepancy is twofold. In order to
see this point more clearly, we consider an integral in the FY gauge which is a
difference of two infrared divergent terms

1) = fo " K(x, v) dx, (2.23)
where
Ko = =3~ G AT ~ @ i @2
Clearly
K(x,0) =0 (2.25)
while [3]
1) = 1 — m /4 + O(). (2.26)

The integral I(v) which appears in the FY gauge should be set equal to zero. On the
other hand, I(v), which appears in the limit £ — 2, contributes a finite term.

Another source of discrepancy is the 1/p singularity in C, + 2C, (see Egs. (2.9) and
(2.10) which, without the infrared singularities, becomes a real singularity: From the
identity :

. i 1. . j
(ivp + o = 5 iyp - m) + (iyp -+ mp o @27

it follows that the first term on the r.h.s. of Eq. (2.27) should be included in the renor-
malization constant Bgy .
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Incidentally, it should be noted that the expression for the self energy is remarkably

simpler in the FY gauge than in any other gauge.

II1. THE VERTEX CORRECTION

The lowest-order vertex correction, depicted in Fig. Ib, is expressed as

L(p'.p) =ie Jm—df—z—)@:

1 1
X (y" iv(p' — q) 4+ m — ie Va iv(p—q) +m—ie y")

SKV quqV
X (q2 + A2 — e T (g2 + A — ie)z)

= I'p,p) + L2, p),

where

VI NY
I, (p',p) = (27.,)4 (27,.,1,)2@ ~%) Jd qf 2 dxf dy( TRy

with

F=mx* + p(l — x)(x — ») + p'y(1 — ) + 1p(x — p) + (1 — x)},

P* -+ m? , prm? k2 x

=3 = - K = V=
P mé P m: m?’ mé

and

1 1 z 601 —x)
2} — .
P22 = o g | 4, 4 [ R

The numerators in the integrands N” are
N = y—iy(p' — g — px + ky) + m) y{~iy(p — g — px -+ ky) +m)y,
and

NE = (g + px — ky)X(—ix(p' — g — px + ky) + m)
X yu(—iy(p — q — px + ky) + m) y(q + px — kp).
Expanding

r'o(p',p) = L%, + A, p), i=1,2,

595{128/2-17

(3.1)

3.2)

(3.3)
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we obtain
l-ez 1 1 x
L& = (2m)t Qmu)He-2 f dzwqf 2 dxf dy
(3 = 2) ¢ + 4l — x — bx)
TP , (3.10)
where
F = m¥x® 4+ v(1 — x))
and
—ie? 61 —x)
L® = Gy Gapye® Gy & qf dxf YT F)4
X [(g2? — m*q?(1 — 6x + 3x%) + m%*Q2 — x)*]. 3.11)

In obtaining (3.10) and (3.11), we use p, = p,,, k, = 0 and the mass shell condition

(fyp + myu(p) =0,  #@(p)iyvp +m) =0,
and (3.12)
i#(p) pu(p) = im i(p) y,u(p).

The integrals in the Appendix enable us to calculate L9, giving
3
m > 2w —
L y= %w (1 + 2(w 2))

<[ Y x [t—@-wn (’"2()62 jﬂ‘:j = %) )| @)

._lexx‘;(lx:_:zzl(l_/zi)xz)g — D4t (D)

and
L® :% {w(w +1) f:dxx(l — Xx)

x[1—@—w)m( mix" ’Zﬂ”lfj =) 1@~ w)

L 1= —6x 43Dt 31— )2 — 2
_2f dx x4+ (1l — x) +fd (xz—l-u(l—x))2

=2 (D —Iny). (3.14)
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Comparing these with the results of the previous section, we recognize that the Ward
identities

L% = B, i=1,2, (3.15)

are satisfied.

For the FY gauge, it is not enough to consider the special limit, such as Eq. (2.26),
in the expression of LY + 2L®_ As was discussed at the end of the preceding section,
we have to consider the whole expression for I'\” + 2I'™®, in order to decide the
renormalization constant Lgy . Instead we use the Ward identity to coinclude that

Lyy = Bpy = (3a/4m) D. (3.16)

This relationship was used in simplifying the calculation of radiative corrections to
positronium decay [4] in the FY gauge. Although the final result for the decay rate is
the same for any gauge, the individual diagram contribution is gauge dependent and
in particular, different for the case where the limit h'mmwo lim,_, is taken and the FY
gauge where m, = 0 and { = 2 is assumed from the beginning. A nice feature of the
FY gauge is the complete cancellation between the Coulomb subtracted term for the
binding diagram and the term due to an iteration of the Bethe-Salpeter equation for
the zeroth-order diagram because of the absence of infrared divergence. As explained
in Ref. [4], this presents the clearest discussion of the binding diagram of the posi-
tronium decay calculation.

APPENDIX: ForRMULAE USED IN THE TEXT
{yus v =20,
Yu¥u = 2w
YYu¥e = —2w — 1)y,
VYVuYe = 48, + 2w — 2) vyy,

ViVaVuVe¥y = —27,7uva — 2w — 2) vay.y,

>k imeHo (0 — w)
(k*+ H)e I'(o)
ke d*k s in*Ho 1 (a — w — 1)
(kK + Hy ™ 2T ()
J‘ Bd*k  imeoH (0 — o — 1)
k*+ Hy ()

kid*k  imvo(w + 1) Hoo 2 (« — w — 2)
(k* + Hy» (o)
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1 x 1 /2
Lmdx—ﬁilﬂVﬁ-T%—O(ﬂ

L x3 1 1 3mpl/2
L (% + (1 — x))? dx = _§_§IHV+T+ o)
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