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A graph is said to have property P, , if for every sequence of n+1 points, there is another
point adjacent only to the first point. It has previously been shown that almost all graphs have
property P, . It is easy to verify that for each n, there is a cube with this property. A more
delicate question asks for the construction of the smallest graphs having property P, . We fin
that this problem is intimately related with the discovery of the highly symmetric graphs known
as cages, and are thereby enabled to resolve this question fcr i =n<6.

1. The notation

For two points u and v of a graph G we write uAv if u and v are adjacent, and
uAv if they are not. The set of points of G adjacent to a given point v is the
neighborhood N(v). The subgraph induced by N(v) is the link of v in G, written
link (v). The subgraph of G induced by all points neither equal to nor adjacent to v
is denoted G,. Thus this is the subgraph of { obtained by removing the closed
neighborhood N*(v). As usual, the minimum degree of G is denoted by 8(G), the
maximum degree by A(G).

We say of two graphs G, and G, that G; is smaller than G, if p,<p, or if
p1= P2 and g, <q,. For other graph theoretic notation and terminology we follow

[3]

2. The problem

Some fascinating adjacency properties of graphs have been found in [2] to hold
for almost all graphs. However, to our consternation, almost no graphs have been
constructed which enjoy these properties. We generalize and then investigate a
special case, not only to discover graphs with these properties but also to find the
smallest such graphs.

Axiom n in Blass and Harary [2] states that for every sequence of 2n points
(uy,...,u,; 0y,...,0,), there is another point w such that wAy; and wAvi, for
i,j=1,..., n. We generalize this to property P, ,. A graph G has property P, ,
(written Ge P,,,,) if for any sequence of points {u,,..., U,; v,...,0,) there is
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another point w such that wAu, and wAy, for 2" i=1,...,m and j=1,...,n.
Obviously Ge P,,,, implies Ge P, ...

It was shown in [2] that for each n, almost all graphs satisfy Axiom n, i.e., have
property P, . It iollows at once that for each m and n with say m <n, almost all
graphs are in P,, .. In other words, if we let G, be the family of all graphs with p
points then

(A

But in spite of (1), it appears to be very difficult to construct graphs in P,,, for
general m and n.

As a special case of this problem we concentrate on graphs with property P, ,.
We note that for sufficiently large k, Q, (the k-cube) is in P, ,,. This observation is
made more precise in Lemma 1. Our object is to find the smaliest graphs in P, ,,.
Cubes are not the answer. We have succeeded for n=1,...,6 and propose a
conjecture related to values of n > 6 by linking the determination of such smallest
graphs to the discovery of certain cages [3]. We include here proofs only for n =2
and 3, as ihe other arguments are long, coinpiicaied, and analogous.

In what follows we use (u; vy,..., v;) to denote the sei of points of G adjacent
10 u, but not adjacent to any v. If k<n and GeP, , then (u; v,,...,v,)#89, for
all (k +1)-sequences. And if wAu and wﬁvj, for i=1,...,k, we write we
(u; v4,...,1), i.e., w is a point in the set (u;v,,...,0,).

3. The lemmas

It is convenient to develop six preliminary results before proving the main
theorems.

Lemma 1. The cube Q,,,, is in P,,,.

Proof. Each point v of Q,,,, has degree 2n+1. Let u,,..., U, ., be the points
aciiacent to v. It follows at once from the definition of a cube that uiAu,-, for
Lj=1,...,2s + 1. Also no point of Q. ;. except u, is adjacent to more than two
of the 1, Thus for each set X of n poinis of this cube, there is a point u such that
uAv and for all xe X, uAx, hence Q,,.,<P,,. O

We noie in passing that Q,,¢ P, ..

Lemma Z. If Ge P, ,, then 8(G)=n+1.
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Proof. Assume the contrary and suppose u is a point of G with deg u = k <n. Let
Uy, ..., 0 be the points of link (u). Then there is no point w such that
we(u; vy,..., v). This contradiction proves the lemma. [J

Lemma 3. If Ge P, ,, and degu=n+1, then u is on no 3- or 4-cycles.

Proof. Let v,,...,v,., be the points of link (u). If u is on a 3-cycle then the
other two points on this 3-cycle are two of the v, say v, and v,. But then there is
no point w in (4; v,,..., U,.;). SO u is not on a 3-cycle. It u is on a 4-cycle, we
can with no loss of generality suppose that v, and v, are on the 4-cycle as well.
Let x be the point opposite u on the 4-cycle. Then there is no point w in
(u; x, v3,...,0,,,). Hence u is not on a 4-cycle. [

Lemma 4. For any sequence u, v, ..., v, in V(G), |(u;vy,...,0)|=n-k+1.

Proof. If |(u;v,,...,v)|<n—k, let wy,...,w, be all the points in
(u;vy,...,v,), where m=<n-k. Then there is no point x in
(u; v4,...,0,wyq,...,w,), a contradiction. [

Lemma 5. If Ge P, , and w is any point of G, then G,€P, ,,_,.

Proof. Let u, vy,...,v,_, be any sequence of n points of G. Then some point x
of Gisin (u; w,vy,...,v,_;). But x# w and xAw, so xe G,,; hence G,€P, ,,_,.

O

Lemma 6. If every graph in P, ,,_. has at least r points and if G € P, ,, has order p
and maximum degree A, then p=1+A+r.

Proof. 1: is sufficient to show that for all points v of G, p=1+deg v +r. But this
follows at once from the facts that |V|=|{v}|+|N(v)|+|V(G,)|, and that G, e
P,, by Lemma 5. O

The girth g of a graph G (which is not a forest) is the smallest cycle length in G.

Lemma 7. If Ge P, ,, and g=5 and if G is not an (n + 1)-regular graph of girth 5,
then p=n®+3n+2.

Proof. If G is regular of degree n+1, the result foilows from a theorem in Biggs
[1, p. 153], which states that if a k-regular graph has odd girth g, then
p=l+k+k(k=1)+---+k(k—1)c>"2 (1)
and if it has even girth,
p=1+(k—1)+(k -1+ +{k—1)E272, (2)
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If G is not fn+1)-regular, then by Lemma 2, G contains a point of deg

2220224 %5 2Aiglilx 2 5243 1)

d=zn+2. 1t vy,...,v, are the points of G adjacent to u, then

d
p=1+d+ Z [(u; v)|=1+(n+2)+n(n+2)>n>+3n+2,

i=1

as required. [
Lemma 8. If G has girth g=5 and 8(G)=n+1, then GeP,,,

Proof. For the purposes of this proof we shall write uBv :f u e N*(v), i.e., uAv or
u=v. Let u be any point of G and let v,,..., v,,, be the points of link u. Then
for any point w# u, wBuy, for at most one value of i. Thus for any w,,..., w, we
have (u;w,,...,w,)#0. O

4. Some solutions

We now proceed to indicate the smallest graphs in P,,, n=1,...,6. One
easily verifies that C; is the smaiiest graph in P, ;. An (m, n)-cage is defined as a
smallest m-regular graph of girth n. Note that C; is the (2, 5)-cage and in general
C, is the (2, p)-cage.

Fig. 1. The Petersen graph.

Theorem 1. The smallest graph in P, , is the Petersen graph P which has order 10
and is the (3, 5)-cage. Every other graph in P, , has at least 12 points.

Proof. If Ge P, , then 5(G)=3. Since (5 is the smallest graph in P,,, Lemma 6
implies that p=1+3+5=9. But if p=9, then G must be 3-regular, which is
impaossibie. So p=10 and §(G)=3, which with Lemma 8 means that P is the
smallest graph in P, ,.

‘i'c showi that no graph in P, , has 11 points, we first observe that if Ge P, , and
p =11, then the degree set of G is a subset of {3, 4, 5}, since for any point v,
degv=3 by Lemma 2 and degv<5 by Lemma 6. Since not all points of an
11-point graph can have odd degree, there is a point » of G having degree 4. Let
u, to u be the points of link v. Now observe that the induced subgraph, link v,
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contains at most one line, and that no point outside link v other than v is adjacent
to more than two points of link v, or P;, will be violated. Let A be the set of
points, not in the link, adjacent to jusi oue point of link v; let B contain the
points adjacent to exactly two of them.

If link v contains no lines, then either some point of link v is adjacent to every
point of B or some point of link v is adjacent to no points of B. To show that one
of these must hold, suppose that no point of link v is adjacent to every point of B.
If B is empty, the second situation prevails, so let us say that x,€ B is adjacent to
both u, and u,. Then there exist points x,; and x, in B with x,Au, and x,Au,, or
we would have a point in link v adjacent to every point of B. If x,=x,, then
x;Au; and x, Au,, which means P, , is violated. So we have x, # x, and neither is
adjacent to both u; and u,, or else one of the sets (v; xq, x;) and (v; x,, X,) is
empty. So with no loss in generality we have x,Au,, u,; x; Au,, U,; and x, Au,, us,.
But then no point of B can be adjacent to u,, and we have the second case. So

one of the two cases must hold.
We now show that in either of these cases p=12. In the first case let u; be the

indicated point. Then for clarity we write
4
p=|{v}|+deg v+|(us; v)|+ Y, (w3 uy)|=1+4+2+6=13.
i=2

In the second case let u, be the indicated point: we have
p={v}|+deg v+|(us; V)| +|(us; 0)] +(uz5 uy)| +|(us; ua, uy) = 12

If link v has a line, then let u, and u, be the points on thc line and let u; and u,
be the other two points of link v. Without loss of generality we can suppose that
only v is adjacent to both u, and u,. For if there is another point adjacent to both
u; and u,, and another point adjacent to both u, and u, then F,, fails. So by
symmetry we can suppose that no other point is adjacent to both u, and u,.
Also no point but v is adjacent to both u; and u,. Then

p=14+4+|(uy; v)i [(up; u)l+ (s w)|+|(ua; uy, uy)| =12.
And as P is the unique (3, 5)-cage, Lemma 3 can be used to show inhat no
10-point graph other than P is in P,,. O

Corollary 1a. The smallest graph in P, , is P, the complement of the Petersen graph.
O

Fig. 2. A 12-point graph in P, 5.



30 G. Exoo, F. Harary

B

Fig. 3. Robertson’s graph.
Theorem 2. Roberison’s graph, R, the (4,5)-cage, is the smallest graph in P, 5.

Proof. In Fig. 3 we show R, Robertson’s graph, which has 19 points. We know
Re P, , by Lemma 8. We will show that any other graph in P, ; has at least 20
points or has 19 points and more lines than R. (In fact the second case can be
eiiminated, but to do so is unnecessary here.)

From (6] we know that R is smaller than any other 4-regular graph of girth 5.
By Lemma 7, it is also smaller than any graph G with girth 5 and A(G)>4, and is
smaller than any graph G with §(G)=4 and g=6. So we proceed to tackle the
case g<5.

We show that if G € P, ; and has a point u of degree 5, then G is larger than R.
Let

A={v:ve V(G) and d(u,v)=2},

i.e., A consists of those points not in the closed neighborhood of u which are
adjacent to a point of link u. And we let

B={v:ve A and v is adjacent to at least 2 points of link u}.

Observe that link u can contain at most one line and that no point of B is
adjacent io more than two points of link u, lest P, ; be violated. Thus there are
two possibilities: in Case 1, some point v, of link u is adjacent to all points of B
and is a point on every line in link u, whilst in Case 2, there are at least two
isolated points in link u, v, and vs, with neither adjacent to a point of B.

To prove that these two cases exhaust the possibilities, suppose neither is true.
We say two points of link u are matched if they are adjacent or if a point of B is
adjacent to both. Since Case 2 fails to hold, at least four points of link u are
matched. Without loss of generality, let v, be matched to v,, and since Case 1
does not hold, suppose v; is not matcherd with v; and that v, is not matched with
v,. Thus since we do not have Case 2, either v, is matched with v,, and v, with v,
or else v, is matched with v,, and v, with v,. Either situation implies G¢ P, ;. Thus
either Czse 1 or Case 2 holds as claimed.

In both cases, the points of link u are denoted v, to vs. In Case 1,

5
p={u}|+degu+ Z l(vi; v )|+ o w)|=1+5+4-3+3=21.
i=2
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Note the repeated use of Lemma 4 for bounding purposes.
Case 2 gives

P=1+5+|(v4; u)|+|(vs; w)|+ |(v2; v9)]+|(vs; v1, v,)] =20,

where we label the v; so that v,Av,.

If there is a point u in G of degree d =6 then either G, is the Petersen graph
P, or p=19 and G has more lines than R. This follows from Theorem 1 and
Lemmas 2 and 5. So suppose G, = P. The argument in the preceding paragraphs
allows us to conclude that G has no point of degree 5. So we have G, =P and
degu==6o0r7.Let w,, ..., wy denote the points of G,. Since 8(G)=4, if G is to
be smaller than R then every peint of G, is adjacent to a point of lirk u. And
since for any v; € N(u), (v;; u)=2, we know that every point of link u is adjacent
to at least two points of G,,. So the fact that diam P =2 implies that every point of
G is on a 3- or 4-cycle. Since G has no points of degree 5, we infer from Lemma
3 that every point of G has degree 6 or 7. So every point of G, is adjacent tc at
least 3 points of link u. Thus there are at least 30 lines betweer G, and link u, so
that two of the link u points, which we can call v, and v,, are adjacent to a total
of at least seven points of G, or else P, ; is violated. But given any seven points
of P, there is a point of P adjacent to three of the seven; let w, be such a point.
Then (w,; u, v,, v,) is empty, which means that G¢ P, . This contradiction shows
that we cannot have G, = P when p <19, and eliminates all candidates for graphs
in P, ; smaller than R. Hence R is the smallest graph in P, ;. [J

In order to obtain a general proof that an (n + 1, 5)-cage is a smallest graph in
P, ., the following conjecture would be useful.

Conjecture. If Ge P, and has girth g<5, then p=n°+3n+2.

We have been unable to devise a proof of this conjecture for all n. We have,
however, proved it for n <6 by considering each of these values separately. The
techniques used are very similar to those used in Theorems 1 and 2. Note that
Theorem 1 establishes the conjecture for n =2; verification for n =1 is easy.

Of course proving that the smallest graph in P, , is a cage would probably be
very difficult if no (n+1, 5)-cage is known. However, the conjecture is motivated
by the following assertion which is verified by Table 1.

Table 1. The smallest 5-cages

Degree p Discovered by

10 Petersen [3]

19 Robertson [6]

30 Wegner [7]

40 O’Keefe and Wong [5]

50 Hoffman and Singleton [4]

N oNn s W
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Observation. For each of the known (n + 1, 5)-cages, p<=n?+3n+2.

So the conjecture might be useful for checking whether (n+1, 5)-cages which
will be discovered in the future are also smallest graphs in Py,.

The bound in the conjecture is sharp, at least for n=1, in that Cse P, ;.

We remark that the irregularity of the numbers p in Table 1 is startling.

Unsolved Problems. What are the smaiiest graphs in P, ,, when n=7 and more
generaily what are the answers for P, , with m, n=2?
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