Perturbations Preserving Asymptotic of Spectrum*

A. G. Ramm
Department of Mathematics, The University of Michigan, Ann Arbor, Michigan 48109
Submitted by C. L. Dolph

1. Introduction

In this paper H will be a Hilbert space with the inner product (f, g) and the norm $\|f\|=(f, f)^{1 / 2}$. A will denote a closed, denseley defined linear operator in H with domain $D(A)$. Its range will be denoted by $R(A)$ and its null space by $N(A)=\operatorname{Ker} A . B$ will denote a linear operator which will be a perturbation of $A, B=A+T$ and it will be assumed that $D(T) \supset D(A)$ and that $D(B)=D(A)$.

By $\left\{L_{n}\right\}$ we shall denote a sequence of linear subspaces in H such that $L_{n} \subset L_{n+1}$. If $\rho(f, L)$ denotes the distance from an element $f \in H$ to the subspace L then it will also be assumed that

$$
\forall f \in H, \quad \rho\left(f, L_{n}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

It will be assumed A has discrete spectrum $\sigma=\sigma(A)$ in the following sense: every point of $\sigma(A)$ is an isolated eigenvalue of the finite algebraic multiplicity. We suppose also that $0 \notin \sigma(A)$, so that A^{-1} is a bounded operator defined on all H. Let $\left|\lambda_{1}\right| \leqslant\left|\lambda_{2}\right| \leqslant \cdots$ be the eigenvalues of A. If the resolvent of A is compact for $\lambda \notin \sigma(A)$ and $0 \notin \sigma(A)$, then A^{-1} is compact and $\sigma(A)$ is discrete. If A is normal and $\sigma(A)$ is discrete then A^{-1} is compact. Without the assumption about normality it seems that A^{-1} is not necessarily compact when $\sigma(A)$ is discrete. We denote the singular values of A by $s_{n}(A), s_{n}(A)=J_{n}^{-1}\left(A^{-1}\right)=$ $\lambda_{n}^{1 i 2}\left\{\left(A^{-1}\right)^{*} A^{-1}\right\}$. If $A=A^{*} \geqslant m>0$ we denote by H_{A} the Hilbert space which is the completion of $D(A)$ in the norm $\|f\|=(A f, f)^{1 / 2}$, the inner product in H_{A} being $[f, g]=(A f, g)$ for $f, g \in D(A), H_{A}=D\left(A^{1 / 2}\right)$. By $\sigma_{r}=\sigma_{r}(A)$ we denote the subset of the spectrum of a linear operator A which consists of the points λ, for which a bounded noncompact sequence f_{n} exists such that $\left|A f_{n}-\lambda f_{n}\right| \rightarrow 0, n \rightarrow \infty$, while $\sigma_{r}=\sigma_{r}(A)=\left\{\lambda: \lambda \notin \sigma_{p}(A), \bar{\lambda} \in \sigma_{p}\left(A^{*}\right)\right\}, \sigma_{p}(. \lambda)$ is the set of eigenvalues of $A, \sigma_{c}=\sigma_{r} \cup \sigma_{r}$. The set $\sigma \sigma_{e}$ consists of the eigenvalues of the operator $A, \sigma_{p}=\sigma_{d}$ if they have finite algebraic multiplicity. Denote by $\rightarrow, \longrightarrow$ strong and weak convergence respectively in H. This paper discusses the following problem: when $\nu_{n}(B) \nu_{n}^{-1}(A) \rightarrow 1$ or $\lambda_{n}(B) \lambda_{n}^{-1}(A) \rightarrow 1$,

* This work was supported by AFOSR F49620-79-C-0128.
as $n \rightarrow \infty$? While this problem was discussed in [1, p. 351] our results are more general and at the same time our technique is simpler. The same problem will also be discussed for perturbed quadratic forms. A quadratic form $T[f, f]$ is said to be compact relative to a positive definite quadratic form $A[f, f]$ if any sequence $\left\{f_{n}\right\}, \mathcal{A}\left[f_{n}, f_{n}\right] \leqslant 1$ has a subsequence $\left\{f_{m}\right\}$ such that $T\left[f_{m}-f_{k}\right.$, $\left.f_{m}-f_{k}\right] \rightarrow 0, m, k \rightarrow \infty$. By $D[A]$ we denote the domain of the quadratic form A. The spectrum of a sectorial quadratic form is the spectrum of the operator, generated by the form. The connection between sectorial forms and operators is described in [2, p. 404]. Below C denotes various constants. The results were announced in [4] and applied in [5, 6].

2. Main Results

Theorem 1. If the operator $T A^{-1}$ is compact, then $B=. A+T$ is closed. If the operators $A^{-1}, T A^{-1}, A^{-1} T$ are compact, $0 \notin \sigma(B)$, then $\sigma(B)$ is discrete.

Theorem 2. If $A=A^{*} \geqslant m>0$, the operator $A^{-1} T$ is compact in H_{A}, $D(T) \supset H_{A}, B=B^{*}$, then $\lambda_{n}(B) . \lambda_{n}^{-1}(A) \rightarrow 1, n \rightarrow \infty$.

Theorem 3. If Q, S are compact linear operators in H, such that $\operatorname{dim} R(Q)$ $=\infty, N(I+S)=\{0\}$, then $\iota_{n}(Q+Q S) \stackrel{\jmath}{n}_{-1}(Q) \rightarrow 1, s_{n}(Q+S Q) \iota_{n}^{-1}(Q) \rightarrow 1$, $n \rightarrow \infty$.

Theorem 4. If $A^{-1}, A^{-1} T$, and $T A^{-1}$ are compact, $0 \notin \sigma(B)$, then $\sigma(B)$ is discrete, $\mathfrak{o}_{n}(B) \jmath_{n}^{-1}(A) \rightarrow 1, n \rightarrow \infty$. If $T A^{-1}$. $A T^{-1}$ are compact and B normal, $0 \notin \sigma(B)$, and $A=A^{*}$ is semibounded from below, then $\lambda_{n}(B) \lambda_{n}^{-1}(A) \rightarrow 1, n \rightarrow \infty$.

Theorem 5. If $A[f, f]$ is a positive-definite quadratic form in H, wuith discrete spectrum, and a closed densely defined real valued form $T[f, f]$ is compact relative to $A[f, f], D[A] \subset D[T]$, then the form $B[f, f]=A[f, f]+T[f, f], D[B]=D[A]$ has discrete spectrum such that $\lambda_{n}(B) \lambda_{n}^{-1}(A) \rightarrow 1, n \rightarrow \infty$.

Lemma 1. Let $\left\{f_{n}\right\}$ be a noncompact bounded sequence in H. Then there exists a noncompact sequence $\psi_{m}, \psi_{m} \rightharpoonup 0$, such that $\psi_{m}=f_{n_{m+1}}-f_{n_{m t}}$.

Lemma 2. The operator $\left(A^{*} A+I\right)^{-1}$ is compact iff $(A-\lambda I)^{-1}$ is compact.
Lemma 3. A linear operator T in H is compact iff (1) $\gamma_{n} \equiv \sup _{h-L_{n}}|T h|$. $|\boldsymbol{h}|^{-1} \rightarrow 0, n \rightarrow \infty$, or (2) $\left(T g_{n}, g_{n}\right) \rightarrow 0, n \rightarrow \infty$, for any $g_{n} \rightharpoonup 0, n \rightarrow \infty$.

Lemma 4. Let A^{-1} be bounded. The operator $T A^{-1}$ is compact iff T is A-compact, i.e., if $\left|f_{n}\right|+\left|A f_{n}\right| \leqslant C$ then $T f_{n}$ converges.

Remark 1. If $T \geqslant 0$ then $A^{-1} T$ is compact in H_{A} if $W\left(H_{A} \rightarrow H_{T}\right)$ is com-
pact. Here $W\left(H_{A} \rightarrow H_{T}\right)$ denotes the embedding operator. If $|(T f, f)| \leqslant(Q f, f)$, $Q \geqslant 0$, and $W\left(H_{A} \rightarrow H_{Q}\right)$ is compact, then $A^{-1} T$ is compact in H_{A} (see [3, p. 37]).

Lemma 5. Under the assumptions of Theorem 5 let t be a self-adjoint and compact operator on the space H_{A} defined by the equality $T[f, f]=[t f, f]$, where $[u, v]$ denotes the inner product in H_{A}. Then the form $T[f, f]$ can be represented as follows:
$T[f, f]=T_{n}[f, f]+T[f, f]$, and for an arbitrarily small $\epsilon,|T[f, f]| \leqslant$ $\epsilon[f, f]$, while $T_{n}[f, f]$ is a quadratic form in n-dimensional space with the property that $\left|T_{n}[f, f]\right| \leqslant c|f|^{2}$.

3. Proofs

Proof of Lemma 1. If f_{n} is bounded but not a compact sequence it is possible to select a subsequence (denoted also by f_{n}) such that $f_{n} \rightarrow f$, where f_{n} is also not compact. To finish the proof one must construct a subsequence $\psi_{m}=$ $f_{n_{m+1}}-f_{n_{m}}$ which is also not compact, as it is clear that $\psi_{n} \rightharpoonup 0$.

In the following we use the argument given in [3, p. 41]. If ψ_{m} converges, then $\psi_{m} \rightarrow 0$. But if f_{n} is not a compact sequence it is possible to find a subsequence $\left\{f_{n_{m}}\right\}$ such that $\left|f_{n_{m+1}}-f_{n_{m}}\right| \geqslant \epsilon>0$. This implies that $\left|\psi_{n}\right| \geqslant \epsilon$ and $\psi_{m} \rightarrow 0$, which is a contradiction.

Proof of Lemma 2. Let $(A-\lambda I)^{-1}$ be compact. To show that $\left(A^{*} A+I\right)^{-1}$ is compact consider a bounded sequence $\left\{f_{n}\right\}$ such that $\left|\left(A^{*} A+I\right) f_{n}\right| \leqslant C$. We show that some subsequence $\left\{f_{n_{k}}\right\}$ converges. Since $\left|\left(\left(A^{*} A+I\right) f_{n}, f_{n}\right)\right|=$ $\left|A f_{n}\right|^{2}+\left|f_{n}\right|^{2} \leqslant c$, this implies that $\left|A f_{n}\right|+\left|f_{n}\right| \leqslant c,\left|(A-\lambda I) f_{n}\right| \leqslant c$. As $(A-I)^{-\mathbf{1}}$ is compact a subsequence $\left\{f_{n_{k}}\right\}$ converges. Thus $\left(A^{*} A+I\right)^{-1}$ is compact. Conversely, suppose that $\left(A^{*} A+I\right)^{-1}$ is compact, then $\left(A^{*} A+I\right)^{-1 / 2}$ is compact. It is sufficient to show that $\left|(A-\lambda I) f_{n}\right| \leqslant c, \lambda \notin \sigma(A)$ implies that $\left\{f_{n_{k}}\right\}$ converges.

If $\left|(A-\lambda I) f_{n}\right| \leqslant c, \quad \lambda \notin \sigma(A)$, then $\left|A f_{n}\right|+\left|f_{n}\right| \leqslant c, \quad\left(A f_{n}, A f_{n}\right)+$ $\left(f_{n}, f_{n}\right) \leqslant c$. But $D(A)=D\left\{\left(A^{*} A+I\right)^{1 / 2}\right\}$. Thus, $\left|\left(A^{*} A+I\right)^{1 / 2} f_{n}\right| \leqslant c$. As $\left(A^{*} A+I\right)^{-1 / 2}$ is compact a subsequence $\left\{f_{n_{k}}\right\}$ converges.

Proof of Lemma 3. (1) Let h_{1}, \ldots, h_{n} be an orthonormal basis in L_{n}, and T compact. It is clear that $0 \leqslant \gamma_{n+1} \leqslant \gamma_{n}$, so $\lim \gamma_{n}=\gamma, n \rightarrow \infty$. If $\gamma>0$ then there exists a sequence $\left\{f_{n}\right\}$, such that $f_{n} \perp L_{n},\left|f_{n}\right|=1,\left|T f_{n}\right| \geqslant \gamma>0$. Without loss of generality it can be assumed that $f_{n} \rightharpoonup 0$, as $\rho\left(f, L_{n}\right) \rightarrow 0$, $\forall f \in H, n \rightarrow \infty$. As T is compact, $T f_{n} \rightarrow 0$. This contradiction shows that $\gamma=0$. To prove the sufficiency we let $g_{n} \equiv h-\psi_{n}, \psi_{n} \equiv \sum_{1}^{n}\left(h, h_{j}\right) h_{j}, \psi_{n} \in L_{n}$, $g_{n} \perp L_{n}, T_{n} h \equiv T \psi_{n}$.

Then

$$
\begin{aligned}
\left|T-T_{n}\right| & =\sup _{|h|=1}\left|\left(T-T_{n}\right) h\right|=\sup _{g_{n} \perp L_{n} \cdot\left|g_{n}\right|^{2}=1-\left|\psi_{n}\right|^{2}}\left|T g_{n}\right| \leqslant \sup _{g \perp L_{n},|g| \leqslant 1}|T g| \\
& =\gamma_{n} \rightarrow 0, \quad n \rightarrow \infty .
\end{aligned}
$$

As T_{n} has the finite rank, T is compact.
(2) The necessity of condition (2) is trivial. From the known polarization identity $(T f, g)=0.25\{(T(f+g), f+g)-(T(f-g), f-g)+i[(T(f+i g)$, $f+i g)-(T(f-i g), f-i g)]\}$ and condition (2) it follows, that $\left(T f_{n}, g_{n}\right) \rightarrow 0$ when $f_{n} \rightharpoonup 0, g_{n} \rightharpoonup 0$. So T is compact.

Proof of Lemma 4. If $\left|f_{n}\right| \leqslant c$ and $T A^{-1}$ is compact then $T A^{-1} f_{n_{k}}$ converges. Let $A^{-1} f_{n}=g_{n}, f_{n}=A g_{n}$. As A^{-1} is bounded $\left|g_{n}\right| \leqslant c$. Thus $\left|g_{n}\right|+\left|A g_{n}\right|$ $\leqslant c$ implies that $T g_{n_{k}}$ converges. This implies that T is A-compact. If T is A-compact, $\left|f_{n}\right| \leqslant c$ then $T A^{-1} f_{n}-T g_{n}$ and $\left|g_{n}\right| \leqslant c,\left|A g_{n}\right| \leqslant c$. Thus $\left\{T g_{n_{k}}\right\}$ converges.

Proof of Theorem I. (a) Let $f_{n} \rightarrow f, B f_{n}=A f_{n}+T f_{n} \rightarrow g$. Then (*) $\left|A f_{n}\right|$ $\leqslant c$, as shown below, $\left\{T f_{n_{k}}\right\}$ converges by Lemma 4 and $\left\{A f_{n_{k}}\right\}$ converges. As A is closed $f \in D(A)=D(B)$ and B is closed. To prove (*) suppose that $\left|A f_{n}\right| \rightarrow$ ∞. Then setting $f_{n}^{\prime}=f_{n}\left|A f_{n}\right|^{-1}$ we obtain that $\left|f_{n}^{\prime}\right| \rightarrow 0,\left|A f_{n}^{\prime}\right|=1$, $A f_{n}^{\prime}+T f_{n}^{\prime} \rightarrow 0$. Thus $T f_{n_{k}}^{\prime}$ converges. Thus $A f_{n}^{\prime}$ converges and as A is closed and $\left|f_{n}^{\prime}\right| \rightarrow 0$, we have $\left|A f_{n}^{\prime}\right| \rightarrow 0$. But this is impossible as $\left|A f_{n}^{\prime}\right|=1$. Thus $(*)$ is valid and B is closed. (b) To demonstrate that the spectra $\sigma(B)$ is discrete it must be proved that if $\lambda \in \sigma(B)$ then $\lambda \notin \sigma_{c}(B) \cup \sigma_{r}(B)$ and $\sigma_{p}(B)=\sigma_{d}(B)$. Let $\lambda \in \sigma_{c}(B)$. Then a non-compact bounded sequence $\left\{f_{n}\right\}$ exists, such that $A f_{n}+T f_{n}-\lambda f_{n} \rightarrow 0$. By Lemma 1 , a non-compact sequence $\left\{\psi_{m}\right\},\left\{\psi_{m}\right\} \longrightarrow 0$ exists, such that $A \psi_{m}-\lambda \psi_{m}+T \psi_{m} \rightarrow 0, \psi_{m}-\lambda A^{-1} \psi_{m}+A^{-1} T \psi_{m} \rightarrow 0$. As $A^{-1} T$ is compact and $\psi_{m} \rightharpoonup 0$ it follows that $\psi_{m}-\lambda A^{-1} \psi_{m} \rightarrow 0$. Without using the compactness of A^{-1} we prove that $\lambda \notin \sigma_{c}(B)$ follows from the fact that $A^{-1} T$ and $T A^{-1}$ are compact. If $\lambda \neq 0$ then $A^{-1} \psi_{m}-\lambda^{-1} \psi_{m} \rightarrow 0$, so that $\lambda^{-1} \in \sigma_{c}\left(A^{-1}\right)$. But $\sigma_{c}\left(A^{-1}\right)=\{0\}$. This contradiction proves that $\lambda \notin \sigma_{c}(B)$. If $\lambda=0$ then $\psi_{m} \rightarrow 0$. This is impossible as ψ_{m} is not compact. So $\lambda \notin \sigma_{c}(B)$. Let $\lambda \in \sigma_{r}(B)$, $\left(B^{*}-\lambda I\right) f=0$. Since $B=A\left(I+A^{-1} T\right)$, it follows that $B^{*}=\left(I+A^{-1} T\right)^{*} A^{*}$ $=A^{*}+T^{*}$. Suppose now that $\lambda \notin \sigma(A)$. 'Ihen $f+\left(A^{*}-\bar{\lambda} I\right)^{-1} T^{*} f=0$. As $T(A-\lambda I)^{-1}$ is compact the equation $g+T(A-\lambda I)^{-1} g=0$ has a solution $g \neq 0$. Hence $(A+T-\lambda I) h=0, \quad h=(A-\lambda I)^{-1} g \neq 0, \lambda \in \sigma_{p}(B)$. It implies that $\lambda \notin \sigma_{r}(B)$. If $\lambda \in \sigma(A)$ then $\lambda+\epsilon \notin \sigma(A)$, where $\epsilon>0$ is sufficiently small, as $\sigma(A)$ is discrete. Therefore the equality $f+\left[A^{*}-(\bar{\lambda}+\epsilon) I\right]^{-1} \times$ $\left(T^{*}+\epsilon I\right) f=0$ holds. Since $[A-(\lambda+\epsilon) I]^{-1}$ and $[A-(\lambda+\epsilon) I]^{-1} T$ are compact (only here use is made of the compactness of A^{-1}), equation
$g+(T+\epsilon I) \cdot[A-(\lambda+\epsilon) I]^{-1} g=0$ has a solution $g \neq 0$. As above it follows that $\lambda \in \sigma_{p}(B)$ and therefore that $\lambda \notin \sigma_{r}(B)$. If $0 \notin \sigma(B)$, then $\sigma_{p}(B)=\sigma_{d}(B) .{ }^{1}$

Proof of Theorem 2. As $A^{-1} T$ is compact in H_{A} it follows that $H_{B}=H_{A}$, and $\sigma(B)$ is discrete [see 3 , pp. 38, 42], and by Lemma 3

$$
a_{n} \equiv \sup _{f \perp L_{n}(A)} \frac{(T f, f)}{A[f, f]}=\sup _{f \Perp L_{n}(A)} \frac{\left[A^{-1} T f, f\right]}{[f, f]} \rightarrow 0, \quad n \rightarrow \infty .
$$

Here $L_{n}(A)$ is a linear span of n first eigenelements of operator A, and sign \Perp denotes orthogonality in H_{A}. Using the inequality inf $a(1+b) \geqslant$ $\inf a(1-\sup b), a \geqslant 0,-1<b<1$ one has

$$
\begin{aligned}
\lambda_{n+1}(B) & =\sup _{L_{n}} \inf _{f \perp L_{n}, f \in D(B)} \frac{(R f, f)}{(f, f)} \\
& \geqslant \inf _{f \perp L_{n}(A), f \in D(A)}\left\{\frac{(A f, f)}{(f, f)}\left(1+\frac{(T f, f)}{(A f, f)}\right)\right\}>\lambda_{n+1}(A)\left(1-a_{n}\right)
\end{aligned}
$$

where $\quad a_{n} \rightarrow 0$. By symmetry $\quad \lambda_{n+1}(A) \geqslant \lambda_{n+1}(B)\left(1-b_{n}\right), b_{n} \rightarrow 0$. Thus $\lambda_{n}(B) \lambda_{n}^{-1}(A) \rightarrow 1, n \rightarrow \infty$.

Remark 2. The proof implies that only a finite number of eigenvalues $\lambda_{n}(B)$ can be negative.

Proof of Theorem 3. As $\lrcorner_{n}{ }^{2}(Q+Q S)=\lambda_{n}\left\{\left(I+S^{*}\right) U(I+S)\right\}, U=Q^{*} Q$, $\lambda_{n}(U)=\delta_{n}^{2}(Q)$. Since S is compact and $N(I+S)=\{0\}$, one has $(I+S)^{-\mathbf{1}}=$ $I+\Gamma$, and $\left(I+S^{*}\right)^{-1}=I+\Gamma^{*}$, where Γ is compact. Let $V \equiv\left(I+S^{*}\right) U(I+S)$ $\geqslant 0$. If it can be shown that $(*) \lambda_{n}(V) \leqslant \lambda_{n}(U)\left(1+a_{n}\right), a_{n} \rightarrow 0, n \rightarrow \infty$, then by symmetry $\lambda_{n}(U) \leqslant \lambda_{n}(V)\left(1+b_{n}\right), b_{n} \rightarrow 0, n \rightarrow \infty$, and $\lambda_{n}(V) \cdot \lambda_{n}^{-1}(U) \rightarrow 1$, $n \rightarrow \infty$. This is equivalent to the first statement of Theorem 3 .

The second statement of Theorem 3 can be proved similarly. Next it will be shown that

$$
\begin{align*}
\lambda_{n+1}(V) & =\inf _{L_{n}} \sup _{f \perp L_{n}} \frac{(V f, f)}{(f, f)} \leqslant \sup _{f \perp M_{n}}\left\{\frac{(U g, g)}{(g, g)} \cdot \frac{(g, g)}{(f, f)}\right\} \\
& \leqslant \sup _{f \perp M_{n}} \frac{(U g, g)}{(g, g)} \cdot \sup _{f \perp M_{n}} \frac{(g, g)}{(f, f)} \leqslant \lambda_{n+1}(U)\left(1+a_{n}\right) \tag{*}
\end{align*}
$$

$a_{n} \rightarrow 0, n \rightarrow \infty$. Here $g=(I+S) f, M_{n}$ is the linear n-dimensional subspace so chosen that the condition $f \perp M_{n}$ is equivalent to the condition $g \perp L_{n}(U)$,
$L_{n}(U)$, being the linear span of the first eigenelements $\phi_{1}, \ldots, \phi_{n}$ of the operator U, M_{n} is the span of the elements $\psi_{j}=\left(I+S^{*}\right) \phi_{j}$. If $\left(g, \phi_{j}\right)=0$ then $0=$ $\left(f,\left(I+S^{*}\right) \phi_{j}\right)=\left(f, \psi_{j}\right)$. As $I+S^{*}$ is invertible, the system $\psi_{1}, \ldots, \psi_{n}$ is linearly independent, $\quad \operatorname{dim} M=n$ and $p\left(f, M_{n}\right) \rightarrow 0, \quad n \rightarrow \infty, \forall f \in H .(*)$ involves the use of the equality

$$
\sup _{f \perp M_{n}} \frac{(g, g)}{(f, f)}=1+\sup _{f \perp M_{n}} \frac{|(S f, f)|+|(f, S f)|+(S f, S f)}{(f, f)}=1+a_{n}
$$

$a_{n} \rightarrow 0, n \rightarrow \infty$, which in turn follows from Lemma 3 and the compactness of S.
Proof of Theorem 4. By Theorem I, $\sigma(B)$ is discrete. As $0 \notin \sigma(B), B=$ $A(I+C), C=A T$, thus $N(I+C)=\{0\}, B^{-1}=(I+C)^{-1} A^{-1}, \sigma_{n}{ }^{2}(B)=$ $\sigma_{n}^{-2}\left(B^{-1}\right)=s_{n}^{-2}\{(I+S) Q\}$. Here $Q=A^{-1}, I+S=(I+C)^{-1}, Q$, and S are compact. By Theorem 3, $\sigma_{n}^{-1}(Q) \sigma_{n}\{(I+S) Q\} \rightarrow 1, n \rightarrow \infty$. Thus $\sigma_{n}(B) s_{n}^{-1}(A)$ $\rightarrow 1, n \rightarrow \infty$. To prove the second statement of 'Theorem 4, recall that if $A=A^{*}$ and if $\sigma(A)$ is discrete then A^{-1} is compact. As B is normal $\sigma_{r}(B)=0$. If $T A^{-1}$ is compact then it follows from the argument of Theorem 1 that $\sigma_{c}(B)=0$. As $0 \nLeftarrow \sigma(B)$ operator B^{-1} is compact, $B^{-1}=A^{-1}\left(I+T A^{-1}\right)^{-1}, N\left(I+T A^{-1}\right)=$ $\{0\},\left(I+T A^{-1}\right)^{-1}=I+\Gamma$, where Γ is compact. Consequently it follows that $\sigma_{n}(B) \sigma_{n}^{-1}(A) \rightarrow 1, n \rightarrow \infty$. As $A=A^{*}$ and B is normal, it is known that $\left|\lambda_{n}(A)\right|$ $=\sigma_{n}(A)$ and that $\sigma_{n}(B)=\left|\lambda_{n}(B)\right|$. To prove that $\lambda_{n}(B) \lambda_{n}^{-1}(A) \rightarrow 1, n \rightarrow \infty$ it is sufficient to prove that $\left|\lambda_{n}(B)\right| \lambda_{n}^{-1}(B) \rightarrow 1, n \rightarrow \infty$. Let $\Delta f_{n}+T f_{n}=\lambda_{n} f_{n}$, $\lambda_{n}=\lambda_{n}(B),\left(f_{n}, f_{m}\right)=\delta_{n m}$. Then $f_{n}+C f_{n}=\lambda_{n} A^{-1} f_{n}$, and $C=A^{-1} T$ is compact, so $\lambda_{n}=\left(A^{-1} f_{n}, f_{n}\right)^{-1}\left[1+\left(C f_{n}, f_{n}\right)\right]$. Hence

$$
\left|\operatorname{Im} \lambda_{n}\right| \cdot\left|\operatorname{Re} \lambda_{n}\right|^{-1} \leqslant \frac{\left|\left(C f_{n}, f_{n}\right)\right|}{1-\left|\left(C f_{n}, f_{n}\right)\right|} \rightarrow 0, \quad n \rightarrow \infty
$$

Proof of Lemma 5. If $T[f, f]$ is compact relative to $A[f, f]$, then $T[f, f]$ is bounded in H_{A}. Recall that $T[f, f]=[t f, f], t$ being the self-adjoint bounded operator in H_{A}. As $T[f, f]$ is compact relative to $A[f, f], t$ is compact in H_{A}, $t=t_{n}+t_{\epsilon}$, where t_{n} has finite rank, $\left|t_{\epsilon}\right|<\epsilon,\left|t_{\epsilon}\right|$ being the norm of operator in H_{A}. Hence $T[f, f]=\left[t_{n} f, f\right]+\left[t_{\epsilon} f, f\right] \equiv T_{n}[f, f]+T_{\epsilon}[f, f],\left|T_{\epsilon}[f, f]\right| \leqslant$ $\epsilon[f, f]$. Let $\phi_{1}, \ldots, \phi_{n}$ be the basis of the diagonal representation of $t_{n},\left[t_{n} f, f\right]=$ $\sum_{j=1}^{n} \lambda_{j}\left|\left[f, \phi_{j}\right]\right|^{2}, \phi_{j} \in H_{A}$. As $D(A)$ is dense in H_{A} one can find $\left\{\psi_{j}\right\} \in D(A)$, $\left\|\psi_{j}-\phi_{j}\right\|_{H_{A}}<\delta$ so that $\left|\left[f, \phi_{j}\right]\right|^{2} \leqslant\left|\left[f, \psi_{j}\right]+\left[f, \phi_{j}-\psi_{j}\right]\right|^{2} \leqslant 2\left|\left[f, \psi_{j}\right]\right|^{2}+$ $2 \|\left. f\right|^{2} \delta^{2},\left|\left[f, \psi_{j}\right]\right|^{2}=\left|\left(f, A \psi_{j}\right)\right|^{2} \leqslant c|f|^{2}$. Hence $\left|\left[t_{n} f, f\right]\right| \leqslant c \delta^{2} \|\left. f\right|^{2}+C|f|^{2}$, $C=C\left(n, \lambda_{j}\right)$. From here we get $B[f, f]=A[f, f]+T[f, f] \geqslant A[f, f](1-$ $\left.C \delta^{2}-\epsilon\right) \quad C|f|^{2}$. Setting $C \delta^{2}+\epsilon<1$ one can see that $B[f, f]$ is semibounded in H from below, and that $H_{B}=H_{A}$.

Proof of Theorem 5. As $B[f, f]$ is semibounded in H from below there exists an $m>0$ such that $B_{m}[f, f] \equiv B[f, f]+m(f, f)$ is positive definite in H. Let
$B_{m}==B+m$ and B be the self-adjoint operators generated by the forms $B_{m}[f, f]$ and $B[f, f]$ respectively. It is clear that $\lambda_{n}\left(B_{m}\right)=\lambda_{n}(B)+m$. As $\lambda_{n}(A) \rightarrow+\infty$ the equality $\lambda_{n}(B) \lambda_{n}^{-1}(A) \rightarrow 1, n \rightarrow \infty$ is equivalent to the equality $\lambda_{n}\left(B_{m}\right) \lambda_{n}^{-1}(A)$ $\rightarrow 1, n \rightarrow \infty$. Thus it can be supposed that operator B is positive definite. The spectrum $\sigma(B)$ is discrete iff $W\left(H_{B} \rightarrow H\right)$ is compact (Rellich theorem). But $W\left(H_{B} \rightarrow H\right)$ is compact iff $W\left(H_{A} \rightarrow H\right)$ is compact because $H_{A}=H_{B}$. As $\sigma(A)$ is discrete the operator $W\left(H_{A} \rightarrow H\right)$ is compact. And thus $\sigma(B)$ is discrete. Further, the following holds:

$$
\begin{aligned}
\lambda_{n+1}(B) & =\sup _{L_{n}} \inf _{f \perp L_{n}} \frac{B[f, f]}{(f, f)} \geqslant \inf _{f \perp L_{n}(A)} \frac{A[f, f]}{(f, f)}\left(1+\frac{T[f, f]}{A[f, f]}\right) \\
& \geqslant \lambda_{n+1}(A)\left(1-\sup _{f \perp L_{n}(A)} \frac{T[f, f]}{A[f, f]}\right)=\lambda_{n+1}(A)\left(1-a_{n}\right),
\end{aligned}
$$

where $a_{n} \rightarrow 0, n \rightarrow \infty$. The relation $a_{n} \rightarrow 0$ follows from Lemma 3 and the compactness of $T[f, f]$ relative to $A[f, f], L_{n}(A)$ denotes the linear span of the first n eigenelements of the operator A. By symmetry $\lambda_{n+1}(A) \geqslant \lambda_{n+1}(B)\left(1-b_{n}\right)$, $b_{n} \rightarrow 0, n \rightarrow \infty$. Thus $\lambda_{n}(B) \lambda_{n}^{-1}(A) \rightarrow 1, n \rightarrow \infty$.

4. Examples

1. Let $H=L^{2}(D), D \in R^{m}$, be a bounded domain with the smooth boundary $\Gamma, A[f, f]=\int_{D}\left\{|\Gamma f|^{2}+|f|^{2}\right\} d x, \quad T[f, f]=\int_{\Gamma} h(s)|f(s)|^{2} d s, \quad h(s) \in C^{1}(\Gamma)$. Here $T[f, f]$ is assumed to be compact relative to $A[f, f]$, so $\lambda_{n}(B) \lambda^{-1}(A) \rightarrow 1$, $n \rightarrow \infty$. Here $\left\{\lambda_{n}(A)\right\}$ is the spectrum of the inner Neumann problem for the doomain $D,\left\{\lambda_{n}(B)\right\}$ is the spectrum of the following problem:

$$
-\Delta f+f=\mu f \quad \text { in } \quad D, \quad \partial f / \partial N+h(s) f=0 \quad \text { on } \quad I .
$$

2. Consider the problem $L_{n} u=\lambda_{n} u$ in $D, L=L_{0}+L_{1}$, where L_{0} is a selfadjoint elliptic differential operator of order $2 r, L_{1}$ a differential operator of order $r_{1}<2 r$ in $H=L^{2}(D)$. Suppose that $N\left(L_{0}\right)=\{0\}$. The operators $L_{0}^{-1} L_{1}$, $L_{1} L_{0}^{-1}$ are compact in H. According to Theorem $4, \triangleleft_{n}(L) 。_{0}^{-1}\left(L_{0}\right) \rightarrow 1, n \rightarrow \infty$. If in addition $N(L)=\{0\}, L_{0}$ is self-adjoint, L normal, then $\lambda_{n}(L) \lambda_{0}^{-1}\left(L_{0}\right) \rightarrow 1$, $n \rightarrow \infty$.

These examples are of illustrative nature. The results of these examples are known, but here results have been obtained without any calculations or estimates.

5. Comments

In [1, p. 35] the following theorems are proved: (1) if $Q \geqslant 0, \operatorname{dim} R(Q)=\infty$, Q compact $K=(I+S) Q, K=K^{*}, S$ compact, $N(I+S)=\{0\}$ then
$\lambda_{n}(K) \lambda_{n}^{-1}(\underset{\sim}{Q}) \rightarrow 1, n \rightarrow \infty$; (2) if $Q=Q^{*}, \operatorname{dim} R(Q)=\infty, S$ compact,,$V(Q)=$ $\{0\}, N(I+S)=\{0\}$, and $K=Q(I+S)$ then $:_{n}(K) \jmath_{n}^{-1}(Q) \rightarrow 1, n \rightarrow \infty$. Both theorems are corollaries to Theorem 3, which was proven without assuming that K or Q were self-adjoint. Theorem(2) is an immediate consequence of Theorem 3, while Theorem (1) is implied by Theorem 5 once it is observed that $\lambda_{n}(K) \geqslant 0$ for any sufficiently large n and that $\lrcorner_{n}(K)=\lambda_{n}(K)$ whenever $\lambda_{n}(K) \geqslant 0$.

Appendix

Lemma. If A^{-1} and $T A^{-1}$ are compact and $N(B+K I)-\{0\}$ for some number $K \notin \sigma(A)$, then $\sigma(B)=\sigma_{d}(B)$. Here $N(B)=$ Ker B.

Proof. We have $(A+T-\lambda I)^{-1}=(A+K I)^{-1}(I+Q-\mu S)^{-1}$, where $S=(A+K I)^{-1}, \quad Q \equiv T(A+K I)^{-1}, \quad \mu=\lambda+K, S, Q$ are compact. If $N(B+K I)=\{0\}$ then $N\{(I+Q)(A+K I)\}=\{0\}$ and $N\{I+Q\}=\{0\}$. Thus $(I+Q)^{-1}$ exists on the whole space H. Therefore by the well-known result $(I+Q-\mu S)^{-1}$ is a finitemeromorphic operator function. It means that $(I+Q-\mu S)^{-1}$ is a meromorphic operator function in μ and its Laurent coefficients are finite rank operators. The lemma is proved. Part (b) in the proof of Theorem 1 follows from the lemma without assumption about compactness of $A^{-1} T$.

References

1. I. Gohberg and M. Krein, "Introduction to the Theory of Linear Nonselfadjoint Operators," Nauka Moscow, 1965; Amer. Math. Soc. Translations, No. 18, Amer. Math. Soc., Providence, R. I., 1969.
2. T. Kato, "Perturbation Theory for Linear Operators," New York, 1966.
3. I Glazman, "Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators," Fizmatgiz, Moscow, 1963; English transl., Israel Program for Sci. Transl., Davey, New York, 1965.
4. A. G. Ramm, "Perturbations Preserving Asymptotic of Spectrum," Acc. Nat. dei Lincei Ser. 8, Vol. 64, Fasc. I, Jan. 1978.
5. A. G. Ramm, On eigenvalues of some integral equations, Differential Equations 14 (1978), 665-667.
6. A. G. Rama, Theory and applications of some new classes of integral equations, Springer-Verlag, N.Y., 1980.
