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1. INTRODUCTION

In this paper H will be a Hilbert space with the inner product (f, ¢) and the
norm || || = (f, f)*2. A will denote a closed, denseley defined linear operator
in H with domain D(A). Its range will be denoted by R(A) and its null space by
N(A) = Ker A. B will denote a linear operator which will be a perturbation of
A, B = 4 + T and it will be assumed that D(7") O D(A) and that D(B) = D(1).

By {L,} we shall denote a sequence of linear subspaces in H such that
L,CL,,, If p(f,L) denotes the distance from an element f € H to the subspace
L then it will also be assumed that

Ve H, p(fiL,)—0 as n-— o,

It will be assumed .4 has discrete spectrum v = o) in the following sense:
every point of o(A) is an isolated eigenvalue of the finite algebraic multiplicity.
We suppose also that 0 ¢ o(4), so that A1 is a bounded operator defined on all
H. Let | A | <|Ay| << - be the eigenvalues of A. If the resolvent of 1 is
compact for A ¢ o(4) and 0 ¢ o(1), then 41 is compact and o(.4) is discrete. If 4
is normal and o(.4) is discrete then A4-! is compact. Without the assumption
about normality it seems that 4~ is not necessarily compact when o(4) is
discrete. We denote the singular values of A by v,(d), v, (4) = ;HA) =
(A )* A1 If 4 = 4% > m > 0 we denote by H ; the Hilbert space which
is the completion of D(.4) in the norm || f|| = (.4f, f)}/%, the inner product in
H, being [f,g] = (4f,g) for f,ge D(4), H, = D(A'?). By o, = o (1) we
denote the subset of the spectrum of a linear operator A4 which consists of the
points A, for which a bounded noncompact sequence f, exists such that
| Af, — A | = 0, n — o0, while 0, = 0,(d) = {X: A ¢ 0,(A4), A€ a,(:1%)}, a,(d)
is the set of eigenvalues of 4, o, = ¢, U o, . The set o'0, consists of the eigen-
values of the operator 4, o, = o, if they have finite algebraic multiplicity.
Denote by —, — strong and weak convergence respectively in H. This paper
discusses the following problem: when o, (B) ;3 (A) — 1 or A(B) A;}(4) — 1,

* This work was supported by AFOSR F49620-79-C-0128.

10
0022-247X,80/070010-08$02.00,0

Copyright & 1980 by Academic Press, Inc.
All rights of reproduction in any form reserved.



PERTURBATIONS PRESERVING ASYMPTOTIC OF SPECTRUM 11

as n — oo ? While this problem was discussed in [1, p. 351] our results are more
general and at the same time our technique is simpler. The same problem will
also be discussed for perturbed quadratic forms. A quadratic form T[f, f] is
said to be compact relative to a positive definite quadratic form A[f, f] if any
sequence {f.}, A[f.,f.] <1 has a subsequence {f,} such that T[f, — f.,
fw—1i]—0, m, k— oo. By D[] we denote the domain of the quadratic form
A. The spectrum of a sectorial quadratic form is the spectrum of the operator,
generated by the form. The connection between sectorial forms and operators is
described in [2, p. 404]. Below C denotes various constants. The results were
announced in [4] and applied in [5, 6].

2. MAIN REsuLTS

TrEOREM . If the operator TA7t is compact, then B = A + T is closed. If
the operators AL, TA™, AT are compact, O ¢ o(B), then o(B) is discrete.

THEOREM 2. If A = A* = m >0, the operator AT is compact in H,,
D(T)D H,, B = B*, then A\,(B). X,"(4)— 1, n— c0.

TueoreM 3. If O, S are compact linear operators in H, such that dim R(Q)
— o0, NI+ 8) = {0} then 3,(Q +0S) 5{0) — 1, (0 + SO) 7(Q) > I,

n— o0,

Turorem 4. If A-Y, AT, and TA™ are compact, O ¢ o(B), then o B) is
discrete, 5,(B) 5;1(4)— 1, n— co. If TA-, AT~ are compact and B normal,
0¢ o(B), and A = A* is semibounded from below, then A,(B) X;'(A) — 1, n — .

TueoreMm 5. If A[f, f] is a positive-definite quadratic form in H, with discrete
spectrum, and a closed densely defined real valued form T[f, f] is compact relative to

A[f, f1, D[] C D[T), then the form B[f, f]1 = A[f, f] + T(/,f], D[B] =D[1]
has discrete spectrum such that A (B) 3,1(4) — 1, n — 0.

Lemma 1. Let {f,} be a noncompact bounded sequence in H. Then there exists
a noncompact sequence i, , ,, — 0, such that $,, =f, —f, .

Lemma 2. The operator (A*A + 1)t is compact iff (A — M) is compact.

Lemma 3. A4 linear operator T in H is compact tff (1) y, =sup | Thi-
|| 10, n— o0, or (2) (Tg,,g,) — 0, n— 0, for any g, — 0, n— 0.

Lemma 4. Let A~! be bounded. The operator TA1 is compact iff T is A-com-
pact, ie., if | f,| + | Af, | < C then Tf, converges.

Remark 1. If T > 0 then AT is compact in H, if W(H, — Hy) is com-
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pact. Here W(H , — H7) denotes the embedding operator. If (T, f)| <(Of, f),
0 >0, and W(H, -~ H,) is compact, then AT is compact in H, (see [3,

p. 37)).

LevMmA 5. Under the assumptions of Theorem 5 let t be a self-adjoint and
compact operator on the space H, defined by the equality T[f, f] = [tf, f], where
[4, v] denotes the inner product in H, . Then the form T[f, f] can be represented
as follows:

T, f1=T,f.f1+ TIf.f], and for an arbitrarily small ¢, | T[f, f]l <
e[ £, f1, while T[f, f]is a quadratic form in n-dimensional space with the property

that | T,[f, f]l <clf™

3. Proors

Proof of Lemma 1. If f, is bounded but not a compact sequence it is possible
to select a subsequence (denoted also by f,) such that f, — f, where f, is also
not compact. To finish the proof one must construct a subsequence i, ==
Jap,y — Jn,, Which is also not compact, as it is clear that §, — 0.

In the following we use the argument given in [3, p. 41]. If i, converges, then
Y, — 0. But if f,, is not a compact sequence it is possible to find a subsequence
{fa,}suchthat|f, —f, |>e> 0. Thisimplics that| ¢, | > eand ¢, -0,
which is a contradiction.

Proof of Lemma 2. Let (4 — AI)~! be compact. To show that (4*4 + I)1
is compact consider a bounded sequence {f,} such that |(4*4 +1I)f, | < C.
We show that some subsequence {f,,} converges. Since |[(4*4 + I) f,, f,)| =
LAf, |2+ | fu |2 <, this implies that | Af, | + | fu | <¢ [(A—ADf,| <c
As (A — I)™ is compact a subsequence {f, } converges. Thus (4*4 + I)* is
compact. Conversely, suppose that (4*A + I)~1is compact, then (4*4 + )1/
is compact. It is sufficient to show that |[(4 — Al) f,, | < ¢, A ¢ o(A) implies that
{fn,} converges.

If (A—M)ful<c¢, A¢o(d), then |df, |+ ful <c, (Afn,dfn) +
(fu . fo) <. But D(4) = D{(A*A 4 V2. Thus, |(4*4 + I)'2f, | <c. As
(A*A4 + I)7'/ is compact a subsequence {f, } converges.

Proof of Lemma 3. (1) Let Ay ,..., b, be an orthonormal basis in L, , and T
compact. It is clear that 0 <y, ., <y, ,s0limy, =9, n— 0. If y > 0 then
there exists a sequence {f,}, such that f, | L,, |f,| =1, | Tf,| =2y >0.
Without loss of generality it can be assumed that f,— 0, as p(f, L,})—0,
Vfe H,n — 0. As T'is compact, Tf, — 0. This contradiction shows that y = 0.
To prove the sufficiency we let g, =k — i, , ¢, =Y, (h, )R, YL,
gn LL,, Toh=Ty,.
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Then
([ T—Tpl=sup (T—=To)h|= sup | Tg, | < sup | Tg|
la1=1 OpLLp o, B=1—fu,l? g1L,lgi<1
=y, — 0, n— oo.

As T, has the finite rank, 7 is compact.

(2) The necessity of condition (2) is trivial. From the known polarization
identity (Tf, ) = 0.25(T(f + &), f + &) — (T(f — &) f — & + il(T(f + i),
[+ i) — (T(f — 12), f — i2)]} and condition (2) it follows, that (Tf,,g,) —0
when f, — 0, g, — 0. So T is compact.

Proof of Lemma 4. 1f | f,, | < cand T'A-!is compact then TA~Y, converges.
Let A7Y, =g, ,f, = Ag, . As A is bounded | g, | < ¢ Thus | g, { + | 4g, |
< ¢ implies that Tg, converges. This implies that T is A-compact. If T is
A-compact, | f, | < c then TA-Y, = Tg, and |g,| <¢, | Ag,| <c¢. Thus
{Tg,} converges.

Proof of Theorem 1. (a) Letf, —f, Bf, = Af, + Tf, —g. Then () | 4f, |
< ¢, as shown below, {Tf, } converges by Lemma 4 and {4f, } converges. As A
is closed f € D(A) = D(B) and B is closed. To prove (%) suppose that | Af, | —
o0. Then setting f, = f, | Af, | we obtain that |f, | —0, | 4f, | =1,
Afn + Tf, — 0. Thus Tf, converges. Thus Af, converges and as 4 is closed
and | f,; | — 0, we have | Af, | — 0. But this is impossible as | Af, | = 1. Thus
() is valid and B is closed. (b} To demonstrate that the spectra o(B) is discrete
it must be proved that if A € ¢(B) then A ¢ ¢,(B) U 0,(B) and o,(B) = o4B). Let
A€ a(B). Then a non-compact bounded sequence {f,} exists, such that
Af, 4+ Tf, — X, — 0. By Lemma 1, a non-compact sequence {{,.}, {fn} — 0
exists, such that 44, — Xb,, + T, —0, ¢, — XA, ~~ AT, — 0. As
AT is compact and i, — 0 it follows that i, — A4-4,, — 0. Without using
the compactness of A~! we prove that A ¢ o,(B) follows from the fact that AT
and T'A~! are compact. If X 5= 0 then A%, — AN, — 0, so that AL € g (A1)
But o (A-') ={0}. This contradiction proves that A¢ o (B). If A =0 then
im — 0. This is impossible as ¢, is not compact. So A ¢ o (B). Let A€ o,(B),
(B* —AI)f = 0.Since B = A(I + A-'T), it follows that B* = (I -+ 4-1T)* A*
= A4* 4 T*. Suppose now that A ¢ o(4). Then f + (4* — AI)L T*f = 0. As
T(4 — M) is compact the equation g + T(4 — Al)1g =0 has a solution
g7#0. Hence (AT —AM)h =0, h=A—A)1g+#0, leay(B). It
implies that A ¢ o,(B). If A € o(4) then X + € ¢ 6(4), where ¢ > 0 is sufficiently
small, as o(A) is discrete. Therefore the equality f -+ [4* — (A + ) I]! X
(T* 4+ eI)f =0 holds. Since [A —(A+ €)I]* and [A — A+ €)I]1 T are

compact (only here use is made of the compactness of A-1), equation
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g+ (T+el) - [4—(A+ €)1 g =0 has a solution g % 0. As above it follows
that A € 0,(B) and therefore that A ¢ o,(B). If O ¢ o(B), then 0,(B) = o4(B).!

Proof of Theorem 2. As A-'T is compact in H , it follows that Hy = H, ,
and o(B) is discrete [see 3, pp. 38, 42], and by Lemma 3

o s A0 _ 0 AT
s FOE 5 Rve JOR £ B

Here L,() is a linear span of » first eigenelements of operator A4, and sign |
denotes orthogonality in H,. Using the inequality inf (1 4 &) >
infa(l —supb), a >0, —1 < b <1 one has

Api(B) =sup  inf E}M

Ly, f1LpfeD(B) (f’f)

NS (Tf, /) .,
f_LLy.(A).fiD(A) ; (fvf) (1 + (Afvf) )z - /\HI(A) (I ")

where a, —0. By symmetry A, (4)>A,.4(B)( — b,),b,—0. Thus
A(B) AHA)— 1, n— 0.

=

Remark 2. 'The proof implies that only a finite number of eigenvalues A,(B)
can be negative.

Proof of Theorem 3. As 4,%(Q + 0S) = A{(I + S*) U{I + S)}, U = Q~Q,
A(U) = 4,%(Q). Since S is compact and N(I + S) = {0}, one has (I + S)! =
I+ I'yand (I +S8*)1 =1 4 I'*, where I'is compact. Let V =(I 4 S*) U(I + S)
2 0. If it can be shown that (x) A,(V) < A(U) (1 + a,), @, -0, n — o0, then
by symmetry A,(U) <ALV) (1 + b,), b,— 0, n — oo, and A (V) - ;Y (U)— 1,
n — o0, This is equivalent to the first statement of Theorem 3.

The second statement of Theorem 3 can be proved similarly. Next it will be
shown that

Aaa(V) = infsup DD < g 108 8) . (8:8).

L, fLL, (fvf) f_LM"( (gvg) (f!f)

(x)

w Ue g o (82) 2
SR e SR St a),

@, —0,n— co. Here g = (I + S) f, M,, is the linear n-dimensional subspace so
chosen that the condition f | M, is equivalent to the condition g 1 L(U),

1 See Appendix.



PERTURBATIONS PRESERVING ASYMPTOTIC OF SPECTRUM 15

L,(U), being the linear span of the first eigenelements ¢, ,..., ¢, of the operator
U, M, is the span of the elements j; = (I + S*)¢;. If (g,¢,) =0 then 0 =
(S L+ S%¢;) = (f, ¥;). As 14 S§* is invertible, the system i ,..., ¢, is
linearly independent, dim M =n and p(f, M,)—0, n— oo, Vfe H. (%)
involves the use of the equality
(£ 8) (S0 + 10 SHI + (SF, Sf)
SR T 30

:1+an7

a, — 0, n — oo, which in turn follows from Lemma 3 and the compactness of .S.

Proof of Theorem 4. By Theorem 1, o(B) is discrete. As 0¢o(B), B =
A+ C), C=4-T, thus NI+ C)={0}, Bl =+ C)1 4, 4,(B) =
By =4I + S)O). Here Q = AL, I + S =(I + C)™, Q, and S are
compact. By Theorem 3, 4;(Q) 4,{( 4 S)Q} — 1, n — 0. Thus 4,(B) 4,'(4)
— 1, n— c0. To prove the second statement of Theorem 4, recall that if 4 = 4*
and if o(A4) is discrete then 4! is compact. As B is normal ¢(B) = o. If
TA='is compact then it follows from the argument of Theorem | that ¢ (B) = 0.
As 0 ¢ o(B) operator B! is compact, B! = 4~ + TA Y)Y, NI 4 TA47) =
{0}, ({ + TA*) =1+ I, where I' is compact. Consequently it follows that
9{B) 57(A) — 1, n— o0. As 4 = A* and B is normal, it is known that | A, ()|
= d,() and that s,(B) = | A,(B)| . To prove that A,(B) \; () — I, n— oo it
is sufficient to prove that | A,(B)| A;Y(B) — 1, n— oo. Let Af, + Tf, = A fo -
A =2(B), (fu)fm) =08um. Then f, 4+ Cf, =2A,47Y, . and C = A-'T is
compact, so A, = (A7, , [ [ + (Cf,, fn)]- Hence

_ I(CSa s f)l
ImaA,|-|ReA, [P ——22 — 5 (), n-—> 0.
Hm A b TRe A 70 76, 7

Proof of Lemma 5. 1f T[f, f] is compact relative to A[f, f], then T[f, f]
is bounded in H, . Recall that T{f, f] = [¢#/, f], t being the self-adjoint bounded
operator in H, . As T[f, f] is compact relative to A[f, f], ¢ is compact in H
t =1, + t., where ¢, has finite rank, | f, | <Te, | ¢, | being the norm of operator
in Hy. Hence Tf, f] = [tof, ] + S f1 = Tul /o f1 + TLASL TS 1 <
e[f, f]- Lete, ..., ¥, be the basis of the diagonal representation of ¢, , [f,.f, f] =
SN A3 b€ Hy . As D(A) is dense in H, one can find {if;} € D(A),
) — bsllu, <O so that [, ] < I[f, ] + [fidh; — ]2 < 2I[fs 1% +
201128, I, b1 = I(f, A2 < ¢ | f . Hence [[t,f, f]| < c®|If 12 + C | £ 1%
C = C(n, ;). From here we get B[f, f] = A[f. f] + T[f.f] = A f] (I —
C8 — ¢) — C | f[2 Setting C8 + ¢ << | one can see that B[f, f] is semi-
bounded in H from below, and that Hy == H , .

Proof of Theorem 5. As B[f, f] is semibounded in H from below there exists
an m > 0 such that B,[f, f1 = B[f, f] + m(f, f) is positive definite in H. Let

409/76/1-2
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B,, == B+ m and B be the self-adjoint operators generated by the forms B, [f, f]
and B[, f] respectively. It is clear that A (B,,) = A,(B) + m. As A,(4) - +©
the equality A,(B) A;}(A4) -— 1, n — o0 is equivalent to the equality A,(B,,) A;*(d)
— 1, n—> o0. Thus it can be supposed that operator B is positive definite. The
spectrum o(B) is discrete iff W(Hy — H) is compact (Rellich theorem). But
W(Hy — H) is compact ifft W(H,— H) i1s compact because H, = Hy. As
a(4) is discrete the operator W(H , — H) is compact. And thus o(B) is discrete.
Further, the following holds:

Con g BUA L e ALBAL (| TS
Yooi(B) = sup inf T2ad > inf Tt (14 )

o TU A
> Al ) (1= sup Sy

where a, — 0, n — oc. The relation a, —0 follows from Lemma 3 and the
compactness of T[f, f] relative to A[f, f], L,(-1) denotes the linear span of the

first # eigenelements of the operator 4. By symmetry A, 1(A4) = A, 1(B) (1 — 4,),
b, —0, n— 0. Thus A(B) \;}(A) — 1, n— 0.

) =A@ (1 — ay),

4. EXAMPLES

1. Let H = L¥D), D € R™, be a bounded domain with the smooth boundary
I, AUff] = [o(Nf 2+ 1 f 1B ds, TIAS] = [rhs) | fEds, h(s)e CYD).
Here T[f, f] is assumed to be compact relative to A[f, f], so A,(B) A"1(1) — 1,
n — oo. Here {A,(4)} is the spectrum of the inner Neumann problem for the
doomain D, {A,(B)} is the spectrum of the following problem:

—Af + f=pf in D, 8f6N + h(s)f =0 on I.

2. Consider the problem L,y = A u in D, L =L, + L, , where L, is a self-
adjoint elliptic differential operator of order 2r, L, a differential operator of
order r; << 2r in H = L% D). Suppose that N(L,) = {0}. The operators Lg'L, ,
L,Ly* are compact in H. According to Theorem 4, 9,(L) dg*(Loy) — 1, n — 0. If
in addition N(L) = {0}, L, is self-adjoint, L normal, then A, (L) AY(L,) — 1,
n— 0.

These examples are of illustrative nature. The results of these examples are
known, but here results have been obtained without any calculations or estimates,

5. COMMENTS

In[1, p. 35] the following theorems are proved: (1) if O = 0, dim R(Q) = =0,
QO compact K=+ §)Q, K =K* S compact, N(I+ S)={0} then
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A(K)XHQ) — 1, n— o0; (2) if Q = O, dim R(Q) = oo, S compact, N(Q) =
{0}, N(I + S) = {0}, and K =Q(I + S) then 4,(K) 4;%(Q) — 1, n— 3. Both
theorems are corollaries to Theorem 3, which was proven without assuming that
K or Q were self-adjoint. Theorem (2)is an immediate consequence of Theorem 3,
while Theorem (1) is implied by Theorem 5 once it is observed that A, (K) = 0
for any sufficiently large n and that 4,(K) == A,(K') whenever A,(K) = 0.

APPENDIX

LemMva. If A-' and TA7 are compact and N(B + KI) = [0} for some
number K ¢ o(.A4), then o(B) = o4(B). Here N(B) = Ker B.

Proof. We have (A+ T —Al)t=(d— KIy'(I + O — uS)"l, where
S=(d4+KH)1, Q=TI+ KI), p=A+K, S, O are compact. If
N(B + KI)=={0} then N{(I+ Q)(d 4+ KI)} ={0} and N{I + Q} ={0).
Thus (I - Q)! exists on the whole space H. Therefore by the well-known
result (I 4+ Q — uS)™! is a finitemeromorphic operator function. It means that
(I +Q — pS)! is a meromorphic operator function in pu and its Laurent
coefficients are finite rank operators. The lemma is proved. Part (b) in the proof
of Theorem 1 follows from the lemma without assumption about compactness of

AT
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