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The conventional binary operations of cartesian product, conjunction, and composition of
two digraphs D, and D, are observed to give the sum. the product, and a more complicated
combination of the spectra of D, and D, as the resulting spectrum. These formulas for
analyzing the spectrum of a digraph are utilized to construct for any positive integer n, a
collection of n nonisomorphic strong regular nonsymmetric digraphs with real spectra. Fu:ther,
an infinite collection of strong nonsymmetric digraphs with nonzero gaussian integer values is
found. Finally, for any n, it is shown that there are n cospectral strong nonsymmetric digraphs
with integral spectra.

0. Introduction

In order that this presentation be self-contained we include definitions of the
fundamental concepts, most of which can be found in [S] and [7]. A digraph D
consists of a finite set V of points v,,..., v, and a set of ordered pairs of distinct
points, written (u, v) or briefly uv, called arcs. A dipath u -> v is an alternating
sequence of distinct points and arcs beginning at u and ending at v. A dicycle is
obtained from a u — v dipath by adding the arc vu. We say v is reachable from u
if there exists a dipath u — v. A digraph is strongly connected or more briefly
strong if every two points are mutually reachable. If arcs uv and vu are both in D,
they form a symmetric pair of arcs.

The underlying graph %(D) is obtained when we replace its arcs by undirected
lines so that cither a single arc or a symmetric pair of arcs in D just becomes a
single line. Then the chromatic number x(D) is defined as x(%(D)). Thus D is
bipartite if 4(D) is.

The adjacency matrix A = A(D) of a labelled digraph D is the p X p matrix [a;]
with a; =1 if vy, is an arc of D, and 0 otherwise. The characteristic polynomial
(or spectral polynoinial) of D is written

& (D)= D(D; x)=det(xI -A) = i a;x’, (1
i=0
The sequence A,, ..., A, of the roots of ®(D) is called the spectrum S(D).
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A digraph D is nonsymmetric if not every arc lies in a symmetric pair. Thus
matrix A{D) is nonsynumetric if and only if D is. In general, this leads to a
spectrum S(D) containing both real and complex eigenvalues. A matrix A is
called irreducible if there exists no permutation matrix P such that

Ay, 0]

T =
PTAP [ A @)

where A,,, A,, are square submatrices and @ indicates a zero submatrix.

1. Primitive and imprimitive digraphs

Every strong digraph D has an irreducible adjacency matrix A which possesses
a simple positive eigenvalue of greatest modulus called its spectral radius A,. If
there are exactly h eigenvalues of modulus A,, then A or D is called primitive if
h =1, otherwise imprimitive with index of imprimitivity h. This topic was de-
veloped in detail by Dulmage and Mendelsohn [3]. The following observation
depends on a relation between the length of dicycles in D and the index of
imprimitivity of A(D).

Theorem 1. For an imprimitive strong digraph D the chromatic number x(D) does
not exceed three.

Proof. For a strong digraph D, let the index of imprimitivity be h =2. Then the
point set V(D) can be partitioned into h independent subsets V(D)=
V,U---UV, so that uv is an arc of D only if ue V,, ve V;,, with 1<i=<h and
V.1 = V; (as illustrated in Fig. 1). If we replace the arcs by lines it is evide::t that
x(%(D)) = x(C,), so 4(D) can be colored using at most three colors, with the
points of each set V, having the same color. a

For a graph G let D(G) denote a digraph obtained from an orientation of G,
i.e., to each line is assigned either of the two possible directions. The:: as Robbins

Fig. 1. A strong digraph D which is imprimitive.
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[12] showed, there exists a strong orientation of G if and only if G is connected
and bndgeless . -

Cntohry la. For a gmph G wuh chmmauc number x(G)>4 every strong
orientation D(G) has a primitive adjacency matrix.

This result is best possible as clearly the graph G = Cs+e¢ has x(G)=3 and no
strong orientation of G is imprimitive. But of course if the length of every cycle in
a connected graph G is divisible by an odd integer, then each block of G has an
imprimitive orientation which again implies that x(G)=3.

2. The spectrum of a digraph

Schwenk [14] showed ihat the spectral polynomial of a graph G can be
expressed in terms of the polynomials of subgraphs obtained from G by deleting a
single point or a set of points. Our object is to generalize some of these results to
digraphs. For this purpose it is very useful to have the theorem of Sachs [13]
which gives the coefficients of the spectral polynomial of a digraph in terms of
subgraphs whose components are dicycles.

Two nonisomorphic digraphs D, and D, are called cospectral if S(D,)= 5(D,).
If in addition S(D;— u)= S(D,— v) for some points u, v they are called cospec-
trally rooted. The coalescence (D, u) - (D,, v) of the two rooted digraphs (D, u)
and (D,, v) is the digraph cbtained by identifying their roots. As the proofs of the
next theorem and its corollary are essentially the same as given by Schwenk [14]
for graphs, we omit them.

Theorem 2. Let v be a point of a digraph D and let €(v) be the set of all dicycles ¢
containing v. Then the characteristic polynomial ®(D) satisfies the equation,

O(D)=xD(D-v)- ), BD-v(). 3)

Ce®vy

Corollaxy 2a. Let D=(D,, u):(D,,v) be the coalescence of rooted digraphs
(D, u) and (D5, v). Then for all points w in D, ®(D) satisfies

®(D) = ®(D,)P(D, — v)+ (D, — u)®(D,) - x®(D, —uw)®&(D,—v). (4

Sketch of proofs. By Sach’s theorem [13] the coefficients a; of ®(D) for a digraph
D are given by
a = z (-1)c6> (S)

D(iyeD

where the summation extends over all subdigraphs D(i) with i points, whose
components are dicycles and where the exponent c(IX(i)) is the number of
dicycles in D(i).
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We now derive (3) from (5). There are two possibilities for the point ¢:

(i) v¢ D(i). Then D(i) corresponds to D'(i) defined as D(i) in D—-v.

(ii) v¢ C, — D(i). Then D(i) corresponds to D’(:) defined as D(:) V(C'“) in
D~ V(C,).
This establishes a one-to-one correspondence between the subdlgraphs D(z) and
D'(i) so that if a subdigraph of D on the left side of (3) adds an amount to a
coefficient q; of ®(D), then D'(i) adds the same amount to a; on the right,
proving the theorem. a

If we now apply (3) to (D, u) - (D,, v) so that their identified roots are chosen
as the point v in (3), we obtain an equation which can be transformed to (4),
proving the corollary. a

Obviously if (D, wj, {(D,, u) and (D,, v) are three rooted graphs and D, and D,
are cospectrally rooted, then

(D, w) * (D, u)) = (D, w) (D, v)). ()

The four cospectral strong digraphs with 4 points illustrated in Fig. 2 were listed
in [6]. We now note that the first pair and the last pair are cospectrally rooted
(with roots marked by circles). All four digraphs have the characteristic polyno-
mial ®(x)=(x3>—x2—-1)(x+1).

NN N

Fig. 2. Two smallest pairs of cospectrally rooted digraphs.

3. Binary operations on digraphs

It is very useful to construct new classes of graphs by binary operations on
smaller graphs. The conjection G = F, A G, of two graphs (or digraphs [11]) can
be defined by taking as the adjacency matrix of G the tensor product of those of
G, and G,. It was observed in [9] that the cartesian product and composition of
two graphs are also expressible in terms of matrix operations. Both Schwenk [14]
and Cvetkovi¢ [2] give the spectra of graphs formed by three different abelian
operations of two graphs G and H in terms of the spectra of G and H. Their
proofs are straightforward but complicated. However, the results can be obtained
more naturally by applying spectral properties of polynomials of matrix tensor
products to it. Our object is to show this more generally for three well known
binary operations cn digraphs: cartesian product, conjunction, and composition.
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Let E and F be two digraphs with point sets U={u} and V ={v,}. The next
three operatxons deﬁne dlgtaphs havmg Ux V as its pomt set:

Con;uncnon D EAF. Here ((u,, v,), (uz, v,)) is an arc of D whenever (uy, uz)
and (v,, v,) are arcs in Eand F. ‘

Canesum product D=EXF. Now ((u., vy), (uy, v,)) is an arc of D whenever
= u, and (v,, v,) is an arc of F or v, = v, and (u,, ,) is an arc of E.

Composition D = E[F]. Define ((u,, vy), (4,, v;)) as an arc of D whenever (u,, u,)
is an arc of E or u,= u, and (v,, v,) is an arc of F.

Let A and B be matrices of order p, and p, with complex elements. Then the
tensor product of A =[a;] and B written A®B, is defined as the partitioned
matrix,

ay,B alzB v al,,lB T
A®B= . . )

@B @B B

We now extend all matrix equations known for graphs [9] to digraphs (noting that
this was already done by McAndrew [11] for the conjunction). As the proofs are
easy and analogous to these for graphs, they are omitted. It is customary to
denote by J,, the m X m unit matrix with every entry 1.

Lemma 3a. If the adjacency matrices of the digraphs D, and D, are A, and A,,
then

A(Dl A Dz) = A1®A2, (8)
A (Dl X Dz) = AI®Ip,+ IP‘®A2, (9)
A(Dl[Dzl) = A] ®Jh+ IP|®A2' (10)

We note that D,[D,] is not abelian and

D, A D, is strong if and only if D, and D, are strong and D, or

D, has an odd cycle (McAndrew [11]). (11)
D, x D, is strong if and only if D, and D, are both strong. 12)
D, D] is strong if and only if D, is strong. (13)

Consider a polynomial ¢(x; y) in two complex variables,

¥(x; y)= i cix'y'. (14)

iLi=0
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Then for two matrices A, B defined as above we mean by ¢(A; B) the tensor
polynomial,

#(A;B)= ) c;A'®B'. (15)
ij=0 .
We call a digraph regular if all row and column sums of its adjacency matrix are
equal. The superscript in a® will be used to designate the multiplicity of the
number a, thus a’ means a, ..., a with k terms.

Theorem 3. Let D, and D, be two digraphs of order p, and p, with spectra
S(D,)=(A) and S(D,)=(w;). Then the spectrum of any of the three binary
operations of (8), (9), (10) is a p,p,-sequeace where for i=1,...,p, and j=
1,...,pa

S(D; A Dy) = (M), (16)

S(Dy X D)) = (A + 1), 17)
and if D, is a regular strong digraph, then

S(D\[D;D = (A + )™, w2, ..., u&P). (18)

Proof. To prove the statements we recail from [10] that the eigenvalues of the
tensor polynomial (15) can be computed by substituting A and p for x and y in
(14). Thus if A and B are two complex matrices with spectra S(A)=(y;) and
S(B)=(8;) then the eigenvalues of Y/(A; B) are the p,p, complex numbers
U(vi; ).

To prove (16) we choose ¢(x;y)=xy which implies Y(A,; A;)=A;QA,;
similarly (17) can be obtained by taking ¥(x; y)=x+y.

We are now ready to prove Eq. (18) which is considerably more difficult. The
reason is that whereas (8) and (9) express conjunction and cartesian product
directly in terms of matrices A, and A, and identity matrices which offer no
difficulty, Eq. (10) expresses the adjacency matrix of the composition of two
digraphs in terms of the unit matrix J, , which cannot, in general, be expressed in
terms of A,. However if we restrict D, to be regular, it is possible to obtain J,, as
a limit of powers of A,, as we now show. The matrix theory background for the

following arguments can be found in the books by Grobner [4. 164-180] and
Lancaster {10, 165-184].

Let w4, ..., u, be the different eigenvalues of A,. Then we can represent A, in
its spectral decomposition,
t
Ar= ) (WE+N), (19)

i=1
where the projectors (or principal idempotents) E; of A, have the properiies

I=YE, 0=EE fori#j and E2=E. (20)
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The principal nilpotents N; of A, have the properties
NE=EN=N, and NE=EN=NN=0 fori#i 21)

Smoe A, has constant row and column sum, we have at once Aze T3 and
eTA= p.,e"' where e is the normed vector e =(1, ..., 1)*/Vp,. The related projec-
tor E, is given by ~

E,=ce"=J, |p,. (22)
There are two possibilities depending on the primitivity of A,.

Case 1. A, is imprimitive. Then its spectral radius w, satisfies p,>|u;| for
i=2,...,t Combining (19), (20), and (21) it can be shown as in Grobner {3, 180]
that

:ilnn (Az/py)" =E,. (23)

Now if we choose (x; y)=(p/uDxy™ +y, then ¢(A,; A,) has the eigenvalues
P2/ DR + ;e

We now indulge in some routine manipulations. The tensor polynomial
P(A,; A,) contains (A,/p,)" which goes to E in the limit by (23). Then the limiting
first term becomes p,A; ® E, which equals A,®J,, by (22), which gives precisely
the right side of (10), completing Case 1.

Case 2. A, is pnmm've of index h. Here we have h eigenvalues p, = |u,|=---=
|2al, the roots of u* —uh = 0. Then it follows at once from the fact that the sum of
hth roots of unity is zero that

h

Y wkui*=0 forj=2,...,h (24)

k=1
We now define B=Y!_, (A,/u,)* and replace A, by its spectral decomposition
(19). Hence (24) together with (20) and (21) implies that B has a representation
with a leading term hE, and no terms containing E,,...,E,. All N, for i=
1,..., h are zero matrices as p,,..., i, are cimple eigenvalues. Therefore we
obtain lim,_.. (h~!B)" = E,.

Now we choose the particular pelynomial

h n

P(x;y)=pyx (h" ) u;"y) +y, (25)
k=1

because it accomplishes the desired purpose. Then «(A,; A,) has eigenvalues

¥(A;, ;). Finally, considering the limiting expression for ¢(A; A,), we obtain also

in this case (10) and (18). G

We remark that Theorem 3 and its proof not only generalize the results of
Cvetkovi¢ and Schwenk from operations on graphs to those on digraphs, but alsc
simplify their arguments for graphs by the use of the tensor polynomial.
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4. KReal digraphs

Just as integral graphs have been defined as graphs with an integral spectrum,
we now say that a real digraph has a real spectrum. Although the spectrum of a
digraph in general contains real and complex eigenvalues, we see that among the
digraphs with four points there are a significant number of real digraphs. Of
course a digraph is real if it is symmetric (as it is then a graph) and furthermore a
digraph is real if and only if all its strong components are real. Hence only
nonsymmetric digraphs are of interest and we restrict consideration to them.

As usual let K(p,, ..., p,) be a complete n-partite graph and let 2(G) denote
the digraph obtained from a graph G on replacing each line by a symmetric pair
of arcs. Then it is easy to see that every digraph obtained from @(K(p,, ..., p.))
by removing any one arc is real.

From Section 2 we can quickly see that it is possibie to construct n cospectral
strong nonsymmetric digraphs. We just have to take two nonsymmetric cospec-
trally rooted strong digraphs D, and D, and form successive coalescence of n
copies of these digraphs. But although D, and D, are real we do not know
whether the resulting coalescence D, --- D, - D, - - - D, is real.

From a star K,,, with p=2n+1 points, we now obtain a family of real
digraphs which contain for any positive number k at least k cospectral digraphs.
We will construct a digraph D,, (K, »,) by joining the points in @(K, ,,), which are
endpoints in K, ,,, with m new arcs where m <2n. Furthermore not more than
two of these arcs are permitted to have a point u in common, and if so both must
start or end in u, as illustrated in Fig. 3. (Thus, in particular, new symmetric pairs
are excluded.) From Sachs’ theorem we easily get the equation.

(D, (K, 2,) = x> (x> —2nx —m). (26)

Of course for n=2 and m<n-2 we obtain nonisomorphic digraphs with the
same characteristic polynomial (26). Thus for every positive integes k, we can find
at least k nonisomorphic digraphs of the form D, (K, ,,) if we choose n large
enough and m = n. Furthermore by (26) we see that for n = m, these digraphs are
also real.

The binary operations in Section 3 allows us to form nonsymmetric strong
regular digraphs which are real.

Fig. 3. A strong, real digraph obtained from a star K, ¢ by adding 4 arcs. Each undirected edge stands
for a symmetric pair of arcs.
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Fig. 4. A real regular nunsymmetric digraph with 7 points, with spectral polynomial
(x=3)(x?-2)(x+ D¥(x2+x~1).

Theorem 4. For any positive integer n, we can construct n cospeciral strong regular
nonsymmetric digraphs which are real.

Proof. Let G and H be two regular cospectral graphs. An example of two such
cubic graphs with 14 points is given in [1]. Thus the two digraphs 2(G) and @(H)
are regular, of course. Furthermore we take the real regular digraph D of Fig. 4
(which was not easy to find). Then for i=1,..., n we define D, by the iterated
cartesian product

D,=DXx3(G)x- - -XD(G)xD(H) X - - - X D(H), 27

where we take i copies of P(G) and (n—i) of 2(H). Each D, is nonsymmetric
(because D is) as well as regular and strong with the same real spectrum. [

S. Gaussian digraphs

A complex number A =a+ip is called a gaussian integer if @« and B are
integers. The set of all these number s is written Z[i].

The next lemma is useful in constructing digraphs with certain properties. The
characteristic polynomial (26) of D, (K., can also be obtained from it. Let
(Dy, P(u,)) - (D,, P(u,)) be the generalized coalescence, where we not only iden-
tify u, and u,, but also the dipaths P(u,) and P(u,) of the same length containing
u, and u,.

Theorem S. If for the rooted digraphs (D,, u,) and (D,, u,), u, and u, are
contained in all dicycles of D, and D,, then the generalized coalescence D =
(Dy. P(wy)) - (D,, P(u)) has the characteristic polynomial

D(D) = x? " P(D,)+ x?P2d(D,) — xP.

Proof. Let u be the identifed point u = u, = u, in D. Then the subdigraphs D —u
and D — V(C(u)) have no strong nontrivial component. Applying Theorem 2 we
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A
4

2. <
>

Fig. 5. Two gereralized coalescences of four copies of C, which are gaussian.

get
@ (D)= x" - };” &(D- V(C)) =x° —Z xPP éégm &(D,- V(C))
= xP— il xP7P(x" ~- (D)),
i=
which proves the lemma. a

If we take the generalized coalescence D of n copies of (D,, P(u,)), then from
Lemma 2 it follows readily that

®(D) = nx? "1 P(D,)—(n—1)x". (28)

Among the digraphs with four points, the directed cycle C, is obviously
gaussian with the spectrum S(C,) = (£1, =i).

Corolary 5a. The generalized coalescence of n* copies of (Cs, P(u)) where P(u) is
a dipath of length 0, 1 or 2 is gaussian with nonzero eigenvalues +n, xni.

For n?=4 two nice looking examples are given in Fig. 5.

As the adjacency matrix A(C,) is a normal matrix with orthogonal right
eigenvectors, the eigenvectors a’ of its eigenvalues —1, i are orthogonal to the
eigenvector B=(1,1,1, 1)T of 1. For the complementary digraph C.. the adja-
cency matrix A(C,) is of course J,—I,— A(C,). Therefore this adjacency matrix
also has B and o' as eigenvectors, belonging to the eigenvalues 2,4, —1 i. Thus
C, is also gaussian, which follows as C, is regular.

Finally we note that from the two gaussian digraphs C, and 64 we can form
arbitrarily large families of gaussian digraphs with the formulas of Theorem 3
involving three binary operations.

6. Integral digraphs

Of course we define an integral digrapa as one having a spectrum consisting
only of integers; so these are all gaussian. it is rather surprising that there are two
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—

(2,0,-1,-1) (2,0,0,0,-2)
Fig. 6. Three integral digraphs with spectrum indicated.

cospectral integral digraphs with four points, which are the smallest such digraphs.
They are illustrated in Fig. 6 together with an integral digraph of five points.

As for real digraphs it is possible to form cospectral integral digraphs by using
the cartesian product.

Theorem 6. For any positive integer n we can find n cospectral strong nonsymmetric
digraphs which are integral.

Proof. The proof is analogous to that of Theorem 5. For i=1,..., n we define
D; by the iterated cartesian product of the two cospectral digraphs D, and D, of
Fig. 6,

D‘-'-'D,X"'XDIXDZX"'XDZ, (29)
where we take 1 copies of D, and (n—i) of D,. O
7. Unsolved problems

(a) What are the smallest real regular nonsymmetric digraphs? Is Fig. 4 the
smallest one?
(b) What is the smallest pair of cospectral regular nonsymmetric digraphs?
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