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Two basic analytic functions A(Z) and p(z) dcfncd in domains depending on 
the location of the zeros of a complex polynomial P(z) are given by PI/P - 
n/(z - 2) and P = (z 8)“. Th ese functions are studied with respect to their 
growth and their Laurent expansion coefkients. Applications to the location 
of zeros of complex polynomials are indicated. 

1. INTRODIJCTION 

Associated with an nth-degree manic polynomial 

P(z) = P -l a,.z”-’ -/- ... ) a,,+,z + a, .-- f (z - q.) (1) 
t. .I 

are two functions, referred to as the coincidence functions X(Z) and P(z) which 
satisfy the relations 

and 

P(z) (z - /3(a))~l. (3) 

These functions arc quite basic in the theory of’ the location of zeros of various 
functions of P(z) and its derivative and have been introduced by Walsh [3, 41 
and studied further and applied, for example, in [I, 2, 5, 61. 

In these studies a relatively simple case was considcrcd, namely, the case 
where a gap appears in the expansion of a(.~) and /3(z). No general formula for 
the coefficients of these functions was obtained and no relations that exist 
between the coefficients of U(E), ,8(z) and th osc of P(.z) were applied. It is the 
purpose of this note to close somewhat this gap. In Section 2 a general formula 
for the cocfhcicnts of t!lc expansion of .~(a) is obtained in terms of the power 
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sums of Thz zeros of l’(z). Also a recursive relation !wtwcen theac cocrfciecrs 
and the coef5cicnts of P(z) is indicated. These basic relations arc applied to 
obtain growth estimates for the function a(:) in its domain of analyticity and its 
i,aurcnt expansion coefficients. Also one t>-pica1 zero location result is indicated. 

In Section 3 a similar study is made of the function $(z) defined bp (3) and 
corresponding results arc obtained. 

In Section 4 an application of the previous results is made to the cast of 
polynomials with one fixed zero. 

In Section 5 the particular case of a trinomial is considcrcd. ;Is an application 
of the general theory a necessary and sufficient condition is obtained for a 
trinomial to have ali its zeros in the closed interior or in the closed exterior of the 
unit disk. 

This condition is cxpresscd as an analytical inequality and dif?ers from the 
classical conditions involving determinanta! inequalities or iterative calculations. 

Throughout this note it will be assumed for simplicity that all the zk , 
k : 1, 2,...> n, lie in tllc closed unit disc and the coefficients a,. in (1) will be 
defmcd also for k > n as uk = 0. In tilis cast it is kno\yn that the functions Z(Z) 
and P(Z) can bc defined as analytic functions in z for all a satisfying , z > 1, 
and such that a(~“)1 < 1 and ’ B(Z) :$ 1 there. I’\:e shall also denote by 1, , 
p : 1, 2 ,..., the sums 

then 

7chel.e I,, 7s chj7zrd I’)J (4) and zchere the .su7ns are takvz ooer nil pernzu/aicc?m 
(ii , i, ,...), of positi,w intepm suhjecl to the condiiiorzs itdicaiati. 

Pror,f. Relation (2) can be cxprcsscd as 
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Hence, taking into account (5) we obtain 

n == 
( 
n + il 4 -!--1 . . . Cl CP 

z z2 z3 s )( 
~-~o---~-... . 

z B 1 

Equating powers of z we have 

1 
cl;.; 1 = ; (tr-, 2 - t, ( lco - t,c, - -.. - t2Ck-l - GJT k = 0, l,.... (7) 

Kow (6) is established by induction. One verifies directly that ca =z t,/n. Assum- 
ing (6) for all negative integers not exceeding K, and applying (7), WC deduce 

ncp+1 L- t,+, - d, tkAi-jci 

This last relation is equivalent to (6). 0 nc also notes that the number of terms 
multiplying l/n’.-* in cI; is (y). For instance, 

t2 t,” 
Cl =----) 

?P 

c __ 3 
2- 

2% 1 tl” 

n n n2 $ ) 

t4 I 

c3 =- -ii- - n’(2t,t, -1 t,‘) 
+ 1 - !!! . 

n”3t,t,” 

Obviously Nowton’s formulas 

t, + q,.., $ ... A a,-,il -i Ku, -= 0, k = 1, 2,..., (8) 

where aj =.- 0 for j > ?z allow one to express the ck: in terms of the coefficients ak 
of P(z). Sometimes it is advantageous to use a direct relation between the ak 
and the clc . Although no simple direct formula, similar to (6), seems to exist, it is 
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possible to obtain a recursive relation similar to (7). ‘I’his relation obtained from 
(2) is 

al co Tz - n (a, -= 0 forj > n). V) 

WC now indicate two corollaries 

COROLLWY I. (a) The three statemmts a, z a2 -L ” .:-I a,:-, -. 0, f, ; 

t, ..=. ... = t,-, -= 0, and co .-- c1 -= ... -. cIj .I : 0 are equh,alent. 

(b) if the coeficients of P(z) in (1) sati~jy a, = a, =- ... == n,-, -7 0, then 

cj _ 3 I- 1) aj.l ~- 
n 

fork- I <j<2k-2, 

where the conwntion .with regards to the coe$cients aj indicated hefore applies jor 
and throughout this note. 

ConoLI.mY 2. Set #I, -1 max,GkG, t,: ’ , tken 

Yc.! ’ ), +:(I kz)” forj=O,I ,..., p- 1. 

The upper hound is attained by p(x) :=: 1 +- z -‘- .‘. -1 zn, t, = 
cA : -(l/n) (1 -+ l/n)” for k =- 0, I ,..., n - 1. 

Proof. By (6) 

Concerning the growth of a(z) we have 

‘I&E~REM 1. Set a(2) be given by (2), where all the zI; , k == 1, 2 ,..., 71 lie in 
tile closed unit disc. Then for p = 1, 2 ,... 

j ziq,-) - Co”Y - cl$-l - ... - cl,--Io ( < j- j co ;- . .’ f j CPml : 

forlzl > 1. (10) 

Pyo~j; ‘The function a(l) =r; CX(~/[) is analytic for < < !, and u(r): < ’ 

there. hIorsover 
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satisfies , h(c)1 < I in 5 ’ < 1. The inequality (10) is deduced by applying 
Schwarz’s lemma. Combining Theorem I with Corollary 1 we have 

COROLLARY 3. Let tlze polyzzonziul p( z and thefunction m(z) be related by (2). ) 
Tlzen fhe folloz~z’ug tz~o stntements are equivalent. 

(a) The polynomial P(Z) has the form u”” + a,z’+” + ... -i- a, , p 3 I and 
all its zeros lie in the closed unit disc. 

(b) Tfze fuzz&on a(.~) is analytic in the exterior of the unit disc and satisfies 
there the inequality , CY(Z): < j x I-z’fl. 
The implication (a) + (h) was established in [4, 51. 

COROLLARY 4. If P(z) :-- z" -)- a&-l1 -; ... + a,, has all ifs Zeros in the 
closed unit disc, then all the zeros of the equatiozz P’(z)/P(z) _. c, c + 0 which do 
not lie in the closed unit disc, lie inside the lemniscate 

Proof. If B is a zero of P’(.z)!;P(z) :- c and z ; > 1, then a(.~) =. z - n/c. 
Sinccc,:.=c,=... =cp-2.~0,~,.,~--(p~n)a,, we have by (10) inequality 

(11). WC remark that when u, = 0, (I I) implies the classical inequality which 
in our case reads 

It is clear that since ’ a 1 > 1 (I I) is gcnerallv stronger than the last inequality. 

3. Sow PROPI;RTII:S 0~ TIIE IQ:Nc~~~N p(z) 

The function /3(s) which satisfies (3) can be defined out of the relation 

In (1 - $1) = .i. A$, In (1 - -“,-) . 

If all zil- satisfy zp I < 1 and if ’ z 1 > I, it follows from the fact that the function 



In(l -- <), In I : 0 maps the open unit disk onto a con\~x region univalcntly, 
rhat ,/3(z) is uniquely dctermincd by the branch of the logarithmic function. 
?urthcrmorc /3(z) is analytic in ! z >. 1 and ; j3(z): 2.; 1 there 

~dwx the coef$cienis d, , ii = 0, I,..., satisfy the relations d,, -: f,!n and 

I’rouf. For convenience let 5 =--: 1 :a. \I:c evaluate ,3(<) by the formula 

(15) 

To c\aluate the coefficients of the exponential of a nowcr series WC make ~hc 
following obscr\-ation: if 

p(z) :- p,, i p,z - “‘, 
y(z) =. q, -1. q,z i ‘.‘) 

and r/(z) -: e/‘(*), then from the diffcrcntial equation q’ -- ~‘4 -= 0 w:e obtains 

k 0, l,..., and ‘lo cxp p,, . By (16), ,jpj = --i,,‘~/, j =- I, 2 ,..., and p,, -= 0. 
The result follows now by (15) and (17). 

Proof. The first part follows directly by (14). F ‘or the second part consider 
(14) for d, , iz :< j < 21~. It is easy to see that all the terms of the form f;~l,-~ in (I 4) 
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vanish by the first part of this corollary. As an application of Corollary 5 and (8) 
we mention 

COROLLARY 6. Under the hypotheses of Corollary 5 

ai=-!c 
i 

for k -b 1 < i < 2k + 1 

and 

d, = -(i -I- 1) %I 
I 

nj 
for k <j < 2k. 

A typical simple application of the above results to the locations of the zeros 
of various functions of P(z) is 

COROLLARY 7. Let P(z) = 9’ + a,.z?-Y -{- ... -(- a, , p > 2. Then all the 
zeros of the polynomial P(z) - c, which are outside the closed unit disk, lie inside 
the lemniscate 

nzP-!-1 _ nclfnZP + a, P 
I 

P -z ,<n+Ia,I--- 
P--l P--l 

for a suitable choice of clfn. When a, = 0 the above result reduces to the known 
estimate in [6, Theorem 5j. 

Proof. If x is a zero of P(z) - c which lies outside the closed unit disc, then 
by (3), p(x) = z - P for some choice of cl/n. By (13), Corollaries 5 and 6 

Hence by Schwartz’s lemma and the inequality 1 /I(x)/ < I for 1 z I > 1 we have 

n/3(z)-/-a,-a--“+1 <ilzlmp n+ [anIP 
P--l I c P--l 1 

for I z ; > 1. Substituting the value of p(z) we obtain the desired result. We 
remark that (18) can be written as 

with f(z) =-: a”-r(,z - cl/n) and A -= pa,/(n(p - I)). This is generally better 
than the known result 

If( < 1 for!zl > 1. (20) 
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Indeed by Corollary 6, ’ B ; < I,/@ - 1). Thus the iocus (19) is contained in 
locus (20) at least for 1 z j >p/(p - 2), p 3 3. In particular (19) is stronger 
than (20) for all i z j > 3 andp > 3. 

4. POLYNOMIALS WITH A KNOWX %ERO 

The example p(z) :: 1 ..t z + ... -,- zn, t, -/ 1 := 0 for k F (TZ. --,.- I) j and 
I, :. n otherwise indicates that one does not have to explicitly know all the zeros 
of p(z) to evaluate the numbers t, . We illuminate this situation more precisely in 

LIx4lA 3. Let q(z) = (z - a)p(z) -= (z - a) (z - ZJ .‘. (2 - z,) = z-1 
.:_ (2 ln p--P:-1 f . + 0 n+, , p > 1, ukre p(z) is a polynomial all of whose zeros 
lie in the closed unit disk and a a given complex constant. Then the coeficients ciz 
and d, of CC(Z) and F(z) respectively reZatiz.e to P(z) as defined by (2) and (3) satisfy 
the relations 

zhere the constants S,:(n) satisfy the difference equatiorz 

(21) 

Proof, By hypothesis tj -I- .j =: 0 for; - 1, 2,..., p - 1. 13~ 

lz = 0, l,..., c,, :- t,;n =-: -a/n. This difference equation has the solution (21). 
Similarly applying (14) one obtains (22). W .c conclude this section with one 
simple application. 

coI~oi.LxI~Y s. -411 the zeros of the derizati-ie of the poLynomiai q(z) dejined in 
Lemma 3 lie in the union of the closed unit disc and the lemniscate 
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Proof. Since 

for ( a ; > 1, then any zero of q’(z) u IC is not a zero of q(z) and which lies rh’ h 
in ! z , > 1 satisfies the relation 

a(a) = (n + 1) z -- na. (23) 

Relation (10) with p = I combined with (21) and (23) implies Corollary 8. 

5. THE CASE OF A TRINOMIAL 

The case of a trinomial is particularly interesting since WC can explicitly 
evaluate all the coefficients. fndecd applying (9) to the irreducible trinomial 
p(z) = z’* + a#-D -r a,, , n ;t jp, we obtain 

c(j- -1)+1v y -~(q+z,, l--O,1 ,..., 

whercj = p, II and all the other cfC vanish. In particular co =- c1 : : ... -.= c~-~ =- 0, 
cpvl :- (p/n) a, , c), := ... = c2y--2 = 0, c2p-.l = (p(n - p)/n) u~,~. Moreover the 
function a(z) can be applied directly to obtain a necessary and sufficient condi- 
tion different from the usual iterative or determinants criteria for a trinomial to 
have all its zeros in the closed interior or exterior of the unit disc. 

THEOREM 2. Let P(z) - Z* -1 a#- Y :- a,, , a, +. 0. If 2p > n, a, > 0, 
then a necessary and suficient condition for the trinomial P(z) to hate all its zeros 
in the closed unit disc is that the inequality 

o~<a2:I Re (a,e’(+“)o - n-p ‘B ~.. eE P 
-.\ 1 P 

< n(l - I a72 I’) - (2p - 4 up2 . 
@a, 

(24) 

Proof. The function a(z) in our case satisfies by (2) and (10) the relations 

pa 
-a(z) p-P-l = -? 

.y-.P + na, 

nzp f (n - p,a, 

and !a(z)! <[.a, ‘-MI for 1 z , > 1. These conditions can be expressed in the 
form 

(25) 



TOI- 5 .._ i 13~ Corollary 6, ap =. -tp:p. Thus ni, 5. ~,‘p and hcncc R), c 
u;‘(s -- p) if 2p > TZ and I a, I- TZ,:(U -. p) only for 21, -.- II, a,, -2 2, and aTi :: ! 
!n the latter case (24) is satisfied since both sides of Eq. (24) vanish. Assuming 
that :a, ) C: TZ;(U -- p), incqualit); (25) for i < ( I is equi\-alent I?\: the maximum 
principle to the same inequality for : 5 / = 1. A st andard calculation sholvs tiwt 
(24) and (25) for ! 5 , - 1 are also equivalent. 

\.arious simple necessary conditions and sufficient conditions can be derived 
from (24). For example a simple sufficient condition is 

9 )) < 12(1 - , arr I”) - (21, --- ?Z) a,,“. 

‘I’hc necessary condition a,t I.; 1 follows from (24) since if u,, -- 1, Then 
the left-hand side of (24) exceeds a,, - (II -. p),p :: 0, while the right-h.md 
side is negative. Obvious!y the assumption a,, >a 0 in Theorem 2 does not 
iimit its gcncrality because a preliminary transformation of the form e’XI’(z~“) 
will reduce P(,z) to the dcsircd form. Jf 21, < n, Theorem 2 can then be applied to 
the polynomial z’lP( l/z). lncqualit~- (24) will then give a necessary and sufiicicnt 
condition for the zeros and lie in the closed exterior of tl:c unit disc. 

In the particular case of a quadratic equation 

arg a .I, nnc obtains the following neccssar); and sufficient condition for both 
zeros to lit in the closed unit disc. 

It is possibic to pro\:c this inequality also directly 5ut not as convcnicntly. \I’e 
conclude with a few remarks about the maximum .%I of the left-hand side of 
(24) which is attained , say for tl -. P. It is easy to see that 0‘ satisfies the cqua- 
tion 

a, sin((72 -- p) 0” f arg a,) :- sin(PIp) 0. 

‘rhese relations can be used for numerical calcula:ions. 
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