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A graph is said to have property Pi,, if for every sequence of n + 1 points, there is another 
point adjacent only to the first point. It has previously been shown that almost all graphs have 
property Pi,,. It is easy to verify that for each n, there is a cube with this property. A more 
delicate question asks for the construction of the smallest graphs having property Pi,,. We fit+ 
that this problem is intimately related with the discovery of the highly symmetric graphs known 
as cages, and are thereby enabled to rpsolve this question for 1% sz ~6. 

I, The notation 

For two points u and 21 of a graph G we write uAv if u and v are adjacent, and 
u& if they are not. The set of points of G adjacent to a given point v is the 
neighborhood N(v). The subgraph induced by N(U) is the link of v in G, written 
link (v). The subgraph of G induced by all points neither equal to nor adjacent to v 

is denoted G,. Thus this is the subgraph t lf b obtadned by removing the closed 
neighborhood N*(v). As usual, the minimum degree of G is denoted by 6(G), the 
maximum degree by A(G). 

We say of two graphs G1 and G2 that G, is sn;lsller than Gz if pl < pL or if 
p1 = ~a, and q1 C q2. For other graph theoretic notation and terminology we follow 

PI . 

2. The problem 

Some fascinating adjacency properties of graphs have been found in [2] to hold 
for almost all graphs. However, to our consternation, almost no graphs have been 
constructed which enjoy these properties. We generalize and then investigate a 
special case, not only to discover graphs with these properties but also to find the 
smallest such graphs. 

Axiom n in Blass and Harary [2] states that for every sequence of 2n points 

(u 1,***9%;~1, . . . , v,), there is another point w such that wAu, and IVAVj, for 
iJ=l,..., n. We generalize this to property P,,,. A graph G has property P,,,, 
(written GE P, .) if for any sequence of points (u,, . . . , u,; ul,. . . , v,) there is 1 
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another point w such that WAUi and WAUj for z!‘, i = 1,. . . , ITI and j = 1,. . . , YL 

Obviously G E P, n implies a E P, )n. 
It was shown in’[2] that for each’n, almost all graphs satisfy Axiom n, i.e., have 

property Pnqn. It i~llows at once that for each m and n with say m s n, almost all 
raphs are in Pmen. In other words, if we let GP be the family of all graphs with p 

points then 

lim IG,nq.,.“I l 
= . 

P- IG I P 
(1) 

But in spite of (l), it appears to be very difficult to construct graphs in P,,,, for 
neral m and n. 
As a special case of this problem we concentrate on graphs with property PI,,. 

We note that for sufficiently large k, Qk (the k-cube) is in PI,“. This observation is 
made more precise in Lemma 1. Our object is to find the smallest graphs in PIVn. 
Cubes are not the answer. We have succeeded for n - 1, . . . ,6 and propose a 
conjecture related to values of n > 6 by linking the determination of such smallest 
graphs to the discovery of certain cages [3]. We include here proofs only for n = 2 
and 3, as ihe other arguments are long, c~~pkated, and analogous. 

In what follows we use (u; ol,. . . , 2)k) t0 aWOte the Si?f Of points Of G djUCt?nt 

10 u, but nol adjacenl to any Ui. If k s n and G E &,,, then (U ; vl, . . . , vk) # 8, for 
all (k + l)-sequences. And if WAU and WAVj, for i = 1, . . . , k, we write w E 
(u; tt lT.. . 9 l)& i.e., w is a point in the set (U; aI, . . . . &). 

3. The lemalas 

It is convenient to develop six preliminary results before proving the main 
theorems. 

L~DBIIW 1. The cube Q2,, + 1 is in PI,,. 

hf. Each point v of QzV+l has degree 2n + 1. Let ul,. . . , u2n+l be the points 
&:accmt to U. Xt follows at once from the definition of a cube that UiAUj, for s 
. -- 
:r 1 - 1 ,..., 2ii tl.Alsrsnopointof Qz*.,lc except u, is adjacent to more than two 
of the %,* Thus for each set X of n points of this cube, there is a point u such that 
uAv and for all x E X, u_& hence Q2, ,. 1 E PI,,. 0 

Wc note in passing that Q2,, $ PI,,. 

a 2, If GE PI,,, then S(G)2 n + 1. 



Graphs with certain adjacency properties 27 

Proof. Assume the contrary and suppose u is a point of G with deg u = k s n. Let 

019 . . . . 21, be the points of link (u). Then there is no point w such that 
wE(U; q,. . . , u,). This contradiction proves the lemma. Cl 

Lemma 3. If GE PI,” and deg u = n + I, then u is on no 3- or 4-cycles. 

Proof. Let vl,. . . , v,+~ be the points of link (u). If u is on a 3-cycle then the 
other two points on this 3-cycle are two of the Vi, say v1 and v2. But then there is 
no point w in (u; v2,. . . y ZJ,+~). S 0 u is not on a 3-cycle. If u is on a 4=cycle, we 
can with no loss of generality suppose that v, and v2 are on the 4-cycle as well. 
Let x be the point opposite u on the 4-cycle. Then there is no point w in 

(u; x, 213, ’ l l 9 v,+J. Hence u is not on a 4-cycle. Z 

Lema 4. For any sequence u, vl, . . . , vk in V(G), I(u; vl,. . . , &)I2 n- k + 1. 

Proof. If I(u; vl, . . . , vk)l S n - k, let wl, . . . , w,,, be all the points in 
(u; v,, . . . , ok), where m s n - k. Then there is no point x in 

( u; VI, l l l 9 vk, WI, . . . . w,J, a contradiction. 0 

Lemma 5. If G E PI,, and w is any point of G, then G,,, E PI ,n_ 1. 

Proof. Let u, v,, . . . 9 v,,_~ be any sequence of n points of G. Then some point x 
of G is in (u; w, vol,. . . , v,__~ ).Butx$wandx~w,soxEG,;henceG,,,EP,”_i. . 

cl 

Lemma 6. If every graph in P: ,n _ . has at least r points and if G E PI ,” has order p 
and maximum degree A, then p 2 1 + A + r. 

Proof. I; is sufficient to show that for all points v of G, p 3 1 + deg v -f- r. But this 
follows at once from the facts that 1 VI = I{v}l+ IN( + I V(G,)J, and that Gu E 

P l.?tI-I by Lemma 5. 0 

The girth g of a graph G (which is not a forest) is the smallest cycle length in G. 

Lemma 7. If GE PI,, and g a 5 and if G is not an (n + 1).regular graph of girth 5, 
then pn2+3n+2. 

Proof. If G is regular of degree n + 1, the result foilows from a theorem in Biggs 
[I, p. 1531, which states that if a k-regular graph has odd girth g, then 

(1) 

and if it has even girth, 

pa P+(k- l)+(k- 1)2+.’ l l +(k - 1)‘g-2”2. (2) 
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If G is not (n + I)-regular, then by Lemma 2, G contains a point of degree 
n +2. It VI,. . . , vd are the points of G adjacent to u, then 

pN+d+i I( u;v+l+(n+2)+n(n+2)>n2+3n+2, 
i=l 

as required. 0 

Lemma 8. Zf G has girth g 2 5 and 6(G) 2 n + 1, then G e PI,,. 

Pro06 For the purposes of this proof we shall write UBV if u E N*(u), i.e., UAV or 
u = u. Let u be any point of G and let vl, . . . ,21,,+~ be the points of link U. Then 

r any point w# u, wl3q for at most one value of i. Thus for any wl, . . . , w, we 
have (u; w,, . . . , w,)#0. 0 

We no* proceed to indicate the smallest graphs in P1,n, n = 1, . . . ,6. One 
easily verifies that CJ is the smallest graph in P1,l. An (m, n)-cage is defined as a 
smallest m-regular graph of girth n. Note that CS is the (2,5)-cage and in general 

is the (2, p)-cage. 

P: 

Fig. 1. The Petersen graph. 

Theorem 1. The smallest graph in P1,2 is the Petersen graph P which has order 10 
and is the (3,5)-cage. Every other graph in P1,2 has at least 12 points. 

Roof. If GE P1,2 then S(G) 2 3. Since Cs is the smallest graph in Plvl, Lemma 6 
implies that p 2 1 + 3 + 5 = 9. But if p = ‘3, then G must be 3-regular, which is 
impossibie. So p 2 10 and S(G) 2 3, which with Lemma 8 means that P is the 
smallest graph in P1,2. 

‘To S!XW~ that no graph in P1,2 has 11 points, we first observe that if G E P, ,2 and 
p = i 1, then the degree set of G is a subset of {3,4,5}, since foi any point V, 
deg v 2 3 by Lemma 2 and deg u ~5 by Lemma 6. Since not all points of an 
ll- int fgaph can have odd degree, there is a point 3 of G having degree 4. Let 
U1 to U e the points of link u. Now observe that the induced subgraph, Iink v, 
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contains at most one line, and that no point outside link v other than v is adjacent 
to more than two points of link v, or P1,2 will be violated. Let A be the set of 
points, not in the link, adjacent to just oae point of Pink v; let B contain the 
points adjacent to exactly two of them. 

If link ZJ contains no lines, then either some point of link 2) is adjacent to every 
point of B or some point of link v is adjacent to no points of B. To show that one 
of these must hold, suppose that no point of link v is adjacent to every point of B. 
If B is empty, the second situation prevails, so let us say that x0 E B is adjacent to 
both u1 and uz. Then there exist points x1 and x2 in B with X+&Q and x,Au2, or 
we would have a point in link v adjacent to every point of B. If x1 =x2, then 
xlAu, and x1Au4, which means P1,2 is violated. So we have x1 # x2 and neither is 
adjacent to both u3 and u4, or else one of the sets (v; x0, x,) and (v; x0, x2) is 
empty. So with no loss in generality we have xoAul, 24,; xlAul, u,; and x2Au2, u3. 
But then no point of B can be adjacent to u4, and we have the second case. So 
one of the two cases must hold. 

We now show that in either of these cases p 2 12. In the first case let ul be the 
indicated point. Then for clarity we write 

p~~{v}~+degv+I(ul; v)l+ f I(ui; u,)(a1+4+2+6=13. 
i=2 

In the second case let u4 be the indicated point: we have 

Pb))+deg v+l( u4; 4 + Ih; 41 + I( u,; u,)l + )(u,; u2, u,>l a 12. 

If link v has a line, then let u1 and u2 be the points on the line and let u3 and u4 
be the other two points of link v. Without loss of generality we can suppose that 
only v is adjacent to both u1 and u3. For if there is another point adjacent to both 
u1 and u3, and another point adjacent to both u2 and u4 then P1,2 fails. So by 
symmetry we can suppose that no other point is adjacent to both u1 and te3. 
Also no point but v is adjacent to both u3 and u4. Then 

And as P is the unique (3,s)~cage, Lemma 3 can be used to show that no 
lo-point graph other than P is in Pa,2. [3 

CoroIIary la. The smallest graph in &I is F, the complement of the Petersen graph. 

- 0 

Fig. 2. A 12-poiat graph in 
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R: 

Fig. 3. Robertson’s graph. 

Tbesrem 2. Robemods graph, R, the (4,5)-cage, is the svndest graph in PI 3m 7 

Proof. In Fig. 3 we show R, Robertson’s graph, which has 19 points. We know 
P,.3 by Lemma 8. We will show that any other graph in PIv3 has at least 20 

points or has 19 points and more lines than R. (In fact the second case can be 
eliminated, but to do so is unnecessary here.) 

From i6] we know that R is smaller than any other 4-regular graph of girth 5. 
By Lemma 7, it is also smaller than any graph G with girth 5 and A(G) > 4, and is 
smaller than any graph G 

We show that if GE P1,3 
Let 

A =(V:VE V(G) 

with S(G) 2 4 and g 3 6. So we proceed to tackle the 

and has a point u of degree 5, then G is larger than R. 

and d(u, v) = 2), 

i.e., A consists of those points not in the closed neighborhood of u which are 
adjacent to a point of link u. And we let 

B = (v : v E A and v is adjacent to at least 2 points of link u}. 

Observe that link u can contain at most one line and that no point of B is 
adjacent go more than two points of Eink u, lest P1,3 be violated. Thus there are 
two possibilities: in Case 1, some point v1 of link u is adjacent to all points of B 
and is a point on every line in Zink u, whilst in Case 2, there are at least two 
isolated points in link u, v4 and v5, with neither adjacent to a point of B. 

To prove that these two cases exhaust the possibilities, suppose neither is true. 
We say two points of link u are matched if they are adjacent or if a point of B is 
adjacent to both. Since Case 2 fails to hold, at least four points of link u are 
matched. Without loss of generality, let vt be matched to v2, and since Case 1 
does not hold, suppose v1 is not matched with v3 and that v2 is not matched with 
Y,- Tb us since we do not have Case 2, either v1 is matched with v4, and v2 with v3, 
or else’ t”l is matched with u2, and v3 with 21~. Either situation implies G$ P1,3. Thus 
either Case 1 or Case 2 holds as claimed. 

ln bath cases, the points of link u are denoted v1 to vs. In Case 1, 

{ull+deg u+ i I< vi; v,)l+l{q; u)(s1+5+4*3+3=21. 
i=2 
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Note the repeated use of Lemma 4 for bounding purposes. 

Case 2 gives 

P 2 1 + 5 + I(% u)l + I(% to)1 + I(&; u,)l + I&; 2)1, V,)l 2 20, 

where we label the oj so that v,Av,. 
If there is a point u in G of degree d 2 6 then either GU is the Petersen graph 

P, or p 2 19 and G has more lines than R. This follows from Theorem 1 and 
Lemmas 2 and 5. So suppose G, = I? The argument in the preceding paragraphs 
allows us to conclude that G has no point of degree 5. So we have GU = P and 
degu=6or7.Let wl,..., wlo denote the points of GU. Since 8(G) 2 4, if G is to 
be smaller than R then every point of G, is adjacent to a point of 2ir.k u. And 

since for any Vi E N(u), (Vi ; u) a 2, we know that every point of link u is adjacent 
to at least two points of GU. So the fact that diam P = 2 implies that every point of 
G is on a 3- or 4-cycle. Since G has no points of degree 5, we infer from Lemma 
3 that every point of G has degree 6 or 7. So every point of GU is adjacent to at 
least 3 points of link u. Thus there are at least 30 lines between GU and link u, so 
that two of the link u points, which we can call v1 and v2, are adjacent to a total 
of at least seven points of GU, or else PI.3 is violated. But given any seven points 
of P, there is a point of P adjacent to three of the seven; let w1 be such a point. 
Then (wl; u, vl, v,) is empty, which means that G&P1,3. This contradiction shows 

that we cannot have G, = P when p < 19, and eliminates all candidates for graphs 

in PI.3 smaller than R. Hence R is the smallest graph in &. Cl 

In order to obtain a general proof that an (n + 1,5)-cage is a smallest graph in 
PI,,, the following conjecture would be useful. 

Conjecture. If G E PI,, and has girth g < 5, then p 2 B’ -+ 3n + 2. 

We have been unable to devise a proof of this conjecture for all n. We have, 
however, proved it for n ~6 by considering each of these values separately. The 
techniques used are very similar to those used in Theorems 1 and 2. Note that 
Theorem 1 establishes the conjecture for n = 2; verification for n = 1 is easy. 

Of course proving that the smallest graph in PI,, is a cage would probably be 
very difficult if no (n + 1,5)-cage is known. However, the conjecture is motivated 
by the following assertion which is verified by Table 1. 

Table 1. The smallest S-cages 

Degree p Discovered by 
~~ 

3 10 Petersen [3] 
4 19 Robertson [6] 
5 30 Wegner [7] 
6 40 O’Keefe and Wong [5] 
7 50 Hoffman and Singleton [4] 
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Isrtfoa. For each of the known (n + 1,5)-cages, ps n*+ 3n + 2. 

So the conjecture might be useful for checking whether (n + 1, 5)-cages which 
&ll be discovered in the future are also smallest graphs in PI,,. 

The bound in the conjecture is sharp, at least for II = 1, in that c6 E & 
We remark that the irregularity of the numbers p in Table 1 is &Ming. 

UIM&& P&&&BL V&at are xhe smallest graphs in PI,, when n a7 and more 
genera%lj what are the answers for PmVn with 1p1, re a 2? 
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