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The modern literature on nonlinear optimal taxation treats differences in income as being due to 
unobserved differences in ability. A striking result of this assumption is that high income agents 
should face a zero marginal tax rate. In this paper I assume that differences in observed income 
are due to exogenous differences in luck. Hence the optimal redistributive tax involves trading 
off the benefits due to ‘social insurance’ with the costs due to reduced incentives. I derive the 
optimal forms for linear and nonlinear taxes, and compute some algebraic and numeric 
examples. Typically high income individuals will face quite high marginal tax rates. 

1. Introduction 

Recent work on the sources of income inequality has found that only a 
small fraction of the variation in income can be explained by observed 
socioeconomic characteristics. For example, after an extensive examination of 
the available evidence, Jencks and his co-workers conclude: ‘Neither family 
background, cognitive skill, educational attainment, nor occupational status 
explains much of the variation in men’s income. Indeed when we compare 
men who are identical in all these respects, we find only 12 to 15 percent less 
inequality than among random individuals’ [Jencks (1972, p, 266)]. 

Jencks goes on to list three possible causes for such unexplained variations 
in income. 

(1) Differences in tastes: ‘. . . some men value money more than others, and 
these men make unusual sacrifices to get it’. 

(2) Differences in unobserved endowments of native ability: ‘. . . the ability 
to hit a ball thrown at high speed, the ability to type a letter quickly and 
accurately, the ability to persuade a customer that he wants a larger car than 
he thought he wanted.. . and so forth’. 

(3) Differences in luck: ‘. . chance acquaintances who steer you to one line 
of work rather than another, the range of jobs that happens to be available 
in a particular community when you are job hunting, the amount of 

*I have benefited from comments by Theodore Bergstrom, Lamberto Cesari. Bengt 
Holmstriim, Glenn Loury, James Mirrlees, Carl Simon and the anonymous referees of this 
journal. I am of course responsible for any remaining errors. This material is based upon work 
supported by the National Science Foundation under Grant SOC78-05757 and the Guggenheim 
Memorial Foundation. 
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overtime work in your particular plant, whether bad weather destroys your 

strawberry crop.. . and a hundred other unpredictable accidents’. 
Jencks and his co-workers argue that this last factor is probably the most 

important single influence on the distribution of income. It is difficult to 

support this view by appealing only to cross-sectional data since one cannot 
adequately control for variations in unobserved tastes and endowments. 
However, other econometric studies of income determination using panel 
data have tended to confirm Jencks’s view. Coe (1977) for example, describes 
some interesting figures which were extracted from the University of 
Michigan income dynamics study of 5000 American families: 

Of the individuals who were poor in the one year period 1975, only 12 
percent were in poverty in every one of the nine years between 1967 and 
1975. On the other hand, while only 8.9 percent of the population was 
poor in 1975, fully one-quarter of the sample individuals were in poverty 
in at least one of the nine years between 1967 and 1975. 

Similar conclusions were reached by Lillard and Willis (1978) who used the 
University of Michigan income dynamics data for the years 1967-73: 

While the poor are different in the sense just described, it would be 
misleading to conclude that poverty is a permanent status. We find that of 
those individuals in poverty in a given year, about 55 percent of the 
whites and 35 percent of the blacks will be out of poverty in the following 
year. Another indication of mobility is that only 15 percent of whites and 
35 percent of blacks who fall into poverty sometime during the three year 
period from 1967-70 are expected to be in poverty in all three years (p. 
1007). 

These data suggest that the movements of individual incomes over time 
contain a large random component, i.e. a component that is not explained by 
differences in tastes and endowments. 

Such a view ‘tends to modify attitudes concerning policy towards income 
distribution, and in particular, policies concerned with redistributive taxation. 
Most discussions of redistributive taxation have taken place in a context 
where uncertainty was either ignored, or where markets for transferring risk 
were sufficiently well developed so that no risk was borne unintentionally. 
The above empirical evidence shows that randomness in income is a major 
problem which cannot simply be ignored, and well-known arguments 
concerning moral hazard, adverse selection, transactions costs, and returns to 
scale show why complete markets for shifting risks may be unavailable. 

Let us consider then how adding a random component to income may 
affect the analysis of redistributive programs. Suppose that we consider a 

simple world of identical risk-averse individuals each with income x =Y+si. 

Here r is the expected income of each individual and ci is a random error 



H.R. Varian, Redistributive taxution 51 

term assumed to be uncorrelated between individuals, and to have expected 
value of zero. Since ai is uncorrelated between individuals, there is a clear 

economic case for the establishment of an insurance market which could 
eliminate individual risk. However, let us suppose that effects such as those 
described above are present so that an insurance market cannot be viable. 
Then there is still a simple government policy to improve welfare: impose a 
100 percent tax on observed income and redistribute a uniform grant r Such 
a program of redistributive taxation would effectively replace the nonexistent 
insurance market and provide an unambiguous increase in welfare. The 
motive for redistribution here is not a desire for equity per se, but rather a 

desire for social insurance. 
The above points are couched in somewhat abstract language, but it is 

clear that the basic idea is commonplace. Indeed, the fact that redistributive 
taxation helps to insure against individual risk is a common justification for 
redistributive programs. Consider, for example, the following excerpt from 

the Beveridge Report, a study which provided the guidelines for British 
welfare policy in the post-war period [Beveridge (1942)]: 

Abolition of want cannot be brought about merely by increasing 
production, without seeing to correct distribution of the product., . . Better 
distribution of purchasing power is required among wage earners 
themselves, as between times of earning and not earning, and between times 
of heavy fumily responsibilities and light or no family responsibilities. Both 

social insurance and children’s allowances are primary methods of 
redistributing wealth. (Emphasis added.) 

Similar sentimates are expressed by Stanford G. Ross, the current 
Commissioner of U.S. Social Security: ‘Everybody is vulnerable to a sudden 
reduction in income, regardless of his or her station in life. Society needs 
some mechanism to guard against the risk when it is most likely to occur.. .” 
[Ross (1979)]. 

Jencks and his co-workers have suggested that the most effective way to 
provide a more equal distribution of income would be to engage in a 
widespread system of redistributive taxation. The above discussion indicates 
that even apart from the possibly desirable effect of reducing income 
inequality, there is a definitely desirable effect of improving the allocation of 
risk bearing. Indeed, I suspect that widespread political support of many 
redistributive programs rests more with the social insurance aspect of the 
program than with altruistic consideration involving social welfare. 

Of course, there is a cost to any program of redistributive taxation, namely 
the incentive loss that is involved in any tax or transactions. The choice of 
an optimal redistributive tax therefore involves trading off three kinds of 
effects: (1) the equity, effect of changing the distribution of income; (2) the 
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efficiency effect from reducing incentives; and (3) the insurance effect from 

reducing the variance of individual income streams. 
The first two aspects have been examined extensively in recent years. Some 

relevant articles are those by Atkinson and Stiglitz (1976), Diamond (1975), 
Diamond and Mirrlees (1971), and Mirrlees (1971). Sandmo (1976) provides 

a brief survey with bibliographic references. 
The insurance effect of income redistribution has received considerably less 

attention in the theoretical literature. 
A notable exception has been the work of Mirrlees and his collaborators. 

Mirrlees (1974) posed the problem of the insurance-incentive tradeoff in a 
fairly general model and derived a formula characterizing the optimal 
(second-best) policy. Subsequently, Diamond and Mirrlees (1978) analyzed a 
model of a Social Security type program, emphasizing the insurance- 
incentive aspects involved in the retirement decision. Diamond, Helms and 
Mirrlees (1978) present some numerical examples of social insurance benefits 
in some simple cases involving linear taxation. 

In this paper I formulate and analyze a simple model of social insurance. 
Section 2 describes the basic model. In section 3 I derive a formula 
characterizing the optimal linear tax for this model. Section 4 is devoted to 
an algebraic and numerical example of the linear tax. Section 5 describes the 
optimal nonlinear tax, and section 7 provides a brief summary. An appendix 
describes an existence theorem for a class of optimization problems relevant 
to social insurance problems. 

2. A problem in social insurance 

Let us consider a simple model involving social insurance. We have a large 
number of identical consumers who wish to transfer some amount of wealth 
(w) between two time periods. We let x be the amount saved in the first time 
period so that consumption at that time is w-x. Consumption in the second 

period will be x +E, where E is a random variable with mean zero. The 
random variable E is supposed to represent the cumulative effect of 
exogenous ‘luck’ on the individual consumer. We suppose luck to be 
independently and identically distributed among the individual agents. Since 
luck is assumed to be independently distributed from consumer to consumer, 
there is a clear market incentive to provide insurance. 

In this framework, the individual optimization problem is: 

maxu(w-x)+Eu(x+s), 
X (1) 

where u(y) is a von Neuman-Morgenstern utility function and E is the 
expectation operator. We assume that u(y) exhibits the standard properties 
of monotonicity in income and risk aversion. At times we will assume that 
the utility function exhibits declining absolute risk aversion. These three 
behavioral assumptions imply u’(y) > 0, u”(y) < 0, and u”‘(y) > 0. 
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If no insurance were available the individual choice of x would satisfy 

u’(w -x) = Eu’(x + a). 

If we assume u”‘(y)>O, Jensen’s inequality implies Eu’(x+E)>u’(x), and 
hence x will be greater than w/2. Since no insurance is available, consumers 
will be forced to self insure by oversaving. If consumers could purchase 
insurance against the cumulative random events described by F, they would 
clearly be able to eliminate all individual risk. If all individual risk is 
eliminated the obvious individual, and hence social, optimum is to set x 

= w/2. 
On the other hand, there may be various difficulties with observing 

realizations of luck directly. We assume that an external observer can 
observe only measured income r=x +E. Some part of measured income is 
due to a decision by the individual agent (x), and some part is due to 
exogenous luck (E). For practical reasons, any compensation must be based 

on observed values of y=x SE rather than on E alone. 
We let c(x + E) be the amount of consumption allowed to a consumer with 

observed income x + E. The objective of a social insurance program is to find 
a consumption function that maximizes expected utility subject to two 
constraints. The first constraint is the government budget constraint: the 
receipts of the tax must, on the average, be equal to the amount payed out. 
That is to say, the redistributive program must break even. The second 

constraint is that individual consumers choose x so as to maximize private 

utility: 

maxu(w-x)+Eu(c(x+a)). 
X 

(2) 

This immediately implies that the social optimum will be unattainable by a 
redistributive tax based on observed income: if consumers were guaranteed a 
second period income of w/2, and a marginal tax rate of 1 on any income in 
excess of w/2, they would choose to save nothing. This is simply the 
disincentive effect of social insurance ~ a complete welfare state may result 
in a significant incentive loss. 

An optimal choice of x > 0 satisfies the lirst- and second-order conditions: 

u’(w-~)=Eu’(c(x+E))c’(x+E), (3) 

~“(W-~)+ELI”(C(X+E))C’(X+F)+EU’(C(X+E))C”(X+E)~O. (4) 

The first-order condition is simply the statement that the consumer will 
equate his expected marginal utility of income in each period. We note the 
first two terms of the second-order condition are automatically negative by 



the assumption of risk aversion. The third term is unfortunately of 
ambiguous sign since it depends on the sign of c”(x +E). Our approach here 
will be to assume that the first-order condition completelv describes the 
optimal choice of the consumer, solve for the optimal c(r), and then verify 
that such a c(y) satisfies the second-order conditions. As we shall see, for a 
class of important examples c”(y) will turn out to have the correct sign.’ 

Formulating the above discussion algebraically, we have the social 

insurance problem: 

maxu(w-x)+Eu(c(x+s)) 
C(.LX 

Ec(x+E)=x, 

(5) 

(6) 

We investigate this problem in two stages. First we examine the 
determination of the optimal linear tax, i.e. where c(y)=cq’+D. Then we 
investigate the general problem of the optimal nonlinear tax.’ 

3. The optimal linear tax 

It is possible to derive the optimal linear tax by differentiating (5) (7) and 
manipulating the resulting conditions. However, a somewhat clearer 
derivation results if we proceed by a more indirect route. 

The first step is to eliminate the governmental budget constraint. We write 
after tax income as cq’+D. According to (6), and that fact that E&=0: 

Thus, 

D=(l-c)x. (81 

The next step is to use the individual optimization constraint to define s 
as a function of c, which we write as x(c).~ We now have a straightforward 

‘The conditions (3) and (4) are necessary and sufficient conditions for a local/): optimal choice 
of x. It may happen that there are several solutions of (3) with only some of them being global 
optima. Mirrlees (1975) has shown that this may cause diffkulties for the above technique. 

The problem arises because the set of global optima - the set of solutions to problem (2) ~ 
can be a rather unpleasantly structured subset of the manifold described by (3). Mirrlees (1975) 
suggests some techniques to handle these diffkulties in the finite dimensional case, but there 
seem to be no useful techniques available in the infinite dimensional case. Hence, we adopt the 
above approach and simply assume that the first-order condition uniquely determines the 
optimal choice. 

2Note that when we restrict the optimal tax to be linear the second-order conditions (4) are 
automatically satisfied and the problem mentioned in footnote 1 does not arise. 

3A standard application of the implicit function theorem shows that x(c) is a differentiable 
function of c. This derivative is given in eq. (14). 



H.R. Vurian, Redistributiw tuxcrtion 55 

unconstrained maximization problem which determines the optimal tax: 

maxu[w-x(c)]+Eu[c(x(c)+s)+(l-c)x(c)]. (9) 

The derivative of the objective function is: 

z”(c)= -u’(M.-x)x’(c)+Eu’(x+cE) 

x[cx’(c)+X+&+(l--)x’(c)-x]. (10) 

Applying the individual first-order conditions (3) we can eliminate the first 
term and part of the second, leaving 

z;‘(c)=Eu’(x+ce)(l -c)x’(c)+Eu’(x+ce)~. (11) 

We note first that Eu’(x +ce)s<O. Since E&=0, this term is simply the 
covariance of marginal utility and income; since these magnitudes move in 
opposite directions this covariance must be negative. 

If we evaluate expression (11) at c= 1 - the no-tax situation - the first 
term drops out and we are left with a strictly negative value for u’(c). Hence 
a decrease in c - an increase in the tax rate ~ must necessarily increase 
utility. This is simply the point that the first small imposition of the tax 

will result in no incentive loss, but will provide a small amount of insurance. 
Therefore some amount of social insurance is desirable, even in the face of 
the incentive problem. 

Setting U’(C) equal to zero we have a formula for the optimal tax: 

In order to provide some intuition for this expression we imagine an 
experiment of increasing c slightly to c + dc. On the one hand an increase in 
c will result in more savings, since consumers get to keep more of their 
returns - savings go up by x’(c)dc. (Eq. (11) shows that x’(c) is positive at 
the optimal c.) Because of this increase in savings, consumers will receive an 
increase in the demogrant D of (1 -c)x’(c)dc. This in turn is multiplied by 
the marginal utility of second-period income to determine the utility effect of 
this change. On the other hand, the increase in c exposes the consumer to 
more risk. Instead of facing a random variable CE, the consumer faces 
(c+~c)E. The expected marginal utility due to this effect is Eu’(x +cs)~dc. 
If the level of social insurance is optimal, the sum of these two effects must 
balance out to zero. 
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Eq. (11) can be combined with the individual first-order conditions to give: 

u’(w -x)x’(c) 
C= 

uf(w-x)x’(c)-EU’(X+CE)E 

(12) 

This equation shows that the optimal marginal tax rate must be between 0 
and 1. 

We can derive an expression for the term x’(c) by differentiating the tirst- 
order conditions which define x. We find 

u”(w-~)~‘(~)+~Eu”(x+cs)[x’(c)+~]+Eu’(x+cs)=O, 

(13) 

which can be rearranged to give 

x’(c) = 
-EU”(X+CE)CE-EEu’(x+cE) 

u”(w-x)+Eu”(x+c~)c ’ 
(14) 

The denominator of this expression is negative by virtue of risk aversion and 
the numerator will be negative if u”’ > 0. Hence, under an assumption of 
decreasing absolute risk aversion, x’(c)>O, a finding that is consistent with 
the equilibrium condition described above. 

4. An algebraic example 

Let us apply .formula (11) to a simple problem involving a quadratic utility 
function and a discrete uniform distribution. We let u(y) = by--$/2, and let E 
have the distribution E = n with probability l/2 and a= -n with probability 
l/2. The individual maximization problem has first-order conditions : 

-[b-(w-x)]+(c/2)[b-(x+cn)+b-(x-cn)]=O, (15) 

which can be solved for 

x=w+bw) 
lit . 

(16) 

Thus, 

2b-w 
x’(c)= (1 +c)2’ (17) 
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We also have 

Eu’(x+cs)s=+[b- (x+c~l)]n-+[b- (x-ccn)]n=cn’. 

51 

(18) 

Using (11) we obtain a formula characterizing the optimal c: 

(l_c) W-WI2 
(1 +c)3 =m2, 

Note that there will be a unique c that satisfies this equation. We can easily 
examine the effects of parameter changes on the choice of the optimal c: 

(i) as the size of the random income, n, rises, c must fall, so the optimal 
tax rate rises; 

(ii) as wealth increases, the left-hand side decreases, so c must decrease - 
the optimal tax rate increases; and 

(iii) as risk aversion increases, b must decrease, so the optimal tax must 
increase. 

Table 1 

Utility Utility 
n c x market insurance 

0.1 0.93 0.48 0.745 0.745 
0.2 0.81 0.45 0.730 0.734 
0.3 0.69 0.41 0.705 0.720 
0.4 0.60 0.37 0.670 0.706 
0.5 0.52 0.34 0.625 0.691 

Table 1 presents some computations of the optimal tax for various values 
of the noise parameter n. In these computations we set w = b = 1. The second 
and third columns of the table give the optimal values of c and x. The 
optimal value of D is of course (1 -c)x; this implies that the demogrant as a 
percentage of income is simply (1 -c). The last two columns give the utility 
of the market (no intervention) case, and the social insurance case. By way of 
comparison, the utility of the full insurance case is 0.750. 

The main conclusion to be drawn from this table is that in this example 
the social insurance can capture only a small percentage of the gains possible 
from full insurance, unless the randomness in income is very extreme. In the 
case where n =O.l, for example, second-period income varies between 0.58 
and 0.38, but second-period consumption is smoothed out to vary between 
0.57 and 0.39 - not a very big change, and consequently not a very big 
contribution to utility. 
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One could argue that this inability of the linear tax to capture much of the 
potential gains is due to the overly restrictive assumption of linearity. A 

more flexible tax structure may capture more of the gains. Accordingly, in 
the next section, we investigate the problem of determining the optimal 
nonlinear tax. 

5. The optimal nonlinear tax 

In order to treat the nonlinear tax problem, it is convenient to rewrite (5) 

(7) introducing the density function for E, which we denote by f(s). We 
suppose that f(s) is strictly positive over the interior of the compact interval 
[a, b] and that f(a)=f(b)=O. Furthermore we change the variable of 
integration from E to ~=x+E, so that the limits of integration will now range 

from y=x+a to y=x+b. 
For reasons that will be explained later, we have to be careful about the 

domain of the utility function. We will suppose that utility is defined on the 
non-negative real line and that x and c(v) must lie in the compact region 

05x Zw. With these changes eqs. (5)(7) become: 

maxu(w-x)+Ju(c(y))f(y-x)dy 
cC.1.x 

(19) 

subject to 

x- &)f(y-x)dy=O, (20) 

(21) 

It turns out to be convenient to integrate eq. (21) by parts to get 

u’(w-x)+Ju(c(y))f’(y-x)dy=O. (22) 

Here we have used the fact that f(a)=f(b)=O and multiplied through by 
- 1. The resulting optimization problem, (19), (20), and (22) is a 
straightforward isoperimetric calculus of variations problem. It is, in fact, a 
problem of the same form as that considered by Mirrlees (1974). 

In that work, Mirrlees used the Euler conditions of the calculus of 
variations to characterize the optimal solution to a similar problem. 
However, in the same paper, Mirrlees also showed that in some cases no 
optimal solution would exist. It is worthwhile reviewing his nonexistence 
argument here, as it applies to the social insurance problem. 
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Let us choose consumption schedules of the form: 

(23) 

Here consumers receive the first-best level of consumption if their observed 
income exceeds some target level a; if their observed income is less than I 
they receive some (low) level of consumption cl. 

In order for this policy to be feasible it is sufficient to ensure that 
consumers will, on the average, choose to save x=w/2. Mirrlees shows that if 
utility is unbounded below we can always choose c1 low enough so as to 
induce this optimal level of savings. 

Now consider what happens as we decrease the target level ~1, but adjust 
c1 so as to keep x= w/2 and thus maintain feasibility. As cx declines 
consumers have a higher and higher probability of ending up with the first- 
best level of consumption; but if they are unlucky enough to end up with 
observed income less than ~1, they will be more and more severely punished. 
The net impact of these two effects on expected utility is in general 
ambiguous but Mirrlees is able to show that in some cases total expected 
utility will increase as the target level a decreases. Hence he can construct a 
sequence of tax plans converging to the first-best optimum, but of course, 
never actually reaching it. 

In this way, we can approximate as closely as we wish to the first-best 
optimum, by imposing penalties (presumably of great severity) on a small 
proportion of the population. 

Although these farmers suffer severely, there are so few of them that 
their sufferings are outweighed by the encouragement their fate, or rather 
the prospect of it, gives to farmers taking production decisions. It seems 
that models of this kind can in certain cases provide some justification for 
extreme punishment of negligibly small groups [Mirrlees (1974)]. 

There are two important problems raised by the Mirrlees result. The first is 
the question of the existence of an optimal tax. It seems clear that the 
problem here lies in M,irrlees’s assumption of unbounded utility. If one 
imposes a bound on utility or consumption, on grounds of feasibility or 
humanitarian concern about ex post utility, the Mirrlees construction can 
only be carried so far - the unlucky consumers can only be punished to a 
certain degree. It seems possible that the imposition of such a bound would 
ensure the existence of an optimal tax. 

However, the Mirrlees’ example raises another question. Even if the 
optimal tax exists when consumption is bounded, how do we know that it 
does not take the discontinuous form considered by Mirrlees? If it did take 
such a form. the Euler conditions used by Mirrlees would be irrelevant. 
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In order to investigate these questions it is convenient to pose the 
optimization problem described by (19X (20), and (22) as a problem in 

optimal control. To do this we create two dummy state variables defined as: 

T(Y)= j [x-c(t)]f(t-xx)&, 

R(y)= 1 [u’(Mi-x)+U(c(t))]f’(r-x)dt. 
Xfll 

(25) 

Then we can write the relevant maximization problem as: 

maxu(w-x)+Su(c(y))f(y--x)dy 
X.C(Y) 

(26) 

subject to 

T’(Y) =Cx-c(Y)If(Y-X)t (27) 

R’(Y) =[u’(w-x)+U(C(~))]f’(L’-X), (28) 

T(x+a) =T(x+b)=O, (29) 

R(x+a) =R(x+b)=O, (30) 

clc(y)jC; oixjw, (31) 

This is a straightforward problem in optimal control with the special 
features that (1) the Hamiltonian is independent of the state variables, and 
(2) the maximization takes place over a parameter x, as well as over the 
function c(v). There are very general existence results for control problems 
with feature (1) and in the appendix I extend one of these results to the 
parameterized case. Hence, under quite weak assumptions an optimal tax 
schedule will exist. 

A standard application of the maximum principle shows that at each 
income level y, c(y) will maximize the Hamiltonian function over the 
allowable values of c. We pose this maximization problem here using 2 and ,U 
to denote the adjoint variables: 

~~~~x~(w--X)+~(C(Y))f(L.--X)+/.CX-c(r)lf(y-x) 

+~Cu’(W--X)+~(C(~)lf’(L’-X)l (32) 

subject to 

-C(Y)SC, 

c(y)S;c. 
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Letting p1 and p2 be the Kuhn-Tucker multipliers on the inequality 
constraints we have the following conditions which characterize the optimal 

choice of c(y) at each 4’: 

u’(c(y))[If(L’-x)+~~“(~-~)l=~~f():-x~-Pl +pz, 
c(L’)=c, PI 20, 

c<c(y)<C, Pl ‘Pz =o, 

c(y)=C, P*20. 

(33) 

(34) 

(35) 

(36) 

We also have the first-order condition that x maximizes the Hamiltonian. 
Using the original formulation in (19))(21) this condition can be written as 

j&Cl- ic’(Y)f(y-x)d+-A(x)=O. (37) 

Here we have used the fact that the derivative of the objective function must 
vanish, owing to the individual optimization constraint, and we have let d(x) 
be the second derivative of individual utility as given in eq. (4). 

We first establish the following technical result. 

Proposition. If A#0 then c(y) is continuous on the support of f(a). 

Proof According to Fleming and Rishel (1975, theorem 6.1) we need only 
establish that the Hamiltonian has a unique maximizer at each value of y. 

Referring to the KuhnTucker condition (33) we see that if [f(y-X) + 
$(J’-x)] #O, the concavity of u(c) guarantees a unique solution to (33). 
If the left-hand side of (33) is zero, then there are two cases: 

(i) i_>O; then since f(y-x)>O and ~~20, we must have p1 >O and c=c; 
and 

(ii) 2 ~0; by analogous reasoning, we must have p2 > 0, and c = (_. Q.E.D. 

This proposition shows that as long as the aggregate income constraint is 
binding, the optimal tax will be continuous on the support of E. Thus, for at 
least some values of income, the optimal level of consumption will be in the 
interior of [c, c] and the Euler conditions derived by Mirrlees will be 
relevant. In the interior case, we have a very simple formula characterizing 
c(y): 

u’(c(y)) = 
1 

1 +/J&--2’)’ 

where h(~)=f’(~)/f’(~) and !:=Ey=E(x+a)=x. Since u” ~0, we can directly 
invert (38) to solve for C(J), up to the constants A and p. 
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We can use the information contained in eqs. (33)-(37) to provide some 
qualitative information concerning i and p. First, we note that at the modal 
value of e ~ call it i=~+-r we havef”(E*)=O, so 

(39) 

The complementary slackness conditions (34k(36) show that if the mode 

occurs at a value of J: where c s c( 42) CC, then I will be positive. If c < c( J?) < (: 
then /I is just the marginal utility of income at the modal value of E. 

In order to provide an expression for 11, we rearrange (37) to get 

(40) 

The term in parentheses is simply the average marginal tax rate which we 
would generally expect to be positive. Since i >O by (38) and d(x)<O, since 
it is the second-order condition for individual maximization, we would 
generally expect p to be negative. 

In fact, it can be shown that p ~0 under the assumption that h’(~)<0. To 
see this differentiate (38) with respect to y to get: 

- iph’(y - y) 

“(4’)=LIC(C(J))(1 +/Lh(y-1’))2’ 
(40) 

Suppose, prr ubsurdum, that ,LLL>O. Then (41) implies that c’(y)<O. This in 
turn, by eq. (40) implies ,u <O. This contradiction then establishes three 
important facts: (1) ,U ~0, (2) C’(Y) >O, and (3) the average marginal tax rate 
is positive. (Analogous facts were established by Mirrlees (1974) for the 
problem he considered; however, the additive structure of this problem 
allows for a considerable simplification of the arguments4 ) 

The most interesting behavior of the optimal tax formula given by (38) is 
in the behavior of the marginal tax rate as a function of income. In the 
optimal taxation literature concerned with the equity-efficiency tradeoff 
arising because of unobserved differences of ability, it can be shown that the 
marginal tax rate on the highest observed income must be zero. This effect 
basically occurs because any tax schedule with a nonzero marginal tax rate 
at the high end can be Pareto dominated by one with a lower marginal tax 
rate ~ the highest income person is made better off by lowering his marginal 
tax rate and revenues available for redistribution are unaffected. [See Brito 
and Oakland (1977), Cooter (1978). Phelps (1973), Sadka (1976), and Seade 
(1977), among others.] 

4Holmstriim (1979) also establishes analogous facts for a similar problem under somewhat 
different conditions. 
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In the social insurance framework this effect is absent. Indeed, one would 
suspect the marginal tax rate on the highest income person might be quite 
large: if the only way to become a millionaire is to be lucky, there should be 
very small incentive losses from taxing a million dollar income at a high rate 
- and there are substantial insurance gains since one can then subsidize 
million dollar occurrences of bad luck. 

Let us examine this argument more rigorously. First, if the C constraint is 
binding at high levels of income, the marginal tax rate is clearly one, so we 
concentrate on the interior case. Differentiating (38) we have: 

- 1” 
~“(c(Y)k’(.Y)= (1 +ph(y))2 Ph’(4’1. 

Using (38) and rearranging: 

(42) 

(43) 

Letting p(c(y))= -u”(c’(~))/u’(c(~)) be the Arrow-Pratt measure of absolute 
risk aversion, we have 

This equation shows that, ‘other things being equal’, a higher degree of risk 
aversion implies a higher marginal tax rate. (Of course other things can 
never be equal since they also depend on the degree of risk aversion.) 

Differentiating (44) once more we have 

The term in front of the brackets will generally be negative. If we are willing 
to assume h’z0, h”zO the first term inside the brackets will be positive 
which suggests a declining marginal consumption rate - i.e. an increasing 
marginal tax rate. The second term, however, works in the opposite 

direction. If absolute risk aversion decreases with income, the second term 
will be positive and the overall sign of c” will be ambiguous. Clearly p’ $0 
will imply c” <O, but this seems an implausible assumption on a priori 

grounds. However, it does seem clear that if risk aversion does not decline 
too rapidly, then c”(y) will be negative and our earlier intuition will be 
supported. 



A nice example to illustrate these considerations is that of a constant 
relative risk aversion utility function and a normal distribution on E.’ Since 
~(c)=c~-~/(l -p), (33) implies that 

(46) 

or 

c(y)=[B+Ah(y)]l’P, (47) 

where B > 0, A < 0, and h’(y) < 0. In this case p’ = 0 and the first term in (44) 
always dominates so that c”(y) < 0. 

If E is normally distributed with 

f(~) = k epe212, (48) 

we have 

h(E)=+ --E, 
& 

(49) 

so that the optimal tax takes the form: 

1 
c, if cz[B-Aq.]“P 

c(y) = [B - AL’]“P (50) 

(; if F~[B-A~]“P. 

If p= 1, a linear tax is optimal. As risk aversion increases, a more progressive 
tax is desirable, exactly as our intuition suggested. 

The case with p= 1 is an especially simple case in which to calculate 
optimal taxes. Table 2 presents an example of one such computation with 
w =40, CT =2 and 3. As before, the columns labelled ‘market’, ‘insurance’, 
and ‘full’ give the utility from each arrangement. 

Note the relatively low marginal tax rate. In the case where g= 3, income 
would lie in the two standard deviation range 1426, but the marginal tax 
rate would be only 4 percent. The demogrant would also be 4 percent of 
first-period income. The partial insurance offers a ‘small’ improvement on the 
market solution, but does not capture much of the potential gains from 
complete insurance. 

50f course, for an optimal tax to exist we should truncate the distribution on c so that it has 
compact support. 
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Table 2 

0 c x Market Insurance Full 

2 0.98 19.897 5.9863 5.9864 5.9914 
3 0.96 19.815 5.9799 5.9804 5.9914 

6. A curious example 

In some circumstances the optimal tax may take a rather peculiar form. 
Suppose, for example, that there are occurrences of E which reveal 
unambiguously the ex ante actions of the consumers. For example, suppose c 

has support (u, h) and w/2 fu >O. Then if one observes measured income J 
in the interval w/2 + CI > y > 0, one can be certain that the consumer saved less 
than w/2 in the first period. In this circumstance it makes sense to choose a 
consumption schedule that would give the consumer a very low level of 
consumption in this region; so low, in fact, that the consumer would always 
save x=w/2 so as to avoid falling into this region. In this way, we can 
support the first-best optimal solution.6 

The mathematical details go as follows. As in section 5, let us choose a 
policy of the form: 

c(x+Fi)=q, if x+E<w/2+a, 

w/2, if x+F~w/~+~. 

We want to choose c1 small enough so that the utility from choosing x = w/2 
exceeds the utility from choosing any other choice of x. That is, we choose c1 
so that 

2u(w/2)>maxtl(w-x)+u(w/2) 
X 

+[u(cl)-4w/2)]F(w/2+a-x), (51) 

where F( .) is the cumulative distribution function_ of E. 

For fixed cl, the right-hand side of this inequality is bounded above, so a 
maximum exists. As long as u(cl) can be made sufficiently small, we can be 
assured of satisfying inequality (51) and thereby being able to support the 
first-best optimal pattern of consumption. 

‘Harris and Raviv (1978a.b) have independently noted that a first-best solution in principal 
agent problems often exists under similar circumstances. 



7. Summary and conclusions 

If income contains a random component then a system of redistributive 
taxation will contribute to reducing the variance of after-tax income. The 
design of an optimal program of redistributive taxation must weigh the 
benefits from this ‘social insurance’ against the deadweight costs of a tax on 
transactions. In this paper we have examined the determination of such an 
optima1 tax in a simple choice theoretic framework. 

In the case of linear taxation the optimal tax can be derived from a 
relatively simple and intuitive formula. The nonlinear tax involves a less 
intuitive but surprisingly explicit formula. We have shown that if one bounds 
the allowable values of consumption the optimal tax will always exist and 
generally be continuous as a function of observed income. Under reasonable 
assumptions about the distribution of the randomness in income, the optima1 
tax will be increasing in income and the average marginal tax rate will be 
positive. The optimal tax may exhibit an increasing marginal tax rate, 
depending on the nature of the stochastic influences on income. 

Finally it should be remarked that the analysis of this paper can be 

applied to a number of other problems involving moral hazard and 
insurance. In particular, the existence and continuity results can be easily 
generalized to the principallagent problems considered by Harris and Raviv 
(1978a, b), Holmstrom (1979) and Shave11 (1975). 

Appendix 

Existence of an optimal solution 

Here we state an existence theorem for a class of optimal control problems 
that is referred to in the text. Consider the control problem: 

maxj! h,(t,u(t),z)dt 
U(.),-_ t 0 

(A.1) 

subject to 

dx 
z=h(t, u(t), z), 

x(b)=.%(z); x(tl)=xl(z), 

u(t) in 8, a compact subset of R”, 

z in Z, a compact subset of R”, 

x(t) in R”, 

x0, x,, h, and h continuously differentiable. 

(A.21 



Here Y is the vector of state variables, u is the vector of control variables, 
and z is a vector of parameters. We assume that a feasible solution exists. 

For fixed Z, this is a standard control problem with the special feature that 
11, and /I are independent of the state variables. Theorem 6.3 of Berkovitz 

(1974, p. 165) shows that for fixed z an optimal solution to this control 
problem exists. We wish to extend this argument to the parameterized case. 

First we introduce some notation. 
Given an admissable control u( .) and a parameter Z. consider the system 

of differential equations given by 

dr 
d’r =Iro(t, u(t), Z), 

(A.3) 

The ‘attainable set’ (for fixed 2) is defined to be the set of states of this 
system at t, as u( .) ranges over the set of admissible controls. 

&=((?:x)ER n+l :?‘=!.(t,); x=x(r,), 

where J,( ) and s( ) solve (A.3) for some admissible control 

[I( ), ) 

Note that y=~(tr ) is simply the value of the objective function in problem 
(A.1). Berkovitz (1974, theorem 6.3) shows that K, is compact. so clearly A’ 

achieves a maximum value on K,. Hence an optimal solution to the control 
problem with fixed z and no boundary constraint at t, exists. 

For the parameterized problem the analogous attainable set is: 

This is clearly compact since it is the product of two compact sets. 
Finally, we incorporate the additional boundary constraint by defining: 

This set is compact since it is a closed subset of K; it is nonempty by 
hypothesis. Hence 4’ attains a maximum on K’ and a solution to (A.l) and 
(A.2) therefore exists. 
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