THE SMALLEST GRAPH'S WITH CERTAIN ADJACENCY PROPERTIES

Geoffrey EXOO and Frank HARARY

University of Michigan, Ann Arbor, MI 48109, U.S.A.

Received 23 February 1979

A graph is said to have property $P_{1,n}$ if for every sequence of n+1 points, there is another point adjacent only to the first point. It has previously been shown that almost all graphs have property $P_{1,n}$. It is easy to verify that for each n, there is a cube with this property. A more delicate question asks for the construction of the smallest graphs having property $P_{1,n}$. We find that this problem is intimately related with the discovery of the highly symmetric graphs known as cages, and are thereby enabled to resolve this question for $1 \le n \le 6$.

1. The notation

For two points u and v of a graph G we write uAv if u and v are adjacent, and $u\bar{A}v$ if they are not. The set of points of G adjacent to a given point v is the neighborhood N(v). The subgraph induced by N(v) is the link of v in G, written link (v). The subgraph of G induced by all points neither equal to nor adjacent to v is denoted G_v . Thus this is the subgraph of G obtained by removing the closed neighborhood $N^*(v)$. As usual, the minimum degree of G is denoted by $\delta(G)$, the maximum degree by $\Delta(G)$.

We say of two graphs G_1 and G_2 that G_1 is smaller than G_2 if $p_1 < p_2$ or if $p_1 = p_2$ and $q_1 < q_2$. For other graph theoretic notation and terminology we follow [3].

2. The problem

Some fascinating adjacency properties of graphs have been found in [2] to hold for almost all graphs. However, to our consternation, almost no graphs have been constructed which enjoy these properties. We generalize and then investigate a special case, not only to discover graphs with these properties but also to find the smallest such graphs.

Axiom n in Blass and Harary [2] states that for every sequence of 2n points $(u_1, \ldots, u_n; v_1, \ldots, v_n)$, there is another point w such that wAu_i and $w\bar{A}v_j$, for $i, j = 1, \ldots, n$. We generalize this to property $P_{m,n}$. A graph G has property $P_{m,n}$ (written $G \in P_{m,n}$) if for any sequence of points $(u_1, \ldots, u_n; v_1, \ldots, v_n)$ there is

another point w such that wAu_i and $w\bar{A}u_j$ for a!! $i=1,\ldots,m$ and $j=1,\ldots,n$. Obviously $G \in P_{m,n}$ implies $\bar{G} \in P_{n,m}$.

It was shown in [2] that for each n, almost all graphs satisfy $Axiom\ n$, i.e., have property $P_{n,n}$. It follows at once that for each m and n with say $m \le n$, almost all graphs are in $P_{m,n}$. In other words, if we let G_p be the family of all graphs with p points then

$$\lim_{\mathbf{p}\to\infty}\frac{|\mathbf{G}_{\mathbf{p}}\cap\mathbf{P}_{:n,n}|}{|\mathbf{G}_{\mathbf{p}}|}=1.$$
 (1)

But in spite of (1), it appears to be very difficult to construct graphs in $P_{m,n}$ for general m and n.

As a special case of this problem we concentrate on graphs with property $P_{1,n}$. We note that for sufficiently large k, Q_k (the k-cube) is in $P_{1,n}$. This observation is made more precise in Lemma 1. Our object is to find the smallest graphs in $P_{1,n}$. Cubes are not the answer. We have succeeded for $n = 1, \ldots, 6$ and propose a conjecture related to values of n > 6 by linking the determination of such smallest graphs to the discovery of certain cages [3]. We include here proofs only for n = 2 and 3, as the other arguments are long, complicated, and analogous.

In what follows we use $(u; v_1, \ldots, v_k)$ to denote the set of points of G adjacent to u, but not adjacent to any v_i . If $k \le n$ and $G \in \mathbb{P}_{1,n}$, then $(u; v_1, \ldots, v_k) \ne \emptyset$, for all (k+1)-sequences. And if wAu and $w\bar{A}v_i$, for $i=1,\ldots,k$, we write $w \in (u; v_1,\ldots,v_k)$, i.e., w is a point in the set $(u; v_1,\ldots,v_k)$.

3. The lemmas

It is convenient to develop six preliminary results before proving the main theorems.

Lemma 1. The cube Q_{2n+1} is in $P_{1,n}$.

Proof. Each point v of Q_{2n+1} has degree 2n+1. Let u_1, \ldots, u_{2n+1} be the points adjacent to v. It follows at once from the definition of a cube that $u_i \bar{A} u_j$, for $i, j = 1, \ldots, 2n+1$. Also no point of Q_{2n+1} , except u_i is adjacent to more than two of the u_i . Thus for each set X of n points of this cube, there is a point u such that uAv and for all $x \in X$, $u\bar{A}x$, hence $Q_{2n+1} \in P_{1,n}$. \square

We note in passing that $Q_{2n} \notin P_{1,n}$.

Lemma 2. If $G \in \mathbb{P}_{1,n}$, then $\delta(G) \ge n+1$.

Proof. Assume the contrary and suppose u is a point of G with deg $u = k \le n$. Let v_1, \ldots, v_k be the points of link (u). Then there is no point w such that $w \in (u; v_1, \ldots, v_k)$. This contradiction proves the lemma. \square

Lemma 3. If $G \in P_{1,n}$ and deg u = n + 1, then u is on no 3- or 4-cycles.

Proof. Let v_1, \ldots, v_{n+1} be the points of link (u). If u is on a 3-cycle then the other two points on this 3-cycle are two of the v_i , say v_1 and v_2 . But then there is no point w in $(u; v_2, \ldots, v_{n+1})$. So u is not on a 3-cycle. If u is on a 4-cycle, we can with no loss of generality suppose that v_1 and v_2 are on the 4-cycle as well. Let x be the point opposite u on the 4-cycle. Then there is no point w in $(u; x, v_3, \ldots, v_{n+1})$. Hence u is not on a 4-cycle.

Lemma 4. For any sequence u, v_1, \ldots, v_k in $V(G), |(u; v_1, \ldots, v_k)| \ge n - k + 1$.

Proof. If $|(u; v_1, \ldots, v_k)| \le n - k$, let w_1, \ldots, w_m be all the points in $(u; v_1, \ldots, v_k)$, where $m \le n - k$. Then there is no point x in $(u; v_1, \ldots, v_k, w_1, \ldots, w_m)$, a contradiction. \square

Lemma 5. If $G \in \mathbf{P}_{1,n}$ and w is any point of G, then $G_w \in \mathbf{P}_{1,n-1}$.

Proof. Let u, v_1, \ldots, v_{n-1} be any sequence of n points of G. Then some point x of G is in $(u; w, v_1, \ldots, v_{n-1})$. But $x \neq w$ and $x \bar{A} w$, so $x \in G_w$; hence $G_w \in P_{1,n-1}$.

Lemma 6. If every graph in $P_{1,n-}$ has at least r points and if $G \in P_{1,n}$ has order p and maximum degree Δ , then $p \ge 1 + \Delta + r$.

Proof. It is sufficient to show that for all points v of G, $p \ge 1 + \deg v + r$. But this follows at once from the facts that $|V| = |\{v\}| + |N(v)| + |V(G_v)|$, and that $G_v \in P_{1,m-1}$ by Lemma 5. \square

The girth g of a graph G (which is not a forest) is the smallest cycle length in G.

Lemma 7. If $G \in P_{1,n}$ and $g \ge 5$ and if G is not an (n+1)-regular graph of girth 5, then $p \ge n^2 + 3n + 2$.

Proof. If G is regular of degree n+1, the result follows from a theorem in Biggs [1, p. 153], which states that if a k-regular graph has odd girth g, then

$$p \ge 1 + k + k(k-1) + \dots + k(k-1)^{(g-3)/2}$$
 (1)

and if it has even girth,

$$p \ge 1 + (k-1) + (k-1)^2 + \dots + (k-1)^{(g-2)/2}$$
 (2)

If G is not (n+1)-regular, then by Lemma 2, G contains a point of degree $d \ge n+2$. If v_1, \ldots, v_d are the points of G adjacent to u, then

$$p \ge 1 + d + \sum_{i=1}^{d} |(u; v_i)| \ge 1 + (n+2) + n(n+2) > n^2 + 3n + 2,$$

as required.

Lemma 8. If G has girth $g \ge 5$ and $\delta(G) \ge n+1$, then $G \in P_{1,n}$.

Proof. For the purposes of this proof we shall write uBv if $u \in N^*(v)$, i.e., uAv or u = v. Let u be any point of G and let v_1, \ldots, v_{n+1} be the points of link u. Then for any point $w \neq u$, wBv_i for at most one value of i. Thus for any w_1, \ldots, w_n we have $(u; w_1, \ldots, w_n) \neq \emptyset$. \square

4. Some solutions

We now proceed to indicate the smallest graphs in $P_{1,n}$, n = 1, ..., 6. One easily verifies that C_5 is the smallest graph in $P_{1,1}$. An (m, n)-cage is defined as a smallest m-regular graph of girth n. Note that C_5 is the (2, 5)-cage and in general C_p is the (2, p)-cage.

Fig. 1. The Petersen graph.

Theorem 1. The smallest graph in $P_{1,2}$ is the Petersen graph P which has order 10 and is the (3,5)-cage. Every other graph in $P_{1,2}$ has at least 12 points.

Proof. If $G \in P_{1,2}$ then $\delta(G) \ge 3$. Since C_5 is the smallest graph in $P_{1,1}$, Lemma 6 implies that $p \ge 1+3+5=9$. But if p=9, then G must be 3-regular, which is impossible. So $p \ge 10$ and $\delta(G) \ge 3$, which with Lemma 8 means that P is the smallest graph in $P_{1,2}$.

To show that no graph in $P_{1,2}$ has 11 points, we first observe that if $G \in P_{1,2}$ and p = 11, then the degree set of G is a subset of $\{3, 4, 5\}$, since for any point v, deg $v \ge 3$ by Lemma 2 and deg $v \le 5$ by Lemma 6. Since not all points of an 11-point graph can have odd degree, there is a point v of G having degree 4. Let u_1 to u be the points of link v. Now observe that the induced subgraph, link v,

contains at most one line, and that no point outside $link\ v$ other than v is adjacent to more than two points of $link\ v$, or $P_{1,2}$ will be violated. Let A be the set of points, not in the link, adjacent to just one point of $link\ v$; let B contain the points adjacent to exactly two of them.

If $link\ v$ contains no lines, then either some point of $link\ v$ is adjacent to every point of B or some point of $link\ v$ is adjacent to no points of B. To show that one of these must hold, suppose that no point of $link\ v$ is adjacent to every point of B. If B is empty, the second situation prevails, so let us say that $x_0 \in B$ is adjacent to both u_1 and u_2 . Then there exist points x_1 and x_2 in B with $x_1 \bar{A} u_1$ and $x_2 \bar{A} u_2$, or we would have a point in $link\ v$ adjacent to every point of B. If $x_1 = x_2$, then $x_1 A u_3$ and $x_1 A u_4$, which means $P_{1,2}$ is violated. So we have $x_1 \neq x_2$ and neither is adjacent to both u_3 and u_4 , or else one of the sets $(v; x_0, x_1)$ and $(v; x_0, x_2)$ is empty. So with no loss in generality we have $x_0 A u_1$, u_2 ; $x_1 A u_1$, u_3 ; and $x_2 A u_2$, u_3 . But then no point of B can be adjacent to u_4 , and we have the second case. So one of the two cases must hold.

We now show that in either of these cases $p \ge 12$. In the first case let u_1 be the indicated point. Then for clarity we write

$$p \ge |\{v\}| + \deg v + |(u_1; v)| + \sum_{i=2}^{4} |(u_i; u_1)| \ge 1 + 4 + 2 + 6 = 13.$$

In the second case let u_4 be the indicated point: we have

$$p \ge |\{v\}| + \deg v + |(u_4; v)| + |(u_1; v)| + |(u_2; u_1)| + |(u_3; u_2, u_1)| \ge 12.$$

If $link \ v$ has a line, then let u_1 and u_2 be the points on the line and let u_3 and u_4 be the other two points of $link \ v$. Without loss of generality we can suppose that only v is adjacent to both u_1 and u_3 . For if there is another point adjacent to both u_1 and u_3 , and another point adjacent to both u_2 and u_4 then $F_{1,2}$ fails. So by symmetry we can suppose that no other point is adjacent to both u_1 and u_3 . Also no point but v is adjacent to both u_3 and u_4 . Then

$$p \ge 1 + 4 + |(u_1; v)| + |(u_2; u_1)| + |(u_3; u_2)| + |(u_4; u_1, u_2)| \ge 12.$$

And as P is the unique (3, 5)-cage, Lemma 3 can be used to show that no 10-point graph other than P is in $P_{1,2}$. \square

Corollary 1a. The smallest graph in $P_{2,1}$ is \bar{P} , the complement of the Petersen graph.

Fig. 2. A 12-point graph in $P_{1,2}$.

Fig. 3. Robertson's graph.

Theorem 2. Robertson's graph, R, the (4,5)-cage, is the smallest graph in $P_{1,3}$.

Proof. In Fig. 3 we show R, Robertson's graph, which has 19 points. We know $R \in P_{1,3}$ by Lemma 8. We will show that any other graph in $P_{1,3}$ has at least 20 points or has 19 points and more lines than R. (In fact the second case can be eliminated, but to do so is unnecessary here.)

From [6] we know that R is smaller than any other 4-regular graph of girth 5. By Lemma 7, it is also smaller than any graph G with girth 5 and $\Delta(G) > 4$, and is smaller than any graph G with $\delta(G) \ge 4$ and $g \ge 6$. So we proceed to tackle the case g < 5.

We show that if $G \in P_{1,3}$ and has a point u of degree 5, then G is larger than R. Let

$$A = \{v : v \in V(G) \quad \text{and} \quad d(u, v) = 2\},$$

i.e., A consists of those points not in the closed neighborhood of u which are adjacent to a point of $link\ u$. And we let

$$B = \{v : v \in A \text{ and } v \text{ is adjacent to at least 2 points of } link u\}.$$

Observe that $link\ u$ can contain at most one line and that no point of B is adjacent to more than two points of $link\ u$, lest $P_{1,3}$ be violated. Thus there are two possibilities: in Case 1, some point v_1 of $link\ u$ is adjacent to all points of B and is a point on every line in $link\ u$, whilst in Case 2, there are at least two isolated points in $link\ u$, v_4 and v_5 , with neither adjacent to a point of B.

To prove that these two cases exhaust the possibilities, suppose neither is true. We say two points of link u are matched if they are adjacent or if a point of B is adjacent to both. Since Case 2 fails to hold, at least four points of link u are matched. Without loss of generality, let v_1 be matched to v_2 , and since Case 1 does not hold, suppose v_1 is not matched with v_3 and that v_2 is not matched with v_4 . Thus since we do not have Case 2, either v_1 is matched with v_4 , and v_2 with v_3 , or else v_1 is matched with v_2 , and v_3 with v_4 . Either situation implies $G \notin P_{1,3}$. Thus either Case 1 or Case 2 holds as claimed.

In both cases, the points of link u are denoted v_1 to v_5 . In Case 1,

$$p \ge |\{u\}| + \deg u + \sum_{i=2}^{5} |(v_i; v_1)| + |(v_1; u)| \ge 1 + 5 + 4 \cdot 3 + 3 = 21.$$

Note the repeated use of Lemma 4 for bounding purposes. Case 2 gives

$$p \ge 1 + 5 + |(v_4; u)| + |(v_5; u)| + |(v_2; v_1)| + |(v_3; v_1, v_2)| \ge 20,$$

where we label the v_i so that $v_2 \bar{A} v_3$.

If there is a point u in G of degree $d \ge 6$ then either G_u is the Petersen graph P, or $p \ge 19$ and G has more lines than R. This follows from Theorem 1 and Lemmas 2 and 5. So suppose $G_u = P$. The argument in the preceding paragraphs allows us to conclude that G has no point of degree 5. So we have $G_u = P$ and deg u = 6 or 7. Let w_1, \ldots, w_{10} denote the points of G_u . Since $\delta(G) \ge 4$, if G is to be smaller than R then every point of G_n is adjacent to a point of link u. And since for any $v_i \in N(u)$, $(v_i; u) \ge 2$, we know that every point of link u is adjacent to at least two points of G_{ν} . So the fact that diam P=2 implies that every point of G is on a 3- or 4-cycle. Since G has no points of degree 5, we infer from Lemma 3 that every point of G has degree 6 or 7. So every point of G_{μ} is adjacent to at least 3 points of link u. Thus there are at least 30 lines between G_{μ} and link u, so that two of the link u points, which we can call v_1 and v_2 , are adjacent to a total of at least seven points of G_u , or else $P_{1,3}$ is violated. But given any seven points of P, there is a point of P adjacent to three of the seven; let w_1 be such a point. Then $(w_1; u, v_1, v_2)$ is empty, which means that $G \notin P_{1,3}$. This contradiction shows that we cannot have $G_u = P$ when p < 19, and eliminates all candidates for graphs in $P_{1,3}$ smaller than R. Hence R is the smallest graph in $P_{1,3}$.

In order to obtain a general proof that an (n+1, 5)-cage is a smallest graph in $P_{1,n}$, the following conjecture would be useful.

Conjecture. If $G \in P_{1,n}$ and has girth g < 5, then $p \ge n^2 + 3n + 2$.

We have been unable to devise a proof of this conjecture for all n. We have, however, proved it for $n \le 6$ by considering each of these values separately. The techniques used are very similar to those used in Theorems 1 and 2. Note that Theorem 1 establishes the conjecture for n = 2; verification for n = 1 is easy.

Of course proving that the smallest graph in $P_{1,n}$ is a cage would probably be very difficult if no (n+1, 5)-cage is known. However, the conjecture is motivated by the following assertion which is verified by Table 1.

Table 1. The smallest 5-cages

Degree	P	Discovered by
3	10	Petersen [3]
4		Robertson [6]
5		Wegner [7]
6		O'Keefe and Wong [5]
7		Hoffman and Singleton [4]

Observation. For each of the known (n+1, 5)-cages, $p \le n^2 + 3n + 2$.

So the conjecture might be useful for checking whether (n+1, 5)-cages which will be discovered in the future are also smallest graphs in $P_{1,n}$.

The bound in the conjecture is sharp, at least for n = 1, in that $\bar{C}_6 \in P_{1,1}$. We remark that the irregularity of the numbers p in Table 1 is startling.

Unsolved Problems. What are the smallest graphs in $P_{1,n}$ when $n \ge 7$ and more generally what are the answers for $P_{m,n}$ with $m, n \ge 2$?

References

- [1] N. Biggs, Algebraic Graph Theory (Cambridge Univ. Press, London, 1974).
- [2] A. Blass and F. Harary, First order properties of almost all graphs and simplicial complexes, J. Graph Theory 3 (1979) 245-260.
- [3] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).
- [4] A. Hoffman and R. Singleton, On Moore graphs with diameters 2 and 3, IBM J. Res. Develop. 4 (1960) 497-504.
- [5] M. O'Keefe and P.K. Wong, A smallest graph of girth 5 and valency 6, J. Combinatorial Theory 26B (1979) 145-149.
- [6] N. Robertson, The smallest graph of girth 5 and valency 4, Bull. Amer. Math. Soc. 70 (1964) 824-825.
- [7] G. Wegner, A smallest graph of girth 5 and valency 5, J. Combinatorial Theory 14 (1973) 203-208.