Perturbations Preserving Asymptotic of Spectrum*

A. G. RAMM

Department of Mathematics, The University of Michigan, Ann Arbor, Michigan 48109

Submitted by C. L. Dolph

1. INTRODUCTION

In this paper H will be a Hilbert space with the inner product (f, g) and the norm $||f|| = (f, f)^{1/2}$. A will denote a closed, denseley defined linear operator in H with domain D(A). Its range will be denoted by R(A) and its null space by N(A) = Ker A. B will denote a linear operator which will be a perturbation of A, B = A + T and it will be assumed that $D(T) \supset D(A)$ and that D(B) = D(A).

By $\{L_n\}$ we shall denote a sequence of linear subspaces in H such that $L_n \subset L_{n+1}$. If $\rho(f, L)$ denotes the distance from an element $f \in H$ to the subspace L then it will also be assumed that

$$\forall f \in H, \quad \rho(f, L_n) \to 0 \quad \text{as} \quad n \to \infty.$$

It will be assumed A has discrete spectrum $\sigma = \sigma(A)$ in the following sense: every point of $\sigma(A)$ is an isolated eigenvalue of the finite algebraic multiplicity. We suppose also that $0 \notin \sigma(A)$, so that A^{-1} is a bounded operator defined on all H. Let $|\lambda_1| \leq |\lambda_2| \leq \cdots$ be the eigenvalues of A. If the resolvent of A is compact for $\lambda \notin \sigma(A)$ and $0 \notin \sigma(A)$, then A^{-1} is compact and $\sigma(A)$ is discrete. If A is normal and $\sigma(A)$ is discrete then A^{-1} is compact. Without the assumption about normality it seems that A^{-1} is not necessarily compact when $\sigma(A)$ is discrete. We denote the singular values of A by $\sigma_n(A)$, $\sigma_n(A) = \sigma_n^{-1}(A^{-1}) =$ $\lambda_n^{1/2}$ { $(A^{-1})^* A^{-1}$ }. If $A = A^* \geqslant m > 0$ we denote by H_A the Hilbert space which is the completion of D(A) in the norm $||f|| = (Af, f)^{1/2}$, the inner product in H_A being [f,g] = (Af,g) for $f,g \in D(A)$, $H_A = D(A^{1/2})$. By $\sigma_c = \sigma_c(A)$ we denote the subset of the spectrum of a linear operator A which consists of the points λ , for which a bounded noncompact sequence f_n exists such that $|Af_n - \lambda f_n| \to 0, n \to \infty$, while $\sigma_r = \sigma_r(A) = \{\lambda \colon \lambda \notin \sigma_p(A), \bar{\lambda} \in \sigma_p(A^*)\}, \sigma_p(A)$ is the set of eigenvalues of A, $\sigma_r = \sigma_r \cup \sigma_r$. The set $\sigma \setminus \sigma_e$ consists of the eigenvalues of the operator A, $\sigma_{v} = \sigma_{d}$ if they have finite algebraic multiplicity. Denote by \rightarrow , \rightarrow strong and weak convergence respectively in H. This paper discusses the following problem: when $\cup_n(B) \cup_n^{-1}(A) \to 1$ or $\lambda_n(B) \lambda_n^{-1}(A) \to 1$,

* This work was supported by AFOSR F49620-79-C-0128.

as $n \to \infty$? While this problem was discussed in [1, p. 351] our results are more general and at the same time our technique is simpler. The same problem will also be discussed for perturbed quadratic forms. A quadratic form T[f, f] is said to be compact relative to a positive definite quadratic form A[f, f] if any sequence $\{f_n\}$, $A[f_n, f_n] \leq 1$ has a subsequence $\{f_m\}$ such that $T[f_m - f_k, f_m - f_k] \to 0$, $m, k \to \infty$. By D[A] we denote the domain of the quadratic form A. The spectrum of a sectorial quadratic form is the spectrum of the operator, generated by the form. The connection between sectorial forms and operators is described in [2, p. 404]. Below C denotes various constants. The results were announced in [4] and applied in [5, 6].

2. MAIN RESULTS

THEOREM 1. If the operator TA^{-1} is compact, then B = A + T is closed. If the operators A^{-1} , TA^{-1} , $A^{-1}T$ are compact, $0 \notin \sigma(B)$, then $\sigma(B)$ is discrete.

THEOREM 2. If $A = A^* \ge m > 0$, the operator $A^{-1}T$ is compact in H_A , $D(T) \supset H_A$, $B = B^*$, then $\lambda_n(B)$. $\lambda_n^{-1}(A) \to 1$, $n \to \infty$.

THEOREM 3. If Q, S are compact linear operators in H, such that dim $R(Q) = \infty$, $N(I + S) = \{0\}$, then $\mathfrak{s}_n(Q + QS) \mathfrak{s}_n^{-1}(Q) \to 1$, $\mathfrak{s}_n(Q + SQ) \mathfrak{s}_n^{-1}(Q) \to 1$, $n \to \infty$.

THEOREM 4. If A^{-1} , $A^{-1}T$, and TA^{-1} are compact, $0 \notin \sigma(B)$, then $\sigma(B)$ is discrete, $\sigma_n(B) \sigma_n^{-1}(A) \to 1$, $n \to \infty$. If TA^{-1} , AT^{-1} are compact and B normal, $0 \notin \sigma(B)$, and $A = A^*$ is semibounded from below, then $\lambda_n(B) \lambda_n^{-1}(A) \to 1$, $n \to \infty$.

THEOREM 5. If A[f, f] is a positive-definite quadratic form in H, with discrete spectrum, and a closed densely defined real valued form T[f, f] is compact relative to $A[f, f], D[.4] \subset D[T]$, then the form B[f, f] = A[f, f] + T[f, f], D[B] = D[A]has discrete spectrum such that $\lambda_n(B) \lambda_n^{-1}(A) \to 1, n \to \infty$.

LEMMA 1. Let $\{f_n\}$ be a noncompact bounded sequence in H. Then there exists a noncompact sequence ψ_m , $\psi_m \rightarrow 0$, such that $\psi_m = f_{n_{m+1}} - f_{n_m}$.

LEMMA 2. The operator $(A^*A + I)^{-1}$ is compact iff $(A - \lambda I)^{-1}$ is compact.

LEMMA 3. A linear operator T in H is compact iff (1) $\gamma_n \equiv \sup_{h \perp L_n} |Th| \cdot |h|^{-1} \rightarrow 0, n \rightarrow \infty, \text{ or } (2) (Tg_n, g_n) \rightarrow 0, n \rightarrow \infty, \text{ for any } g_n \rightharpoonup 0, n \rightarrow \infty.$

LEMMA 4. Let A^{-1} be bounded. The operator TA^{-1} is compact iff T is A-compact, i.e., if $|f_n| + |Af_n| \leq C$ then Tf_n converges.

Remark 1. If $T \ge 0$ then $A^{-1}T$ is compact in H_A if $W(H_A \rightarrow H_T)$ is com-

pact. Here $W(H_A \rightarrow H_T)$ denotes the embedding operator. If $|(Tf, f)| \leq (Qf, f)$, $Q \geq 0$, and $W(H_A \rightarrow H_Q)$ is compact, then $A^{-1}T$ is compact in H_A (see [3, p. 37]).

LEMMA 5. Under the assumptions of Theorem 5 let t be a self-adjoint and compact operator on the space H_A defined by the equality T[f, f] = [tf, f], where [u, v] denotes the inner product in H_A . Then the form T[f, f] can be represented as follows:

 $T[f,f] = T_n[f,f] + T[f,f]$, and for an arbitrarily small ϵ , $|T[f,f]| \leq \epsilon[f,f]$, while $T_n[f,f]$ is a quadratic form in n-dimensional space with the property that $|T_n[f,f]| \leq c |f|^2$.

3. Proofs

Proof of Lemma 1. If f_n is bounded but not a compact sequence it is possible to select a subsequence (denoted also by f_n) such that $f_n \rightharpoonup f$, where f_n is also not compact. To finish the proof one must construct a subsequence $\psi_m = f_{n_{m+1}} - f_{n_m}$ which is also not compact, as it is clear that $\psi_n \rightharpoonup 0$.

In the following we use the argument given in [3, p. 41]. If ψ_m converges, then $\psi_m \to 0$. But if f_n is not a compact sequence it is possible to find a subsequence $\{f_{n_m}\}$ such that $|f_{n_{m+1}} - f_{n_m}| \ge \epsilon > 0$. This implies that $|\psi_n| \ge \epsilon$ and $\psi_m \to 0$, which is a contradiction.

Proof of Lemma 2. Let $(A - \lambda I)^{-1}$ be compact. To show that $(A^*A + I)^{-1}$ is compact consider a bounded sequence $\{f_n\}$ such that $|(A^*A + I)f_n| \leq C$. We show that some subsequence $\{f_n\}$ converges. Since $|((A^*A + I)f_n, f_n)| = |Af_n|^2 + |f_n|^2 \leq c$, this implies that $|Af_n| + |f_n| \leq c$, $|(A - \lambda I)f_n| \leq c$. As $(A - I)^{-1}$ is compact a subsequence $\{f_n\}$ converges. Thus $(A^*A + I)^{-1}$ is compact. Conversely, suppose that $(A^*A + I)^{-1}$ is compact, then $(A^*A + I)^{-1/2}$ is compact. It is sufficient to show that $|(A - \lambda I)f_n| \leq c$, $\lambda \notin \sigma(A)$ implies that $\{f_n\}$ converges.

If $|(A - \lambda I)f_n| \leq c$, $\lambda \notin \sigma(A)$, then $|Af_n| + |f_n| \leq c$, $(Af_n, Af_n) + (f_n, f_n) \leq c$. But $D(A) = D\{(A^*A + I)^{1/2}\}$. Thus, $|(A^*A + I)^{1/2}f_n| \leq c$. As $(A^*A + I)^{-1/2}$ is compact a subsequence $\{f_{n_k}\}$ converges.

Proof of Lemma 3. (1) Let $h_1, ..., h_n$ be an orthonormal basis in L_n , and T compact. It is clear that $0 \leq \gamma_{n+1} \leq \gamma_n$, so $\lim \gamma_n = \gamma, n \to \infty$. If $\gamma > 0$ then there exists a sequence $\{f_n\}$, such that $f_n \perp L_n$, $|f_n| = 1$, $|Tf_n| \geq \gamma > 0$. Without loss of generality it can be assumed that $f_n \to 0$, as $\rho(f, L_n) \to 0$, $\forall f \in H, n \to \infty$. As T is compact, $Tf_n \to 0$. This contradiction shows that $\gamma = 0$. To prove the sufficiency we let $g_n \equiv h - \psi_n$, $\psi_n \equiv \sum_{1}^{n} (h, h_j) h_j$, $\psi_n \in L_n$, $g_n \perp L_n$, $T_nh \equiv T\psi_n$.

Then

$$|T - T_n| = \sup_{|h|=1} |(T - T_n)h| = \sup_{g_n \perp L_n, |g_n|^2 = 1 - |\psi_n|^2} |Tg_n| \leq \sup_{g \perp L_n, |g| \leq 1} |Tg|$$
$$= \gamma_n \rightarrow 0, \qquad n \rightarrow \infty.$$

As T_n has the finite rank, T is compact.

(2) The necessity of condition (2) is trivial. From the known polarization identity $(Tf, g) = 0.25\{(T(f + g), f + g) - (T(f - g), f - g) + i[(T(f + ig), f + ig) - (T(f - ig), f - ig)]\}$ and condition (2) it follows, that $(Tf_n, g_n) \rightarrow 0$ when $f_n \rightarrow 0$, $g_n \rightarrow 0$. So T is compact.

Proof of Lemma 4. If $|f_n| \leq c$ and TA^{-1} is compact then $TA^{-1}f_{n_k}$ converges. Let $A^{-1}f_n = g_n$, $f_n = Ag_n$. As A^{-1} is bounded $|g_n| \leq c$. Thus $|g_n| + |Ag_n| \leq c$ implies that Tg_{n_k} converges. This implies that T is A-compact. If T is A-compact, $|f_n| \leq c$ then $TA^{-1}f_n = Tg_n$ and $|g_n| \leq c$, $|Ag_n| \leq c$. Thus $\{Tg_n\}$ converges.

Proof of Theorem I. (a) Let $f_n \to f$, $Bf_n = Af_n + Tf_n \to g$. Then $(*) | Af_n |$ $\leq c$, as shown below, $\{Tf_{n_k}\}$ converges by Lemma 4 and $\{Af_{n_k}\}$ converges. As A is closed $f \in D(A) = D(B)$ and B is closed. To prove (*) suppose that $|Af_n| \rightarrow D(B)$ ∞ . Then setting $f'_n = f_n \mid Af_n \mid^{-1}$ we obtain that $\mid f'_n \mid \to 0, \mid Af'_n \mid = 1$, $Af'_n + Tf'_n \to 0$. Thus Tf'_{n_n} converges. Thus Af'_n converges and as A is closed and $|f'_n| \to 0$, we have $|\hat{Af'_n}| \to 0$. But this is impossible as $|Af'_n| = 1$. Thus (*) is valid and B is closed. (b) To demonstrate that the spectra $\sigma(B)$ is discrete it must be proved that if $\lambda \in \sigma(B)$ then $\lambda \notin \sigma_c(B) \cup \sigma_r(B)$ and $\sigma_v(B) = \sigma_d(B)$. Let $\lambda \in \sigma_c(B)$. Then a non-compact bounded sequence $\{f_n\}$ exists, such that $Af_n + Tf_n - \lambda f_n \rightarrow 0$. By Lemma 1, a non-compact sequence $\{\psi_m\}, \{\psi_m\} \rightarrow 0$ exists, such that $A\psi_m - \lambda\psi_m + T\psi_m \rightarrow 0$, $\psi_m - \lambda A^{-1}\psi_m + A^{-1}T\psi_m \rightarrow 0$. As $A^{-1}T$ is compact and $\psi_m \rightarrow 0$ it follows that $\psi_m \rightarrow \lambda A^{-1}\psi_m \rightarrow 0$. Without using the compactness of A^{-1} we prove that $\lambda \notin \sigma_e(B)$ follows from the fact that $A^{-1}T$ and TA^{-1} are compact. If $\lambda \neq 0$ then $A^{-1}\psi_m - \lambda^{-1}\psi_m \rightarrow 0$, so that $\lambda^{-1} \in \sigma_c(A^{-1})$. But $\sigma_c(A^{-1}) = \{0\}$. This contradiction proves that $\lambda \notin \sigma_c(B)$. If $\lambda = 0$ then $\psi_m \to 0$. This is impossible as ψ_m is not compact. So $\lambda \notin \sigma_c(B)$. Let $\lambda \in \sigma_r(B)$, $(B^* - \lambda I)f = 0$. Since $B = A(I + A^{-1}T)$, it follows that $B^* = (I + A^{-1}T)^*A^*$ $A^* + T^*$. Suppose now that $\lambda \notin \sigma(A)$. Then $f + (A^* - \lambda I)^{-1} T^* f = 0$. As $T(A - \lambda I)^{-1}$ is compact the equation $g + T(A - \lambda I)^{-1}g = 0$ has a solution $g \neq 0$. Hence $(A + T - \lambda I)h = 0$, $h = (A - \lambda I)^{-1}g \neq 0$, $\lambda \in \sigma_{p}(B)$. It implies that $\lambda \notin \sigma_r(B)$. If $\lambda \in \sigma(A)$ then $\lambda + \epsilon \notin \sigma(A)$, where $\epsilon > 0$ is sufficiently small, as $\sigma(A)$ is discrete. Therefore the equality $f + [A^* - (\lambda + \epsilon)I]^{-1} \times$ $(T^* + \epsilon I)f = 0$ holds. Since $[A - (\lambda + \epsilon)I]^{-1}$ and $[A - (\lambda + \epsilon)I]^{-1}T$ are compact (only here use is made of the compactness of A^{-1}), equation $g + (T + \epsilon I) \cdot [A - (\lambda + \epsilon) I]^{-1} g = 0$ has a solution $g \neq 0$. As above it follows that $\lambda \in \sigma_p(B)$ and therefore that $\lambda \notin \sigma_r(B)$. If $0 \notin \sigma(B)$, then $\sigma_p(B) = \sigma_d(B)$.¹

Proof of Theorem 2. As $A^{-1}T$ is compact in H_A it follows that $H_B = H_A$, and $\sigma(B)$ is discrete [see 3, pp. 38, 42], and by Lemma 3

$$a_n \equiv \sup_{f \perp L_n(A)} \frac{(Tf, f)}{A[f, f]} = \sup_{f \perp L_n(A)} \frac{[A^{-1}Tf, f]}{[f, f]} \to 0, \qquad n \to \infty.$$

Here $L_n(A)$ is a linear span of *n* first eigenelements of operator *A*, and sign \parallel denotes orthogonality in H_A . Using the inequality inf $a(1 + b) \ge \inf a(1 - \sup b), a \ge 0, -1 < b < 1$ one has

$$\lambda_{n+1}(B) = \sup_{L_n} \inf_{f \perp L_n, f \in D(B)} \frac{(Bf, f)}{(f, f)}$$

$$\geq \inf_{f \perp L_n(A), f \in D(A)} \left\{ \frac{(Af, f)}{(f, f)} \left(1 + \frac{(Tf, f)}{(Af, f)} \right) \right\} > \lambda_{n+1}(A) \left(1 - a_n \right)$$

where $a_n \to 0$. By symmetry $\lambda_{n+1}(A) \ge \lambda_{n+1}(B) (1 - b_n), b_n \to 0$. Thus $\lambda_n(B) \lambda_n^{-1}(A) \to 1, n \to \infty$.

Remark 2. The proof implies that only a finite number of eigenvalues $\lambda_n(B)$ can be negative.

Proof of Theorem 3. As $\sigma_n^2(Q + QS) = \lambda_n\{(I + S^*) \ U(I + S)\}, \ U = Q^*Q,$ $\lambda_n(U) = \sigma_n^2(Q)$. Since S is compact and $N(I + S) = \{0\}$, one has $(I + S)^{-1} = I + \Gamma$, and $(I + S^*)^{-1} = I + \Gamma^*$, where Γ is compact. Let $V \equiv (I + S^*) \ U(I + S) \ge 0$. If it can be shown that $(*) \ \lambda_n(V) \le \lambda_n(U) \ (1 + a_n), \ a_n \to 0, \ n \to \infty$, then by symmetry $\lambda_n(U) \le \lambda_n(V) \ (1 + b_n), \ b_n \to 0, \ n \to \infty$, and $\lambda_n(V) \cdot \lambda_n^{-1}(U) \to 1$, $n \to \infty$. This is equivalent to the first statement of Theorem 3.

The second statement of Theorem 3 can be proved similarly. Next it will be shown that

$$egin{aligned} \lambda_{n+1}(V) &= \inf_{L_n} \sup_{f\perp L_n} rac{(Vf,f)}{(f,f)} \leqslant \sup_{f\perp \mathcal{M}_n} \left\{ rac{(Ug,g)}{(g,g)} \cdot rac{(g,g)}{(f,f)}
ight\} \ &\leqslant \sup_{f\perp \mathcal{M}_n} rac{(Ug,g)}{(g,g)} \cdot \sup_{f\perp \mathcal{M}_n} rac{(g,g)}{(f,f)} \leqslant \lambda_{n+1}(U) \, (1+a_n), \end{aligned}$$

 $a_n \to 0, n \to \infty$. Here g = (I + S) f, M_n is the linear *n*-dimensional subspace so chosen that the condition $f \perp M_n$ is equivalent to the condition $g \perp L_n(U)$,

¹See Appendix.

 $L_n(U)$, being the linear span of the first eigenelements $\phi_1, ..., \phi_n$ of the operator U, M_n is the span of the elements $\psi_j = (I + S^*)\phi_j$. If $(g, \phi_j) = 0$ then $0 = (f, (I + S^*)\phi_j) = (f, \psi_j)$. As $I + S^*$ is invertible, the system $\psi_1, ..., \psi_n$ is linearly independent, dim M = n and $\rho(f, M_n) \to 0$, $n \to \infty, \forall f \in H$. (*) involves the use of the equality

$$\sup_{f\perp M_n} \frac{(g,g)}{(f,f)} = 1 + \sup_{f\perp M_n} \frac{|(Sf,f)| + |(f,Sf)| + (Sf,Sf)|}{(f,f)} = 1 + a_n,$$

 $a_n \rightarrow 0, n \rightarrow \infty$, which in turn follows from Lemma 3 and the compactness of S.

Proof of Theorem 4. By Theorem 1, $\sigma(B)$ is discrete. As $0 \notin \sigma(B)$, B = A(I+C), $C = A^{-}T$, thus $N(I+C) = \{0\}$, $B^{-1} = (I+C)^{-1}A^{-1}$, $\sigma_n^2(B) = \sigma_n^{-2}(B^{-1}) = s_n^{-2}\{(I+S)Q\}$. Here $Q = A^{-1}$, $I+S = (I+C)^{-1}$, Q, and S are compact. By Theorem 3, $\sigma_n^{-1}(Q) \sigma_n\{(I+S)Q\} \rightarrow 1$, $n \rightarrow \infty$. Thus $\sigma_n(B) \sigma_n^{-1}(A) \rightarrow 1$, $n \rightarrow \infty$. To prove the second statement of Theorem 4, recall that if $A = A^*$ and if $\sigma(A)$ is discrete then A^{-1} is compact. As B is normal $\sigma_r(B) = 0$. If TA^{-1} is compact then it follows from the argument of Theorem 1 that $\sigma_c(B) = 0$. As $0 \notin \sigma(B)$ operator B^{-1} is compact, $B^{-1} = A^{-1}(I + TA^{-1})^{-1}$, $N(I + TA^{-1}) = \{0\}$, $(I + TA^{-1})^{-1} = I + \Gamma$, where Γ is compact. Consequently it follows that $\sigma_n(B) \sigma_n^{-1}(A) \rightarrow 1$, $n \rightarrow \infty$. As $A = A^*$ and B is normal, it is known that $|\lambda_n(A)| = \sigma_n(A)$ and that $\sigma_n(B) = |\lambda_n(B)|$. To prove that $\lambda_n(B) \lambda_n^{-1}(A) \rightarrow 1$, $n \rightarrow \infty$ it is sufficient to prove that $|\lambda_n(B)| \lambda_n^{-1}(B) \rightarrow 1$, $n \rightarrow \infty$. Let $Af_n + Tf_n = \lambda_n f_n$, $\lambda_n = \lambda_n(B)$, $(f_n, f_m) = \delta_{nm}$. Then $f_n + Cf_n = \lambda_n A^{-1}f_n$, and $C = A^{-1}T$ is compact, so $\lambda_n = (A^{-1}f_n, f_n)^{-1} [1 + (Cf_n, f_n)]$. Hence

$$|\operatorname{Im} \lambda_n| \cdot |\operatorname{Re} \lambda_n|^{-1} \leqslant \frac{|(Cf_n, f_n)|}{1 - |(Cf_n, f_n)|} \to 0, \qquad n \to \infty$$

Proof of Lemma 5. If T[f, f] is compact relative to A[f, f], then T[f, f]is bounded in H_A . Recall that T[f, f] = [tf, f], t being the self-adjoint bounded operator in H_A . As T[f, f] is compact relative to A[f, f], t is compact in H_A , $t = t_n + t_{\epsilon}$, where t_n has finite rank, $|t_{\epsilon}| < \epsilon$, $|t_{\epsilon}|$ being the norm of operator in H_A . Hence $T[f, f] = [t_n f, f] + [t_{\epsilon} f, f] \equiv T_n[f, f] + T_{\epsilon}[f, f]$, $|T_{\epsilon}[f, f]| \le \epsilon[f, f]$. Let $\phi_1, ..., \phi_n$ be the basis of the diagonal representation of t_n , $[t_n f, f] = \sum_{j=1}^n \lambda_j |[f, \phi_j]|^2$, $\phi_j \in H_A$. As D(A) is dense in H_A one can find $\{\psi_j\} \in D(A)$, $||\psi_j - \phi_j||_{H_A} < \delta$ so that $|[f, \phi_j]|^2 \le |[f, \psi_j] + [f, \phi_j - \psi_j]|^2 \le 2 |[f, \psi_j]|^2 + 2 ||f||^2 \delta^2$, $|[f, \psi_j]|^2 = |(f, A\psi_j)|^2 \le c |f|^2$. Hence $|[t_n f, f]| \le c\delta^2 ||f||^2 + C |f|^2$, $C = C(n, \lambda_j)$. From here we get $B[f, f] = A[f, f] + T[f, f] \ge A[f, f]$ (1 $- C\delta^2 - \epsilon) - C |f|^2$. Setting $C\delta^2 + \epsilon < 1$ one can see that B[f, f] is semibounded in H from below, and that $H_B = H_A$.

Proof of Theorem 5. As B[f, f] is semibounded in H from below there exists an m > 0 such that $B_m[f, f] \equiv B[f, f] + m(f, f)$ is positive definite in H. Let $B_m = B + m$ and B be the self-adjoint operators generated by the forms $B_m[f, f]$ and B[f, f] respectively. It is clear that $\lambda_n(B_m) = \lambda_n(B) + m$. As $\lambda_n(A) \to +\infty$ the equality $\lambda_n(B) \lambda_n^{-1}(A) \to 1$, $n \to \infty$ is equivalent to the equality $\lambda_n(B_m) \lambda_n^{-1}(A) \to 1$, $n \to \infty$. Thus it can be supposed that operator B is positive definite. The spectrum $\sigma(B)$ is discrete iff $W(H_B \to H)$ is compact (Rellich theorem). But $W(H_B \to H)$ is compact iff $W(H_A \to H)$ is compact because $H_A = H_B$. As $\sigma(A)$ is discrete the operator $W(H_A \to H)$ is compact. And thus $\sigma(B)$ is discrete. Further, the following holds:

$$egin{aligned} \lambda_{n+1}(B) &= \sup_{L_n} \inf_{f\perp L_n} rac{B[f,f]}{(f,f)} \geqslant \inf_{f\perp L_n(\mathcal{A})} rac{A[f,f]}{(f,f)} \left(1+rac{T[f,f]}{A[f,f]}
ight) \ &\geqslant \lambda_{n+1}(\mathcal{A}) \left(1-\sup_{f\perp L_n(\mathcal{A})} rac{T[f,f]}{A[f,f]}
ight) = \lambda_{n+1}(\mathcal{A}) \left(1-a_n
ight), \end{aligned}$$

where $a_n \to 0$, $n \to \infty$. The relation $a_n \to 0$ follows from Lemma 3 and the compactness of T[f, f] relative to A[f, f], $L_n(A)$ denotes the linear span of the first *n* eigenelements of the operator A. By symmetry $\lambda_{n+1}(A) \ge \lambda_{n+1}(B)(1-b_n)$, $b_n \to 0$, $n \to \infty$. Thus $\lambda_n(B) \lambda_n^{-1}(A) \to 1$, $n \to \infty$.

4. Examples

1. Let $H = L^2(D)$, $D \in \mathbb{R}^m$, be a bounded domain with the smooth boundary Γ , $A[f, f] = \int_D \{ |\nabla f|^2 + |f|^2 \} dx$, $T[f, f] = \int_{\Gamma} h(s) |f(s)|^2 ds$, $h(s) \in C^1(\Gamma)$. Here T[f, f] is assumed to be compact relative to A[f, f], so $\lambda_n(B) \lambda^{-1}(A) \to 1$, $n \to \infty$. Here $\{\lambda_n(A)\}$ is the spectrum of the inner Neumann problem for the doomain D, $\{\lambda_n(B)\}$ is the spectrum of the following problem:

$$-\Delta f + f = \mu f$$
 in D , $\partial f / \partial N + h(s) f = 0$ on Γ .

2. Consider the problem $L_n u = \lambda_n u$ in $D, L = L_0 + L_1$, where L_0 is a selfadjoint elliptic differential operator of order 2r, L_1 a differential operator of order $r_1 < 2r$ in $H = L^2(D)$. Suppose that $N(L_0) = \{0\}$. The operators $L_0^{-1}L_1$, $L_1L_0^{-1}$ are compact in H. According to Theorem 4, $\sigma_n(L) \sigma_0^{-1}(L_0) \to 1$, $n \to \infty$. If in addition $N(L) = \{0\}$, L_0 is self-adjoint, L normal, then $\lambda_n(L) \lambda_0^{-1}(L_0) \to 1$, $n \to \infty$.

These examples are of illustrative nature. The results of these examples are known, but here results have been obtained without any calculations or estimates.

5. Comments

In [1, p. 35] the following theorems are proved: (1) if $Q \ge 0$, dim $R(Q) = \infty$, Q compact K = (I + S)Q, $K = K^*$, S compact, $N(I + S) = \{0\}$ then $\lambda_n(K)\lambda_n^{-1}(Q) \to 1, n \to \infty$; (2) if $Q = Q^*$, dim $R(Q) = \infty$, S compact, $N(Q) = \{0\}, N(I+S) = \{0\}, \text{ and } K = Q(I+S) \text{ then } s_n(K) s_n^{-1}(Q) \to 1, n \to \infty$. Both theorems are corollaries to Theorem 3, which was proven without assuming that K or Q were self-adjoint. Theorem (2) is an immediate consequence of Theorem 3, while Theorem (1) is implied by Theorem 5 once it is observed that $\lambda_n(K) > 0$ for any sufficiently large n and that $s_n(K) = \lambda_n(K)$ whenever $\lambda_n(K) > 0$.

Appendix

LEMMA. If A^{-1} and TA^{-1} are compact and $N(B + KI) = \{0\}$ for some number $K \notin \sigma(A)$, then $\sigma(B) = \sigma_d(B)$. Here N(B) = Ker B.

Proof. We have $(A + T - \lambda I)^{-1} = (A + KI)^{-1} (I + Q - \mu S)^{-1}$, where $S = (A + KI)^{-1}$, $Q = T(A + KI)^{-1}$, $\mu = \lambda + K$, S, Q are compact. If $N(B + KI) = \{0\}$ then $N\{(I + Q) (A + KI)\} = \{0\}$ and $N\{I + Q\} = \{0\}$. Thus $(I + Q)^{-1}$ exists on the whole space H. Therefore by the well-known result $(I + Q - \mu S)^{-1}$ is a finitemeromorphic operator function. It means that $(I + Q - \mu S)^{-1}$ is a meromorphic operator function in μ and its Laurent coefficients are finite rank operators. The lemma is proved. Part (b) in the proof of Theorem 1 follows from the lemma without assumption about compactness of $A^{-1}T$.

References

- I. GOHBERG AND M. KREIN, "Introduction to the Theory of Linear Nonselfadjoint Operators," Nauka Moscow, 1965; Amer. Math. Soc. Translations, No. 18, Amer. Math. Soc., Providence, R. I., 1969.
- 2. T. KATO, "Perturbation Theory for Linear Operators," New York, 1966.
- 3. I GLAZMAN, "Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators," Fizmatgiz, Moscow, 1963; English transl., Israel Program for Sci. Transl., Davey, New York, 1965.
- 4. A. G. RAMM, "Perturbations Preserving Asymptotic of Spectrum," Acc. Nat. dei Lincei Ser. 8, Vol. 64, Fasc. 1, Jan. 1978.
- 5. A. G. RAMM, On eigenvalues of some integral equations, *Differential Equations* 14 (1978), 665-667.
- 6. A. G. RAMM, Theory and applications of some new classes of integral equations, Springer-Verlag, N.Y., 1980.