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Two basic analytic functions «(2) and () defined in domains depending on
the location of the zeros of a complex polynomial P(z) are given by P[P —
ni(z — «) and P = (= - - 8)". These functions are studied with respect to their
growth and their Laurent cxpansion coefficients. Applications to the location
of zeros of complex polynomials are indicated.

1. INTRODUCTION

Associated with an nth-degrec monic polynomial
n
P(z) = 2" = al'zn_l o @+, Z (2 - 'zk) (])
k3

are two functions, referred to as the coincidence functions «(z) and B(2) which
satisfy the relations

P'(2) n

Be) 5Tl 2)
and

P()  (z— B)" ()

These functions are quite basic in the theory of the location of zeros of various
functions of P(z) and its derivative and have been introduced by Walsh [3, 4]
and studied further and applied, for cxample, in [1, 2, 5, 6].

In these studies a relatively simple casc was considered, namely, the casc
where a gap appears in the expansion of a(2) and B(2). No gencral formula for
the coefficients of these functions was obtained and no relations that exist
between the coeflicients of «(z), (=) and thosc of P(z) were applied. It is the
purpose of this note to close somewhat this gap. In Section 2 a general formula
for the coeflicients of the expansion of x(2) is obtained in terms of the power
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ANALYTIC FUNCTIONS WITH POLYNOMIALS 463

sums of the zeros of P(2). Also a recursive relation between these coefficients
and the coeffictents of P(z) is indicated. These basic relations are applied to
obtain growth estimates for the function afz) in its domain of analyticity and its
[Laurent expansion cocfhicients. Also one typical zero Jocation result is indicated.

In Section 3 a similar study is made of the function 5(s) defined by (3) and
corresponding results are obtained.

[n Scction 4 an application of the previous results is made to the casc of
polynomials with one fixed zero.

In Section 5 the particular case of a trinomial is considered. As an application
of the general theory a neccessary and sufficient condition is obtained for a
trinomial to have all its zeros in the closed interior or in the closed exterior of the
unit disk.

This condition is expressed as an analytical incquality and differs from the
classical conditions involving determinantal inequalitics or iterative calculations.

Thmughout this note it will be assumed for simplicity that all the 2z,
& = 1,2,...,n lie in the closed unit disc and the coefficients a;, in (1) will be
defined al@o f()r k > nas a, = 0. In this casc it is known that the functions a(2)
and p(z) can be defined as analytic functlons in z for all 7 sausfying ;2. > 1,
and such that  a(2)] <1 and 'B(z) < 1 there. We shall also denote by 1,
Pl 2,0, the sums

n
= Z & 4)

2. SonE PROPERTIES OF THE FUNCTION 2z)

Leviaia L. Let the expansion of the function o(3) as defined by (2) for 3,
5,1 be

¢ c,
N 1 2 /
()~ Do e )
~ <
then
1 i ! .
Ce = fer = n? 2 iy =+ n Z il ity
iy iy=kerl oy Ay vig=hood

)

where t, is defined by (4) and where the sums are taken over all permulalions
{11515 ,...), of positive integers subject to the conditions indicated.

Proof. Relation (2) can be expressed as

(f‘ _ i n 1 1, n
LT T Tz — afs)
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Hence, taking into account (5) we obtain

Equating powers of 2 we have

1
Cei1 = (Epao — trinCo — tiey — = — toCr_y — £16), k=0,1,.. (7

Now (6) is established by induction. One verifies directly that ¢, == ¢;/n. Assum-
ing (6) for all negative integers not excecding &, and applying (7), we deduce

k

My == Lpgy — 3, beagmiCs
7=0

&
1 1

= lpy — z Ley1j (_n— Ly — ;1'2' Z tixtiz

j=0

iyhigr 341

1
tom Tttty (—1) o AY)

i)y rig=jt 1

l k
== bpag — 7 Z tirr it + = g z Z 1L+1—atz,tzz

i=1 fy+iy=7+1

tk-vl

1 k
T Z Z Licy I—Jthtfzth : ( 1)k+1 nk .
=2 Ji =41

This last relation is equivalent to (6). One also notes that the number of terms
multiplying 1/n’! in ¢, is (¥). For instance,

t, 42 f, 2t t2
R e TR R
t, 1 1 t,4

Tn n(21, F t2) + w302 nt
Obviously Nowton’s formulas

b L a2 ap_ty -+ ka, =0, k=1,2,.., (8)
where a; == 0 for j > n allow one to cxpress the ¢, in terms of the coefficients a;

of P(2). Sometimes it is advantageous to use a dircct relation between the ay
and the ¢, . Although no simple direct formula, similar to (6), seems to exist, it is
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possible to obtain a recursive relation similar to (7). "This relation obtained from

(2) is

1 . ,
Cp = — o ((m—Dayp.y r(m—2)ayy = -+ (n—R)ay - (b~ 1aw.)
fork=1,2,..,
a] . I
G 7 — o (a; -=0forj > n). {9)

We now indicate two corollaries

CoroLLARY |. (a) The three statements a, =ay= "' =@, ; --0, t; -
o= o=ty =0, and ¢y = ¢y = = ¢,y = 0 are equivalent.
(b) If the coefficients of P(z) in (1) satisfy a; = ay = - = a,_, = 0, then
¢; ——-~_—(]—L—l—aj;1 Jork — 1 <j <2k —2,

n X

where the convention with regards to the coefficients a; indicated before applies for
and throughout this note.

CoRrOLLARY 2. Set M, -: max ey b ', then

M MyE
[ gl [l - H o
TGS (1 i n) forj=10,1,...,p— 1.
The upper bound is attained by p(z) === 1 4- g -4- - - 2%, t, = = =1f, = —1,

o= —(n) (1 -+ 1n)* for k=-0,1,..,m — 1.
Proof. By (6)

fe | :Q%M ¥ ;12- (J) M2 ek

1/ ni+l *
Concerning the growth of «(z) we have

Tueoren 1. Set o(2) be given by (2), where all the z,, k==1,2,...,n lie in
the closed unit disc. Then for p == 1, 2,...

R R S SO I SO S T N SN
| 270(R) — o — 137 — s < blg ' b T {Cp1.

Joriz|>1. (10
Proof. The function a(Z) == o1/} is analytic for : £ << !, and i a(l), <!
there. Morcover

a(l) = o+ a1l 4 L+ -



468 ZALMAN RUBINSTEIN
The function

af) —q—al = = — 07

Lttt ial+ - leprl

e bpép + bp+1€)7‘] + .-

o) =

satisfies | B({)] <1 in "' << 1. The incquality (10) is deduced by applying
Schwarz’s lemma. Combining Theorem | with Corollary 1 we have

CoroLLARY 3. Let the polynomial p(z) and the fundz'on' ) be related by (2).
Then the following two statements are equivalent.

(a) The polynomial P(z) has the form 2" + a,2" 7 - --a,,p =1 and
all its zeros lie in the closed unit disc.

(b) The function o(2) is analytic in the exterior of the unit disc and satisfies
there the inequality | o(z), < |z P
The implication (a) — (b) was established in (4, 5].

CoroLLARY 4. If P(2) -- 2" 4 a,3" P < -+ + a, has all its zeros in the
closed unit disc, then all the zeros of the equation P'(2)]P(z) = ¢, ¢ 7 0 which do
not lie in the closed unit disc, lie inside the lemniscate

p

z”‘-’—%a”—{-a,,--‘s—z ;{l—l-;la,,!. (I1)

Proof. If zis a zero of P'(z)/P(2) :— ¢ and 2| > 1, then a(z) = 2 — nic.
Since ¢y =¢; =~ =¢pg =0, €4 == —(pin)a,, we have by (10) inequality
(11). We remark that when a,, = 0, (11) implies the classical inequality which
in our case rcads

!zn—l.!'z__

It is clear that since ' = | > 1 (11) is generally stronger than the last inequality.

3. SomE ProperTiES OF THE FuNcTioN B(z)
The function B(z) which satisfies (3) can be defined out of the relation

B(z)

In ( — —z—) = l LG:] In ( — _z;_) . (12)

If all 2, satisfy ' 55, | << land if ' z | > [, it follows from the fact that the function
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In{l — ¢), In 1 — O maps the open unit disk onto a convex region univalentdy,
that B(2) is uniquely determined by the branch of the logarithmic function.
Turthermore 3(z) is analytic in ' ' > 1 and | 3(2)) =2 | there

Levma 2. The function B(=) defined by (3) or (12) to he an anaiytic function
in the region 'z >> 1 has the expansion
1 -i- 12 T RN (13)

22

l\)la-

3(2) = dy -
where the coefficients d,., k = 0, ..., satisfy the relations dy —: t,'n and

1

dp =~ = i (hdey = diy = A Gedy — B A =1,2,..
n(k - 1) (14)
Proof. Tor convenience let { = 1iz. We evaluate 3({) by the formula
o / 1 n ) \ L
8(0) = 1 — exu (~ Y. In(l — 2,0 (15)
n k=1 K
Now, for { <1,
1_ S 7y = L r2 .. Iy gi {
" kz;l Il — 20) = =t —F &= — - (16)

To evaluate the coefficients of the exponential of & power scries we make the
following observation: if

pR) = po 4 P15 -
q(2) = gy - 2 + s

and ¢(z) — 27, then from the differential equation ¢° — p'q = O onc obtains

(B-r 1) quey =DPrge = 200-1 = " = (R 1) Prrdo {17)

k--0,1,..., and g, - expp,. By (16), jp; = —&;n, j =1, 2,..., and p, —= 0.
The result follows now by (15) and (17).

CoroLLARY S, If the zeros of the polynomial P(z) satisfy the symnetry condi-
tions ty =ty == - = t, = 0, then the coefficients d, of the expansion of 5(z)
satisfy the conditions dy =d, = s :dy_ --Oand d; -= t; /nj for k <{j <2 2k,
In particular 1 d; | < 1.

Proof. The first part follows directly by (14). For the second part consider
(14) for d;, ke +< j < 2k. Tt is easy to sce that all the terms of the form ¢,d;_; in (14}
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vanish by the first part of this corollary. As an application of Corollary 5 and (8)
we mention

CoRroLLARY 6. Under the hypotheses of Corollary 5

a=—" fork+1<i<2%k+1

and

d,:l(];};ljl—)ﬂ fork <j <2k,

A typical simple application of the above results to the locations of the zeros
of various functions of P(z) is

CoroLLARY 7. Let P(z) = 2" + a2 P - -+ --a,, p>=2. Then all the
2eros of the polynomial P(z) — ¢, which are outside the closed unit disk, lie inside
the lemniscate

ngPl — polingd + a, p Z < n + ] a, l %‘T (18)

p—1 P

Jor a suitable choice of cV/*. When a, == 0 the above result reduces to the known
estimate in [6, Theorem 5].

Proof. If 2 is a zero of P(z) — ¢ which lies outside the closed unit disc, then

by (3), B(z) = 2 — cl/" for some choice of ¢1/*. By (13), Corollaries 5 and 6

nB(2) - app—f—T P = O@?)  for|z| >l

Hence by Schwartz’s lemma and the inequality | ()] <C 1 for | | > 1 we have

<isl7(ntla)

nB(3) - @y L 57

p__

pfl)

for | 2 > 1. Substituting the value of B(z) we obtain the desired result. We
remark that (18) can be written as

tz if(m)+4i<1 =14 (19)

with f(2) =: 271z — ¢/*) and A4 := pa,/(n(p — 1)). This is generally better
than the known result

)i <1 for'z! > 1. (20)
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Indeed by Corollary 6, ' A < 1/(p — 1). Thus the locus (19) is contained in
locus (20) at least for | 2| = p/(p — 2), p = 3. In particular (19) is stronger
than (20) forall i 2| > 3 and p > 3.

4, PoLyNOMIALS WITH A KNowN ZEkro

The cxample plg) == 1 -- g+ -2 t,, -5 1 =0 for & 5 (n--1)j and
tr —: n otherwise indicates that one docs not have to explicitly know all the zeros
of p(2) to evaluate the numbers #; . We illuminate this situation more precisely in

Levva 3. Let g(2) = (2 — a) p(2) = (2 — a) (z — =) -~ (2 — z,) = 2"
- @ttt g, p = L, where p(2) is a polynomial all of whose zeros
lie in the closed unit disk and a a given complex constant. Then the coefficients ¢,
and d;, of «(2) and B(z) respectively relative to P(2) as defined by (2) and (3) satisfy

the relations

~
o
|I
|
)
x
E
—
lb—‘
N
. &
&
Ji
&
Vot
"
[
—~
o
—
~

and

dy = 8,(n) @1,

where the constants §,(n) satisfy the difference equation

. 1 o , | s
d(n) = WE=1) Ora(m) -+ Opg(m) -+ o - 3g(m) - 1), k=1L p— 1
(22
Proof. By hypothesis ¢; -+ @’ == 0 for j — 1,2,...,p — 1. By (7)
Chs 75 7 0 (a2 - a*Fley - afey - o 1 acy)
k=0,1,.,¢ = ty/n == —a/n. This diffcrence equation has the solution {21}.

Similarly applving (14) one obtains (22). We conclude this section with one
simple application.

CororLary 8. Al the zeros of the derivative of the polynomnial (=) defined in
Lemma 3 lie in the union of the closed unit disc and the lemniscate

!zi!(n--:— 1)z-a(n~-:7)‘\<\'l—;-'——-‘—.

| n

409/74(2~11
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Proof. Since

q'(z) _ p'(z) i I _ n Lo
q(2) (=) 3—a z—aofz)  z—a

for | 2, > 1, then any zero of ¢'(2) which is not a zero of ¢(z) and which lies
in | 2, > 1 satisfies the relation

a(2) = (n - 1)z — na. (23)

Relation (10) with p = | combined with (21) and (23) implics Corollary 8.

5. THE CASE oF A TRINOMIAL

The case of a trinomial is particularly interesting since we can explicitly
evaluate all the coefficients. Indeed applying (9) to the irreducible trinomial
p(z) = 3" + a,2"? + a, , n -~ jp, we obtain

i,y
CG-D+ip ™ — 7 T_ ap) 4;, I = 0) l)'--)
where j == p, nand all the other ¢, vanish. Tn particular ¢y == ¢y == ==+ == ¢,y == 0,
Cpoy = (PiM)ay, ¢\ = = Copp =0, copy = (p(n — p)/n) a,?. Moreover the

function «(z) can be applied directly to obtain a necessary and sufficient condi-
tion different from the usual iterative or determinants criteria for a trinomial to
have all its zeros in the closed interior or exterior of the unit disc.

THEOREM 2. Let P(2) — 2" - a2 ? - a,, a,7- 0. If 2p = n, a, >0,
then a necessary and sufficient condition for the trinomial P(2) to have all its zeros
in the closed unit disc is that the inequality

1 itnepo _ PP n(l — |a,1*) — (2p — n) a,*
020125‘17 Re (ane (n=p)0 — e e 9”) < pa, . (24)

Proof. The function «(2) in our case satisfies by (2) and (10) the relations

n-p _
pay,x™ ? <+ na,

— on—p-1 _ 77 @ TR
ROK nz? + (n — p)a,

and | a(2)| << [ 2,7 for | 2, > 1. These conditions can be expressed in the
form

pay -+ a7 | < n - (1= Pyl 25)
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vor { -2 1. By Corollary 6, 4, = ~t,ip. Thus . a, = it'pand hence a, -2
ni(m - pyif 2p >mnandia, = n'(n— p)only for2p -=n,a,— 2, and a, = !.
Tn the latter case (24) is satisfied since both sides of Eq. (24) vanish. Assuming
that ja, , < n/(n — p), inequality (25) for | { << 1 is equivalent by the maximum
principle to the same inequality for ! { { = 1. A standard calculation shows that
(24) and (25) for , £, -- | are also cquivalent.

Various simple necessary conditions and sufficient conditions can be derived
from (24). For example a simple sufficient condition is

dpa, <n(l — a, 1¥) — (2p — n) a2

T'he necessary condition '@, = 1 follows from (24) since if .a, =1, then
the left-hand side of (24) exceeds "a,  — (n — p)p >+ 0, while the right-hand
side is negative. Obviously the assumption @, > 0 in Theorem 2 does not
limit its generality because a preliminary transformation of the form e*P(ge™)
will reduce P(z) to the desired form. If 2p < n, Theorem 2 can then be applied to
the polynomial 2"P(1/%). Inequality (24) will then give a necessary and sufficient
condition for the zeros and lie in the closed exterior of the unit disc.
In the particular case of a quadratic cquation

2 az kb

arg a - - x, onc obtains the following necessary and sufficient condition for both
zeros to lie in the closed unit disc.

7

aj b—e* =11 -- b2

It s possible to prove this inequality also directly but not as conveniently. We
conclude with a few remarks about the maximum M of the left-hand side of
(24) which is attained, say for 6 -+ 8*. It is casy to sce that 8~ satisfies the equa-

tion

a,  sin((n — p) 6* + arga,) - sin(d@7p) - 0.
Also

(1 + "o Leonop)) +sintwp) < oy
and

2

ta, 2eost((n — p) U7 - arg a,).

(M ”——%—7’- cos(t*p))

These relations can be used for numerical calculations.
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