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1. INTRODUCTION 

A new class 99 of systems of integral equations is defined and investigated. It is 

of importance in the stochastic optimization theory, and in estimation problems. 
We give the description of the set of solutions to the system of integral equations 

in a class of distributions, prove the existence, uniqueness and stability in the 
sense defined below of the solution of minimal order of singularity. This solution 
is of principal interest for applications and we obtain explicit formulas for it. 

Convolution integral equations whose rational kernels are Fourier transform of a 
matrix kernel are (special) example of the equations of class 9. The theory 
does not require the factorization of matrix functions. The methods used is a 

generalization of that developed by the author in [l-7, 12-151. 

2. PRELIMINARIES, ASSUMPTIONS 

Consider the vector integral equation 

Rh = I d R(y, a) 44 dz = f(r), y E d = [t - T, t], T > 0. (1) 

Here t, T are fixed numbers, R(y, z) a matrix kernel which is self-adjoint, and 

positive-semidefinite. Moreover it is assumed that h, f E R’, f being smooth. Let 
us define a class 9 of kernels. Let L be a scalar self-adjoint differential operator 

in H = L2(1), I = (-co, Co), 

Lu = i: pj(x) uyx), P&) + 0, x E I, 
j=O 

&) = DJU = d&l&, r) = order L. (2) 
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The coefficients p,(r) are assumed smooth. Let $(x, y, X), dp(h) be the spectral 
kernel and spectral measure of operator L and assume that fl is the spectrum 
of L. 

DEFINITION. We say that R(x, y) E W, if 

R(*6 Y) = J, r(h) 4(x, y, 4 clp(4, 

(3) 
y(4 = (Yij(4) = (PiA Q34), 1 < i, j < d, 

where the polynomials Pi,(h), Q,,(h) > 0 for h E I are relatively prime; the 
matrix r(h) is p-almost everywhere positive definite, so that r(X)g(h) = 0 only 
on the sets with null p-measure provided that g EL~(A, dp). For example, if 
L = iD, then rl = I, dp = dh, +(x, y, A) = (2n)-l exp{ih(x - y)}, so that 
R(x, y) is a convolution kernel with a rational Fourier transform. 

Let Q(A) be the least common multiple of the polynomials Q,(h), 1 ,<j, 
i < d, A,(h) = P,,(h) E:(A) Q(h), 4 = deg Q(X), and q is even. Equation (1) 
can be written as 

A(L) jA S(Y, 4 44 dz =f(r), YEA, 

S(v, 4 = j Q-V) 4(x, % 4 444 E, 
A 

(4) 

where A(L) is the matrix differential operator with elements &(L), and E is the 
unit d x d matrix. Assume that det A(X) > 0, h E I; then the equation A(L) v =f 
can be written as 

F. Bdx) D’w = f, det B,,,(X) + 0, X E A. (5) 

Here B,(X) are matrix coefficients, m = sa, a = max,(i,j6d deg ,&(A). We note 
that the operator Q(L) E is of the form of (5) with m replaced by n = sq, n even. 
We assume that m is even. Let &. , 1 <<j < m, be a fundamental system of 
matrix solutions (FSMS) to equation A(L)+ = 0, and #,*, 1 <<j < n/2 be a 
FSMS of equation Q(L) Ea,h = 0, I&+(+ co) = 0, a&-(--co) = 0. If L = iD, 
Q(h) > 0 it is evident that such a dichotomy is possible. If Q(h) > 0, and L is 
given by (2) with p&z) = 1 the existence of such dichotomy is also known (see 
[9, p. 1181). Let us write Eq. (4) in the form 

Here cj are constant vectors, andg(y) is a partial solution to equation .-l(L) u = f. 
Denote by H, , the Sobolev space bf’2m(A) for 01 > 0 and by HP, its dual space, 
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H,, = ,52(d). If A E H-, we say that it is a distribution with a singularity of order 
ofor,a(h)=ol,supphCLl. 

LEMMA I. Let rij(X) = SjA-l(h). The set of solutions to Eq. (1) in the class of 

distributions having support in A consists of the solutions to the equation (s = s,) 

zuhere 

s R(y, z) H(z) dz = G(y), ~EI, suppHCA, (7) 

n12 

G = 1 Ib,+b,+, y > t, 

j=l 

= f (Yh YEA; 

nl2 

= c $,-bj-, y < t - T. 
1-l 

3. MAIN RESULTS 

THEOREM 1. Let R(r, y) E W, f E H, , 01 = (n - m)/2, and let the assumptions 
of n. 2 hold: namely, Pi, , Qz, > 0, h E I, det A(X) > 0 for X E I, m is even, and 
Y(X) is p-almost everywhere positive deJnite. Then the solution h of Eq. ( I ) exists and 
is unique for a(h) ,( 01. It can be calculated from the formulas 

h = Q(L) T(Y), 

n12 

T(y) = 1 #,+b,+, 
/=l 

y > f. 

n.'2 

= C A-b,-, y<t-TT. 
/=l 

Here differentiation is understood in the sense of distribution theory. The vectors 
b,*, 1 <j .< n/2, c, , 1 <j < m, are uniquely determined byr the linear system 

0 < p < 0.5(n + m) - 1, 

Dp $+h+ lyzt = D” !g + @A/ ly t p 0 <p < 0.5(n + m) - 1. 

The mapping R-1: f -+ h is a homeomorphism of H, onto K, . 
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Remark 1. The last statement of Theorem 1 is the precise description of the 
stability of the solution of Eq. (1). 

Remark 2. The eigenvalues of R E 9, R+j =A&, A, > ha 3 ... 20 and even 
those of more general operator with the kernel (3), where r(h) is a continuous in 
h E A matrix function such that R > 0 inLa(I), have the following properties [6J: 

(i) h,(d) < A,@‘) if A Cd’; 

(ii) if max xe, J, 1 R(x, y)I dy = A < co, then the limit 

wj = t’:1$ h,(d), WI <A> Wl = yp44 

t-T+-C 

exists. 
Here p(h) is the maximal eigenvalue of the matrix r(h), 1 R(x,y)( = 

max,,, 1 R(x, y) a 1 . 1 a l-l, a E Rd. The asymptotic behavior of the eigenvalues 
of the scalar kernels R E W is described in [lo], which also contains some abstract 
theorems on the asymptotic of spectrum of linear operators. 

THEOREM 2. Let R(x, y) = R(x - y), d = 1, R(x) = sI r(h) exp(-z’hx) dh, 

supd(1 + X*Y I r(h) - P,(h) Q-W> = II y - PEE’ II < cl degQ,@) - deg J’,GV 
= 2,3 > 0, Vc > 0; f~ Ho; inf,,,{(l + A2)6 I r(A)/} = C, > 0, C = ql, y = 
2d’ < I, Rh = f, R& = f. The operator R is de$ned by formula (1) R, is the 
operator of the same type corresponding to the function r,(h) = P,(X) Q:‘(A). Then 

I h - h, I-4 < rC(l - r)-’ If IB 1 1 R-l - R;’ 1 < rC(l - r)-‘. (10) 

Here 1 ’ Ia is the norm in the space H, , and I R-l / is the norm of linear operator 
R-Y H, + KB . 

Remark 3. If (I + X2)B r(h) = A(1 + O(1)) as X 4 co, A > 0, Y(A) > 0, 
h E I, then approximate analytic solution to equation (1) in HP4 can be obtained 
as follows: 

(i) The kernel R can be approximated by the kernel R, so that 
II ~(4 - PcQ2 II < 6, 2~C<l, degQ,-degP,=2fi>O. 

(ii) The solution h, E H-, to Eq. (1) with the kernel R, can be determined 
analytically by formula (8). 

(iii) This h, is the analytic approximate solution to Eq. (1) and the error 
estimate is given by formula (10). 

To prove Theorem 2 we need 

LEMMA 2. Let H+ C H,, C K be the Hilbert spaces, I zq, ( < / u j+ , where H+ 
is dense in H and HP is dual to H, . Let R: K + H, be a linear operator. If 
I(Rh, h)l < C I h I’, Vh E H- , then / R / < 2C. If I(Rh, h)l 3 Cl j h I- , 
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Vh E H- , C, > 0, then 1 R-l 1 < CT’. Here 1 R 1 is the norm of the linear operator 
R:H_-tH,,IR-1IisthenormofR-1:H+~H_,and/hI_isthenorminH_. 

Remark 4. The definition and properties of the dual spaces are given, for 
example in [8, Chap. 11. In our theory H, =L2(A), H+ = H*, . 

4. SKETCHES OF PROOFS 

Proof of Lemma 1. If H is defined as in Lemma 1 then h = His the solution 
to Eq. (l), with supp h CA. If h is the solution to Eq. (l), supp h CA, then 
H = h is the solution to Eq. (7). 

Proof of Theorem 1. The sets of solutions of Eqs. (1) and (6) are the same. 
By Lemma 1 the set of solutions of Eq. (6) in the class of distributions coincides 
with the set of solutions ‘of Eq. (*) s, S(y, z) H(z) dz = T(y), y ~1, when 
supp H C A, and T(y) is defined by formula (8). From definition (4) it follows 
that Q(L) S(x, y) = 6(x - y). Thus the set of solutions to Eqs. (*) can be 
described by the formula H = Q(L) T(y), supp H C A. The solution h can be 
found by this formula iff T(y) has maximal smoothness. Inside and outside of 
the A function T(y) is smooth, so that T(y) will have maximal smoothness if 
conditions (9) are satisfied. In this case H = h = Q(L) T(y) E H-, is the solution 
of Eq. (1). To prove the uniqueness and existence of solutions to system (9) 
it is sufficient to prove that the homogeneous system (9) has only the trivial 
solution. Indeed every solution to the homogeneous system (9) generates a 
solution to equation Rh = 0, h E K , supp h CA. By the Parseval equality we have 
0 = (Rh, h) = jA r(A) h’ . h* d,+). H ere K is the generalized Fourier transform 
(instead of plane waves eigenfunctions of the operator L are used) and the asterisk 
denotes the complex conjugation. As r(X) is p-almost everywhere positive definite 
it follows that h” = 0, h = 0, and that Cj = b,* = 0, Vj. AS R: H-, -+ H, is a 
linear injective and surjective mapping it is a homeomorphism of He, onto H, . 

Proof of Lemma 2. The last statement of Lemma 2 is evident. The first 
statement is known if R: H--f H, see [ 11, p. 2341. The same proof holds in the 
case R: H--+H+. 

Proof of Theorem 2. Since Cl I h 1% = inf,d(l + X2)6 I @)I> I h lYB < 
(Rh, h) = J, y(A) I &)I2 dA < sup,,,{(l + h2J6 I r(h)11 I h Iys = C, I h ILB, Lem- 
ma2impliesthatIRI <2C2,1R-11 <C;‘,R:H-,+HB.IfIR-RR,I <2~, 
then I R-1 - K1 I < I[1 + R-l(R, - R)]-’ - I / . / R-l I < C CT:, (2&)j = 
yC(1 - y)-‘. It remains to note that I/ r(X) - ~~(A)11 < E implies that 1 R - R, 1 
< 2~ by Lemma 2. 
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