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1. Introduction 

I feel particularly honored by this invitation to deliver the opening address at the 
annual meeting of the European Association for Theoretical Computer Science 
because I am not a computer scientist. Thus I must attribute my presence here to the 
importance of the field of graph theory as a useful mathematical model in your field. 
Similarly I was astounded by the invitation to give the opening lecture at the Bremen 
Conference on Chemistry in June 1978. At that meeting, I found empirically that 
graph theoretic models are quite useful in theoretical chemistry. For I presented 
eight topics in graph theory to the chemists on Monday morning, and during the 
week, for each of these topics at least one chemist informed me that his research 
involved that part of graph theory. It appears likely that a similar phenomenon can be 
expected in computer science. 

As it is well-known that computer science involves graph theoretic algorithms, I 
shall begin with an accounting of my personal adventures and misadventures in that 
field. 

2. My experiences with graphical algorithms 

When Ross and I [22] were among the first to publish a graph theoretic algorithm, 
for finding all the cliques (maximal complete subf;raphs) of a given graph G, we did 
not realize that our procedure would give not only all the cliques of G but also a few 
other subgraphs! We committed a similar error in our attempt [21] to locate all the 
cut points of G. Had these early efforts been correct, we would have been pioneers in 
this dynamic contemporary area of computer science. 

My first correct algorithm [ 12) was developed as genuine applied mathematics 
when a physicist friend at the Institute for Advanced Study in Princeton, Larry 
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Wilets, asked me to help him and his colleagues to find eigenvalues of a given sparse 
square matrix using graph theoretic methods. Soon thereafter [ 131, I pointed out that 
a similar approach should be helpful in the invercion of sparse matrices. To my 
pleasant surprise, my colleagues at the Universi.ty of Michigan recently told me that 
this algorithm is now taught in courses on numerical analysis. The idea of the 
procedure, which is described in my book [15, p. 2051 is this: 

(1) Given a sparse matrix 1M = [mii], construct its binary matrix A = A(M) = [Uii] 
by defining aii with i # j to be 1 if mij # 0 and aii = 0 otherwise. 

(2) Consider the digraph D whose adjacency matrix is A and find its reachability 
matrix R = R (D) = [rij] defined by rij = 1 whenever i = j or there is a directed path in 
D from the point vi to vi, and rij p 0 otherwise. This is done by taking boolean 
(1 -t 1 = 1) powers of B = A + 1 until arriving for the first time at two consecutive 
equal powers: R = B” = B’“+l of B, so that m is the maximum distance from one 
point of D to another. (More quickly one can work with B, B*, B4,. . . . This is also 
presented in [ 191.) 

(3) Now find the strong components of D using matrix R. This is done by noting 
that the strong component &, containing the first point v1 of D, consists of all points 
mutually reachable with v 1. Then delete from R all rows and columns of the points in 
S1, and repeat to find the remaining strong components S2, &, . . . of D. 

(4) As the condensed digraph D* of D7 with the Sj as its points, is acyclic, it has a 
point of indegree 0, call it T1 and delete this point from D*. Continue by finding 
strong components Tz, . . . . 

(5) The adjacency matrix of this relabeling of D* with points q is thus upper 
triangular. This induces a permutation matrix P such that PMP-’ is block-upper- 
triangular and every diagonal block is square and irreducible. 

Remark. Dulmage and Mendelsohn [6] developed a more powerful algorithm for 
determining two permutation matrices p and Q such that PlMQ is full reduced. 
Subsequently Alan Hoffman and Phil Wolfe independently rediscovered precisely 
the same algorithm. 

A signed graph has lines which are either positive or negative. It is balanced if 
every cycle is positive. Ralanced signed graphs have proved applicable in social 
psychology; see 119, Chapter 91. Up until very recently, there has been no useful 
algorithm for testing a given signed graph for balance. Now Kabell and I [ 181 have 
developed a linear algorithm for this purpose, which is correct. 

3. Properties of almost all graphs 

It is known that almost all graphs are connected. This means that if g, is the total 
number of graphs with p points and c, is the number of connected ones, then 
lim p-NC0 cplgp = 1. 

Blass and I [2] considered the special case m = n of the following: 
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Adjacency property A(m, n) of graphs. Eor each sequence of m +n points 

h l l l 9 hn, Vl,’ l l 9 v,) of graph G, there is another point w such that for all Ui, WAui 
(adjacent) and for all vi, WLvj (not adjacent). 

Theorem. For every positive integer n, almost all graphs have property A(n, n ). 

It follows at once that the same statement holds for every property A(m, n). Using 
this result, we obtained the next observation. 

Corollary. For every first order sentence S about graphs, either u/most all graphs satisfy 
S or almost no graphs do. 

The sentence, a graph is connected, is not first order but that i; has diameter 2 is first 
order! It follows from the Corollary that almost all graphs have diameter 2. IIence 
they are connected, as already noted in [20, p. 2051 by a simplecounting argument. 
There are many other applications of this Corollary which was earlier independently 
discovered by Fagin [9] and has recently been strengthened by Bollobas [3]. 

However at the time of the lecture in Udine, although it was known that almost all 
graphs satisfy A(n, n) for each n, the only known example of such graphs was the 
pentagon CS for n = 1. Now Exoo and I have reported in [S] the construction of a 
graph with 6 1 points in the class A (2,2) and we believe this is the smallec,t such graph. 
The discovery of such a graph for n 2 3 and the determination of the smallest graphs 

is a difficult open question. 
Exoo and I [7] have also studied graphs in the classes A( 1, IE ) and we found that the 

smallest such graphs are ‘cages’ in the sense of [ 15, p. 1741. In particular, the smallest 
graph in A(l, 2) is shown in Fig. 1; it is the well-known Petersen graph. This graph is 
the subject of an expository article [ 171. 

Fig. 1. The Petersen graph. 

3. The Reconstruction Con$cture and the Graph Isomorphism Problem 

In its present form, this conjecture was formulated in [14] as follows: 

G (Reconstruction Conjecture). If d graph G has p 3 3 points vi, and Gi = G - vi 
constitute the deck (of point-deleted unlabeled subgraphs) of G, then the deck of G 
determines G uniquely up to isomorphism. 



120 F. Harary 

This is perhaps the most outstanding unsolved problem in the theory of (finite) 
graphs. However it has been shown that the RC is false for infinite graphs. The 
counterexample which is easiest to follow [lo] is provided by taking G1 as the infinite 
tree in which every point has countable degree and G2 as two copies of G1. Then each 
point-deleted subgraph of either G1 or G2 consists of x0 copies of G1 although Gt 
and GZ are not isomorphic as G1 is connected and GZ is not. 

Legitimate Deck Problem. Given a sequence H1, Hz, . . . , H,- of graphs, do they 
constitute the deck of some graph? 

Graph Isomorphism Problem. Given two graphs G and H, determine whether or not 
they are isomorphic. 

Statman and I recently observed in [23] that the Legitimate Dezk Problem for 
regular graphs and the Graph Isomorphism problem are computationally equivalent. 

A frequently rediscovered exponential algorithm for the Graph Isomorphism 
Problem was discussed in [16]. This procedure involves the determination of a 
canonical form for the adjacency matrix of a graph or digraph, and it involves testing 
all the p! permutations which can be used for labeling a p-point graph. 

The spectrum of a graph G is defined as the nondecreasing sequence of eigenvalues 
of its adjacency matrix A. (As A is real and symmetric, the eigenvalues of A are real.) 
The spectra of all the trees with p s 8 points were calculated by Collatz and 
Sinogowitz [4] without computer assistance in their pioneering paper which intro- 
duced this important contemporary branch of graph theory. 

Fig. 2. The two smallest cospectr rl trees. 

There was an outstanding conjecture in the chemical literature that if two graphs 
are cospectral (have the same spectrum), then they are isomorphic. However, it was 
already noted in [4] that the two trees of Fig. 2 are not isomorphic but are cospectral. 
This was explicitly pointed out in [l] in order to dispel this conjecture. Of course, had 
the conjecture been true, it would have provided an easy answer to the Graph 
Isomophism Problem which is of much inlterest to chemists as it is a step in the process 
of recognizing the similarity of two chemical compounds. Annotated bibliographies 
for the Graph Isomorphism Problem are given in [S, 111. 

In fact, Schwenk [24] has proved the strong result that as c + 00, almost all trees 
with p points have a non-isomorphic cospectral mate. 
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