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It is pointed out ihat’the renormalization constants and the finite parts of the self energy 
and the vertex corrections in the infrared-free Fried-Yennie gauge are different, by finite 
amounts, from those which are computed as the limit of the general covariant gauge. 
This discrepancy occurs because of the appearance of an infrared divergence in the on- 
mass-shell renormalization. This note provides an example where extra caution is needed 
in handling the limiting procedure, where an infrared divergence is involved. 

I. INTRODUCTION 

Renormalization in quantum electrodynamics in general introduces infrared 
divergences due to an expansion on the mass shell. While gauge invariance guarantees 
the cancellation of such divergences in the computation of observable quantities, 
individual diagrams are subjected to this complication and must be treated with some 
care. An exceptional case is the Fried-Yennie (FY) gauge [l] in which infrared diver- 
gences do not appear even for individual diagrams. 

The photon propagator in the FY gauge is expressed as 

which is a special case of the propagator in the general covariant gauge 

U-1) 

where a nondimensional constant .$ is the gauge parameter. In this article, it is shown 
that, although 5 = 2 is not a singular point of Eq. (1.2), special care is needed when 
the results of the FY gauge and the general covariant gauge are compared. Some 
complication stems from the interplay of the infrared divergence and the one-mass- 
shell expansion. In Section II, the renormalization of the self energy in lowest order 
in 01 is discussed. ‘A similar problem is considered for the vertex diagram in Section III. 
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FIG. 1. The lowest-order radiative correction: (a) self energy, (b) vertex correction. 

II. THE SELF ENERGY 

The self energy in lowest order, shown in Fig. la, is expressed as 

s 
1 6 

yu 
&k,k 

iy(p - k) + m - it ?” k2 + il - jE + (k2 + A2 - i42 ( > 

x (2*$2u-2r 

z D’(p) + &z(2)(p), (2.1) 

where dimensional regularization [2] is used, ,u is an undefined quantity of the dimen- 
sion of mass and h is the photon mass. Whenever “harmless,” the limits w  -+ 2 and 
;\ -+ 0 are understood. Using the Feynman parameterization and the integrals in the 
Appendix, we obtain 

S’(p) = - & o1 dx(1 - x) 
s 

x rki$, w-2 q2- w) 
Fc2j DV - 40 - 4 ‘YP - 2wml] (2.2) 

and 

,w(p) = - & o1 dX(1 - XI 
s 

x [; (+J’ F(2 - w){[2(1 - x) - 2w(l + x)]iyp - 2wm) 

p-3 

- (47$y-2 [iyp(l - x) - m] p2x2 1 
, (2.3) 
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where 

and 

Noting the formulae 

H/m2 = px(1 - x) + x2 + v(1 - 

p=P2tm2 
7’ v = h2/m2. 

xl 

H (4 4irp2 
w-2 = 1 - (2 - 0) In [&) + O((2 

and 

F(2 - w) = & w + $w) + w - WI, 

the coefficients in the expansion 

D)(p) = Ai + B&p + m) + G(+P + m)2, 

can be calculated [3] 

A, = z (30 + 4), 

By = y$- (D + 4 + 2 In v), 

c,=A! A.-- 
[( 2rrm 2 1 -p 2 - 3p Inp) 

(1 - P) 
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(2.4) 

(2.5) 

+ (--iyp+m) -4+3~ ~~~~~~~~~~~~~~~ 
pm ( 21 - PI w - P)" )I (2.9) 

and 

A, =O, 

B2 = fg (D - ln v), 

(2.7) 

i= 1,2 (2.8) 

c, Z 01 
[ --1 + (* + (1 !y p)2 *n P 4rrm 1 -p ) 

+ -iyp f m 
pm ( -*- 

2 - 2p -I- p2 
0 - PI2 

Inp+ lnv )I , (2.10) 
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where 

and 

#(l) = --y = -0.57721... 

1 
D’2--w + #(I) + In ‘$ (2.11) 

represents the ultraviolet divergent term in the renormalization constants. The fact 
that A, = 0 can be seen from the identity 

s WI jy(p -:) + m (Yk) qg 

(2.12) 

A few comments are in order. First, we notice that the infrared divergences in 
Eqs. (2.9) and (2.10) are introduced by the on-mass-shell expansion, Eq. (2.8). In 
fact, they can be rewritten as 

Z(l)(y) = -& ]m(3D + 4) + (iyp + m)(D + 2) 

(2.13) 

and 

Zc2)(p) = 2 [(~JP + 777W + 2) 

+ PM + 7,771 1 _ p I --L + (& + (1 : # ‘n P 1 I 
1 

---pm 1-p I - + (& + (1 ” p)” lnp ’ ) II (2.14) 

which are free of infrared divergences. However, they cannot be expanded in powers 
of (&I + m) because of singularities at p = 0, unless a photon mass is introduced. 
The logarithmic singularities in p in Eqs. (2.13) and (2.14) are intimately related to the 
infrared divergence, In v terms in Eqs. (2.9) and (2.10). 

An inspection of Eqs. (2.9) and (2.10) reveals further singularities at p = 0 in the 
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expressions for C, and C,, but they are due to the limit taken in the evaluation of the 
integrah. For example, the computation of C, involves the integral 

x I(P) = ; J-o1 ( px(l _ x) + x2 + q - x) - x x”+v(l -x> 1 dxp (2*15) 
which is regular at p = 0 as long as v # 0. If, however, we are interested in evaluating 
1(p) for p # 0, the infrared parameter v in the first term of the integrand can be set 
equal to zero, leading to 

I(p) = a [-f$- In p + i In v] , p z 0. 

This is the source of the apparent singularities in C, (and likewise in C.J. 
Finally we can easily see that the infrared singularities disappear in the renormaliza- 

tion expansion in the full self energy for .$ = 2. In other words Bl + 2B, and C, + 2C, 
are free of infrared divergence (the FY gauge). 

From Eqs. (2.9) and (2.10) or Eqs. (2.13) and (2.14) it follows that 

&y = Z:‘l’ + 2.z(‘) 

= -& [(3D + 4) m + 3D(iyp + m) 

+ (iyp + ml” 3iyp 
I ( 

1 
m - __ + (1 ” p>2 b)l] 3 m 1-P 

(2.17) 

where the identity 

pm = Wyp + 4 - (iyp + m)“/m (2.18) 

is used. Defining 

~FY = AFY + &diyp + m) + C,,(ipy + m)2, 

we have 

AFY = 2 (30 + 41, 

BFy = -& 30, 

(2.19) 
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Note that 

BFY = 4 -I- 2B, - 5, 

(2.21) 

and 

C,, = Cl + 2C, + 5 (iyp + m)-’ 

&$) Gy is finite. 

Of course, the equality J&Y = L’b) + 2B2) 

BFY -I- t&P + m) CFY = (4 + 2B2) i- (iv -I- m)(Cl -l- 2C2) (2.22) 

is maintained. As is clear by now, the discrepancy, Eq. (2.21), is due to the limiting 
procedure involving the infrared divergence and the one-mass-shell expansion in the 
renormalization scheme. In fact, the source of the discrepancy is twofold. In order to 
see this point more clearly, we consider an integral in the FY gauge which is a 
difference of two infrared divergent terms 

where 

z(v) = j-l K(x, v) dx, 
0 

zqx, v) = 2x 
2x3 2VX(l - x) 

x-2 + v(l - x) - (x2 + v( 1 - x))” - (x2 + 41 - 4)” 

Clearly 

while [3] 

K(x, 0) = 0 

Z(v) = 1 - 7rW/4 + O(v). 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

The integral Z(v) which appears in the FY gauge should be set equal to zero. On the 
other hand, Z(v), which appears in the limit 4 + 2, contributes a finite term. 

Another source of discrepancy is the l/p singularity in C, + 2C2 (see Eqs. (2.9) and 
(2.10) which, without the infrared singularities, becomes a real singularity: From the 
identity 

(iyp + m)” & = t (iyp + m) + (iyp + rn)” iy;PJ-2m (2.27) 

it follows that the first term on the r.h.s. of Eq. (2.27) should be included in the renor- 
malization constant BFy . 



FRIED-YTZNNIE GAUGE 497 

Incidentally, it should be noted that the expression for the self energy is remarkably 
simpler in the FY gauge than in any other gauge. 

III. THE VERTEX CORRECTION 

The lowest-order vertex correction, depicted in Fig. lb, is expressed as 

ru(P’, PI = 2 1 (2dz&“2 

( 1 1 
x YK iy(p’ - q) + m - ie 

YU iy(p - q) + m - ie y”) 

( 
6 

X t?ldlY 
q2 + G - iE + (42 + x2 - ic)2 1 (3.1) 

= P’(p’ p) + cy(*)(pt p) II 3 !a 77 (3.2) 

where 

with 

F = m2{x2 i- ~(1 - x)(x - y) + p’y(1 - X) + ~y(x - y) + ~(1 - x)}, (3.4) 

p2 + m2 pf2 + m2 k2 x2 
P= m2 ’ 

p’ zz= 
m2 ’ 

K=Qp’ vz.z---- 
m2 (3.5) 

and 

The numerators in the integrands IV:’ are 

TV:) = yv(-iy(p’ - q - px + ky) + m) y,(--iy(p - q - PX + kv> +m) yv (3.7) 

and 

f@’ = y(q + PX - W(--iy(p’ - q - PX 4 kr) + 4 

x xi--~Y(P - 4 - PX + ku> + 4 yh + PX - W. 

Expanding 

IJyp’, p) = L(i)yw + A$($, p), i = 1,2, 

(3.8) 

(3.9) 
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we obtain 

where 
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X 
-(1 + i&J - 2)) q2 + 4my1 - x - &X”) 

W + F13 7 (3.10) 

F = myx2 + u(l - x)) 

L'2' = ('Jr)4 ($)2+2J /d2-q[d~fd.;;;$ 

x [(q”)2 - m2qy1 - 6X + 3x2) + rn4X2(2 - x)“]. (3.11) 

In obtaining (3.10) and (3.1 I), we use pu = p: , k, = 0 and the mass shell condition 

and 

(@P + 4 U(P) = 0, U(P)(iYP + m) = 0, 

g(p) PAP) = im C(P) YAP). 

(3.12) 

The integrals in the Appendix enable us to calculate L(i), giving 

L'l' = " 4J(1+&-2)) 

x l1 dx x [(l - (2 - o) In ( Fn2(x2 :T:i - x)) )] F(2 - o) 

s 
1 

- dx x 4(1 - x - 0/2) x2) (3.13) 
0 x2 + Y(1 - x) I 

= 2 [D + 4 + 2 In u] 

z,(2) = 2 /u(a + 1) 1’ dx x(1 - x) 
0 

x 1 - (2 - w) In m2(X2 + ‘(l - ““)I 
[ ( Jv2 

T(2 - co) 

- 2 i1 dx 
x(1 - X)(1 - 6x + 3x7 

x2 + V(1 - x) + .$: dx 
x3(1 - X)(2 - x)” 
(x2 + u(1 - x))” I 

= -& (D - In v). (3.14) 
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Comparing these with the results of the previous section, we recognize that the Ward 
identities 

are satisfied. 

L(i) = B(i), i= 1,2, (3.15) 

For the FY gauge, it is not enough to consider the special limit, such as Eq. (2.26), 
in the expression of L(l) + 2L @). As was discussed at the end of the preceding section, 
we have to consider the whole expression for pill’ + 2rz’, in order to decide the 
renormalization constant LFy . Instead we use the Ward identity to coinclude that 

LFy = BFy = (301/h) D. (3.16) 

This relationship was used in simplifying the calculation of radiative corrections to 
positronium decay [4] in the FY gauge. Although the final result for the decay rate is 
the same for any gauge, the individual diagram contribution is gauge dependent and 
in particular, different for the case where the limit lim, +,, lim,,, is taken and the FY 
gauge where m, = 0 and 5 = 2 is assumed from the blginning. A nice feature of the 
FY gauge is the complete cancellation between the Coulomb subtracted term for the 
binding diagram and the term due to an iteration of the Bethe-Salpeter equation for 
the zeroth-order diagram because of the absence of infrared divergence. As explained 
in Ref. [4], this presents the clearest discussion of the binding diagram of the posi- 
tronium decay calculation. 

APPENDIX: FORMULAE USED IN THE TEXT 

YYYLlY. = - 2(w - 1) yJl 

YYYAYUYY = 4%” + 2(0 - 2) y4yLl 

Y”YAYUYOY” = -2Y,Y,Y, - 2(w - 2) y,4yIIyp 

s 
d2wk iTPlP-“r(a - w) 

(k2 + H)* = r(a) 

I 
k,k,d2wk 

(k2 + H)” = ‘W 
i?PH~-Q+lr(cx - w  - 1) 

w4 

s 

k2d2wk 
(k” + H)” = 

i7rWWH~-~+lr(a - w - 1) 

r(4 

I 
k4d2wk 

(k2 + H) 

= i+%& + 1) fP--n+2r(a - w - 2) 

JY4 
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s 

1 X 
* x2 + v(l - x) dx = - i In v + T$!f + O(V) 

I 
1 

0 (x” + v;3- x))” 
1 1 dx= -2-zlnv+ 8 ?T!!z + qv> 
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