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I. INTRODUCTION 

Let Sz be the exterior of a bounded domain D with a smooth boundary r and 
let n denote its outer normal. The quasi-static problem of the title consists in 
solving the equations (cf. [I, 31): 

Curl E = 0, 

Div E = 0, 

subject to the boundary conditions on r that 

nxE=-nxE,, 

where E,, is a given initial static field 

E,, = -V$, where A+=O. 

In Section 2 this problem is reduced to one for a scalar potential while in 
Section 3 the main result is obtained by an iterative process for the above 
boundary value problem. 

2. REDUCTION TO A DIRICHLET PROBLEM 

Since Curl E = 0 it follows that there exists a u such that E = -Vu with 
Au = 0 in Q and where the boundary condition becomes n x V(U + +)lr = 0. 
This boundary condition is equivalent to requiring that an arbitrary unit tangent 
vector t of r satisfies 

t . yu + $)lf = 0 (3) 
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and this in turn can be satisfied by requiring that 

u + 4r = C = constant. 

The constant C can be evaluated from the condition 

(4) 

(5) 

The last condition is merely the physical statement that the total charge on r 
must be zero. 

Thus the boundary problem for u has been reduced to finding a u such that 

Au = 0 in J2, 

U=-C+C on r, 

and 

s eds=O. i-an 

(6) 

(7) 

To solve this problem we first find a solution to the Dirichlet problem 

Au=0 in Q, 

u lr= $9 
(8) 

and then determine C so that (7) is satisfied. In fact this is the necessary and 
sufficient condition for the solution to problem (6) to be obtained in the form of a 
double layer potential. 

Let rts = 1 t - s 1 and let A denote the operator 

Au = .c, & $-+ u(s) ds 
t I 

and A* the operator 

,4*7 = 
I 

a i 
- __ T(S) ds. 

r an, b1.d 

Now the solution to (6) is of the form 

s 
a i -- 

r an, 4flSz 
u(s) ds 

for an appropriately chosen a, but it is easy to see that (7) implies that a = 0. 
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From the representation 

r a 1 
II= - - T(S) ds 

.r an, 4~~~ 
(9) 

and the boundary condition (8) one gets 

T + A*7 = 24. (10) 

This equation will have a solution, by the Fredholm alternative, if and only if 

. 
1 (bu ds = 0, (11) -r 

where o is any nontrivial solution of the homogeneous equation 

u + Au = 0. 

However, this last equation admits only the solution 

u = Ku,(t), 

where K = constant f 0 and u,(t) is the equilibrium charge distribution on the 
surface I’ of the perfect conductor. In a previous work [2] an iterative process for 
calculating us(t) was established. It is easy to see that (7) and (11) imply that 

In order to complete the solution an iterative process which solves problem (6) 
when C is defined by (12) will be constructed. 

3. THE ITERATIVE PROCESS AND MAIN THEOREM 

If 

and 

(13) 

(14) 

where C is given by (12), the iterative process is defined by 

v n+1 = fifv, + @, ‘/a = 294 

In terms of this the following is the main result: 

v == lim I’, . n + x (15) 
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THEOREM. Equation (14) implies (10) and the solution of Eq. (IO) is giwen by 
the iterative process (15). 

To establish that (14) implies (10) multiply (14) by a,, and integrate over r. 
This yields 

j-, vu0 dt = -(A*v, q,) + IF u,, dt s, v dt. 

However, since 

and 

it follows that 

(A*v, ue) = (v, Au,) = -(v, q)) 

i q, dt # 0, 
r 

s 
vdt = 0, 

r 

from which the desired implication follows. 
In order to establish the validity of the iterative process it is sufficient to prove 

that M does not have any eigenvalues X with / h ( < 1. 
Suppose that A is an eigenvahre satisfying v = XMv, i.e., 

and let 

v=-AA*v+h s v dt, 
r (16) 

11= s r v(t) & & dt. t xt 

Denoting the exterior region by the subscript e and the interior by i, it follows 
that 

(l+X)u,=(l-X)u~+hj+~i)dt. (17) 

Multiplying this equation by au/an and taking into account that 

we get: 

au au 
&=&' W3) 

1+x 
i -A s u *dt= 

r cane I .“~dt+~=(u,-u~)dt.f,~dt.~. 

Green’s formula implies that 
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s edt=O, 
r an 

from which it follows that 

l+h<o l--h’ 
and, in turn, that X is real with / h 1 > 1. 

To conclude the proof it must be shown that 51 are not eigenvalues of M. 
If X = -I, then from (17) it follows that 

2 1, tli z dt = 0, 

so that 

s 1 Vu l2 dx = 0, u = const in D, 
D 

au au 
an,=an,= 

0. 

Thus 

atl -= 
an, 

0, u =0 in Q, v = ue - ui = const. 

Without loss of generality it can be assumed that v = 1. However, for X = - 1 
no solution exists for Eq. (16) as it follows from 

1 =Ml 

that 

(uo,l)=-(l,u~)--S~~u~dt, 

where S = meas r. This is a contradiction since jr a, dt > 0. 
Finally for h = 1, Eq. (16) reduces to 

v=-A*v+ 
s 

v dt 
I- 

and by the Fredholm theorem this can have a solution if and only if 

(1% 
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Since 

s 
a, dt # 0 

r 

this will be possible if and only if Jr v dt = 0, so that (19) reduces to 

v = -A*v, 

which, in turn, implies that 

v = const # 0 

and this contradiction implies that h = 1 is not an eigenvalue of(M) and hence 
the main theorem has been proved. In [3], iterative processes for solutions of 
the interior and exterior Dirichlet and Neumann problems are given. 
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