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Abstract - The nearest-neighbor and potential function decision rules are nonparametric techniques that 
partition the feature space based on a set of labelled sample points. Determining whether the partitions of the 
two rules are identical for a given set of points is an interesting problem in computational geometry. Here, a 
relationship between the two methods in terms of subclasses and composite classes is developed. Considering 
an exponential potential function, necessary and sufficient conditions for identity of their decision surfaces 
are obtained. Based on conditions of symmetry, weiohting, and the Voronoi re qion of a point, an algorithm for 
establishing identity in IR d is introduced. 
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I. INTRODUCTION 

The nearest-neighbor (n-n)  decision rule t1"21 and the 
potential function (pf) classifier 13'41 are two of the 
more important  methods of nonparametr ic  pattern 
classification. Both methods require a set of correctly 
labelled sample points from each category. For  each 
test point x ~ IR a the n -n  rule determines the nearest 
sample point and assigns x to the corresponding 
category. The pf rule computes  the "potent ial"  induced 
at x by each prototype according to a function and 
assigns x to the category whose cumulative potential  
at x is maximum. With appropriate  choice of potential  
function parameters the pf rule is equivalent  to a "two- 
step" rule 15/, which is the Bayes decision rule based on 
density estimates of x obtained as linear combinat ions  
of kernel functions centered at the prototypes. 

The large sample performance relationship between 
the two methods is well known, i.e., the n-n error rate is 
bounded above by twice the minimal error rate and 
two step rules are optimal. This asymptotic bound on 

the n-n error rate can be tightened by using a 
generalization, viz., k-nearest-neighbor rule, in which 
classification is based on a majori ty of the k nearest 
neighbors of x. There exists little published analytical 
work, however, of the small sample performance 
relationship and the relative computat ional  com- 
plexities of these methods for arbitrary dimensions. 
Here we demonstrate  that the single n-n and pf 
decision rules are special cases of parametric methods 
based on subclasses and composi te  classes respectively 
and that the time complexities of direct implemen- 
tation of the two rules are similar. We then at tempt to 
obtain precise conditions under which their two-class 
feature space partit ions are identical. These con- 
ditions, which formalize a heuristic comparison of the 
decision surfaces of the two methods previously given 
in ~6~, allow the determination from a finite sample set 
whether the performance of the two rules will be 
identical for arbitrary parent distributions of the 
samples. 

*This work was supported in part by grants NIH5-507- 
RR07066-13 and HL 18968. 
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2. THE TWO DECISION RULES 

Composite class and subclass discrimination 

Many pattern classification problems can be re- 
garded as a case of discriminating between composite 
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classes. 17~ An abstraction of such a problem is to assign 
each x e IRa into either C 1 or C2 where C~ includes n 
subclasses Cu, I'I~ denotes the prior probability of C~, 
I'I u the prior probability of C u when C~ is true and 
pu(x) the subclass-conditionatprobability density of x. 

Let 6~ and 62 be two statistical decision rules that 
map {x} to {C 1, C2} as follows : 61 assigns x to the class 
that includes the subclass with the maximum a pos- 
teriori probability, and 6 z assigns x to the class with 
maximum a posteriori probability. Thus if #q(x) = 
spu(x) l-lul-I ~ where s is a scale factor independent of x, 
then 

61(x) = Ck if for some l a n d  k 

9u(x) = max {go(x)} ; 

and 

6z(x) = Ck if for some k, 

9k(x)= max fY~ Oo(x) }. 
• t j 

Let P,[61] and P,[62] be the respective error pro- 
babilities of 61 and 82. 
Assertion. P,[6~] > P,[62]. 

Proof. Any choice of {go} and x such that 

gk,(x) = max {go(x)} 
l,J 

and 

E gkj < E gin j, 
J J 

m~k  is sufficient to demonstrate that 61 ~:62. Since 62 
is the Bayes decision rule the assertion follows. Whe- 
ther strict inequality of the assertion hoids is de- 
pendent on the specific probabilities and distributions, 
however it is of interest to note that strict inequality 
can hold even for Gaussian pu(x) with identical scalar 
covariance matrices/sl 

Decision surfaces 

Decision rules 61 and 62 yield two different methods 
of nonparametric classification if we let gu be a 
function of sample a u ~ IR a as 

Oil(x) = K([x, au]), 

where [x,y]= II x - y  rt" is the squared Euclidean 
norm. If K has the exponential form 

K(;.) = Cn -"~, (1) 

where ~, r/and # are positive real, then 61 becomes the 
n-n rule of associating x with the class label of its 
nearest sample. The n-n decision surface (n-n surface) 
has the piecewise linear form 

m!n{[x, at~]} = m!n{[x, a2~]}. (2) 
1 ./ 

By definition, the pfrule computes the potential at x as 

K([x, a,d), 
J 

Qt2 
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Fig. 1. Tree implementation. 

where K is a potential function that varies inversely 
with its argument, and associates x with the class with 
larger potential; thus 62 reduces to the pf rule. The pf 
decision surface (pf surface) has the continuously 
differentiable form 

~ K([x, alj ]) = ~ K([x, azj]). (3) 
J J 

As h ---, ~ the pf surface "defined by equation (3) and the 
exponential potential function approaches the n-n 
surface, 19) thus the case of interest is when h is finite. 

Implementation 

In terms of algebraic complexity, a direct implemen- 
tation of the n-n rule requires the computation of 2n 
distances and performing 2 n -  1 comparisons whereas 
the pf rule involves computation of 2n potential 
functions, 2 n - 2  additions and a single comparison. 
Due to min, max and add being associative operators 
both rules can be implemented on a parallel processor 
using the tree structure shown in Fig. 1. The resulting 
time complexity is 1 +[ logz n] when implemented 
with degree of parallelism 2n. 

Direct implementation of both decision rules re- 
quires the storage of 2n samples. Storage efficiency of 
the n-n rule is achieved by storing hyperplane seg- 
ments of the n-n surface instead of the samples ; though 
best known algorithms for determining such segments 
are O(nlogn) in IR2 and O(n s) in IR3..Ol A storage 
efficient indirect implementation of the pf rule is based 
on storing coefficients in a polynomial expansion of 
the gi(X). (9) 

3. IDENTITY CONDITIONS 

We develop here conditions on sample points in IR a 
for decision surface identity of the n-n and pf rules ; the 
results obtained pertain to the general form of K as 
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well as to its exponential  form 11) as indicated. The 
following notat ion is employed:  A = lai} • C~, B = 
{b i}•C 2, U ~- {ul} = A w B and P(ai, b~) denotes the 
hyperplane that or thogonal ly bisects the line segment 
joining a~ and b j, or 

P(ai, b j): (a~ - b j)' [x - (ai + b j)/2] = 0. 

Without  loss of generality it is assumed that there are n 
distinct points in each class. 

Symmetry condition 

When n =  1, or A = {al}, B= {bl}, the two surfaces 
are always identical to P(al,b~). The following two 
lemmas consider the case n = 2 for collinear and non- 
collinear points:  their proofs are given intSL 

Lernma I. Ifn = 2 and all points are collinear, identity 
holds if points are linearly separable and [aa,a2] 
=[b~,b~].  

A corollary of lemma 1 is that if n = 2 with linearly 
separable collinear points such that for each a~ there 
exists a unique b~ equidistant from the n-n hyperplane 
D, then the pf surface is also D. This corollary can be 
generalized to non-collinear points and n > 2 .  Next 
consider n = 2 and points in general position, i.e., not 
all on a single line. 

Lemmu 2. If n = 2 and points are in general position. 
identity holds iff 

~i) D , . ~ . ]  = [ h , . b , ] .  

tii) [ , , ~ . h d  = D.b,]. 
[iii) al + bl 4: a 2 + b2 

and either 

dr) 

o r  

(v) 

where 

and 

wqa 2 - r )  > 0 > u : ( b 2 - r ) ,  

w = a  1 - b l ,  r = ½ ( a l + b l ) ,  

[a,,bl] :m!n{[a,,bi]] 
i 

The different cases of identity arising f rom lemma 2 
are shown for IR 2 in Fig. 2. In order to generalize these 
results to the case n > 2, consider introducing one point 
to each class in the cases of lemma 2 such that the 
surfaces are unchanged. If point a ~ is introduced into 
one of the C a regions (half-space or quarter-space) 
defined by the separating hyperplanes, then by in- 
troducing points b 1. b 2 at the mirrored positions o f a  1 
with respect to D~ and D2, and a point a 2 at the 
mirrored position of b 2 in D2. surface identity is 
maintained. This symmetry of points with respect to 
hyperplanes provides a sufficient condit ion for iden- 
tity, as expressed in Theorem 1. 

Theorem 1. Let the n - n  surface consist of a set of 
hyperplanes ~ D/~,, If for each Dj. given a • A there exists 

al 0 
DI 

Xb~ 

b~ 

Fig. 2. Identity with R 2 with n - " - -  . c .  

a unique b e B satisfying Dj = P(a, bt then the n-n and pf 
surfaces are identical. 

Proof. For each x e Dj the given condit ion implies 

that for every a there is a unique b such that K([x,a]) 
= K([x,b]), thus x belongs to the pf surface. These are 
the only points in the pf surface due to continuity and 
single-valuedness of the pf surface between the nearest 
unlike pair of points defining Dj. Q.E.D. 

Thus when the n-n surface consists of a set of 
hyperplanes D 1 . . . . .  Dp, if A and B can be partit ioned 
into disjoint subsets A~ . . . . .  A, and B, . . . . .  B, respec- 
tively, where each A~ and B i has p points each and for 
each Dj given a e Ai there exists a unique b • B i such 
that D r = P(a,b), then identity holds. Thus for the 
symmetry condit ion to hold it is necessary that n = pc. 

Figure 3 demonstrates some types of identity sur- 
face possible in IR 2 for the following configurations: 

(a) n = 3 ,  p = l ,  Ax={a l ] ,  A2={o2] ,  A3= ~la3}, 

B , =  [b,}, B2=~,b2}, B3={b3}, 

X bl 

DSX 

al 

× 
b2 

(a) 
eG 3 

D, b," 

a 3 b2 x 

(b) 

× b2 

°G 3 

DI 

(C) 

a2~D2 
b3X 

b~ 

(d) 

Fig. 3. Identity with symmetr 5. 



296 SARGUR N. SRIHARI, THOMAS SNABB and LEE J. WHITE 

Dx =P(al bt)=P(a2, bz)=P(a3, b3). 
(b) n = 3 ,  p = 3 ,  A t = { a  ~, a 2, a3}, B~={b~, b2, b3}, 

DI =P(al, bl)=P(a2, b3)=P(a3, b2), 

Dz=P(at,  bz)=P(a2, bO=P(a3, b3), 

D3 = P(al, b3)= P(a2, b2)-- P(a3, bl). 

(c) n=4,  p---- 2, At = {a t ,  a,}, A2---{a2, a3}, 
e ,  =(b , ,  t,,}, e~=(b2,  b~} 

D1 = P(a t, b l ) =  P(a2, bz)-'- P(aa, b3) = P(a,,, b4), 

D2 = P(ax, b,0 = P(a2, b3)= P(a3, b2)= P(a,,, b O. 

(d) n = 4 ,  p---4, A 1 = { a  1, a2, %,  a,~}, 

B 1 = {b 1, b,,  b3, b,~}, 

Dt = P ( a t ,  b l ) = P ( a = ,  b,)=e(a3, b3)=P(a,~, b~), 

D2=P(al, b2)=Pia2, b l ) = e ( a 3 ,  b,)=P(a, ,  b3), 

D3 = P(at, b3) = P(az, b2) = P(a3, bl) = P(a4, ha), 

D, ~- P(al, b,) = P(a2, b3) = P(a 3, b2) = P(a,, bl). 

Weighting condition 

When the potent ial  function is of the exponential  
form we can exhibit asymmetry  of points when identity 
holds. We need the following necessary and sufficient 
condi t ions  for identity when the n-n surface is a single 
hyperplane.  

Theorem 2. If the n-n surface is a single hyperplane D 
then identi ty with the exponential  pf surface holds if for 
every u ~ U 

Z K ( [ y , 7 ] ) =  Z K([z,7])  (4) 
y~u  4 z~u~ 

where u~ = {x lx  ~ A and x lies on L(u)}, u~ = {x lx  ~ B 
and x lies on L(u)}, 7 = point  of intersection of L(u) 
and D, and L(u) is the normal  from u to D. 

For  the proof  of Theorem 2 refer to the Appendix.  It 
can be further shown that  when the n-n surface consists 
of more than one hyperplane,  then for identity with the 
pf surface each hyperplane has to be of infinite extent 
and satisfy weighting condit ion (4). It is clear that 
when the symmetry condi t ion holds the weighting 
condi t ion is satisfied with respect to each Dj. Figure 4 
demonstra tes  two types of identity possible with 
asymmetry for n = 3 and 4 in IR ~ and the following 
configurations. 

(a) D = {D~} with points on a single line in the 
configuration aaazalblb2b 3 such that  D t = P(al, bl), 
D1 ~ P(ai, b~) for all i, j > 1 and (4) holds. 

(b) D = {Dr, Dz} with points on a single line in the 
configuration a2albib2bab4aaa 3 such that D1 = P(a, 
bl), D z = P(a¢, bD and (4) holds for both D 1 and D 2. 
The existence of configuration 4(b) can be shown as 
follows. Let [ a2 ,a l ]  = [a4,aa]  = fl, [al ,  b l ] - - - [a . , ,b , t ]  
= 2a and [bt ,  bz] = [bz, b3] = [b3, b,~] = a. Thus d! 
= ½(al + b~) and d 2 = ½(a, + b,)  are n-n points. For  
identity we need 

K[a2, dr]  + K[a,, dx] + K[a4, dl] 

= KD~, d,] + KD~, d,] + KD,, d,], 
and 

Kfa3,d2] + K[az, dz] + K[ax,dz] 

= K[b3,dz] + K[bz, dz] + K[b,,d2]. 

The two equations are identical since [a 2, d l ]  = [a3, 
dz], [a3, d,] = [az, d:], [a., dr] = [ a .  dz] and [b2, d,] 
= [b3, d2], [b3, d , ]  = [b 2, d2], [b,~, d t ]  = [b, ,  d2]. The 
equat ion has a unique solution ; for example,  if c¢ = i, 
and K[x, y] = e -I x -  yl'-, then B ~ 0.099832 satisfies the 
equation. 

Necessary and sufficient conditions 

We have shown that  the weighting condit ion is 
necessary for identity. Thus a possible procedure  for 
determining decision surface identity is to generate the 
n - n  surface and to test whether each hyperplane of 
the n-n surface satisfies the weighting condition. Since 
generating the n-n surface is a difficult task, we can 
take a simpler approach  of generating a set of can- 
didate  hyperplanes and checking if weighting holds for 
each member  of this set. However when the weighting 
condi t ion is satisfied with respect to a hyperplane D, it 
is insufficient to conclude that  D is part  of the n-n 
surface. In order  to see this consider the case shown in 
Fig~ 5 where n = 4 ,  D=P(at,  b~) = P(a 2, b2) and the 
remaining points are chosen to be coll inear such that 
equat ion (4) holds and the point of intersection 7 
satisfies 

min{[7,a,]}  = [7,a3] < [7,b3]. 

It follows that 7 belongs to the pf surface but  not  the 
n - n  surface. 

I 
XX x 

b~ b 2 b 3 

(a) 

D~ D 2 

o~b x x x x  
b2 b3b4 

(b) 

o: o; 

X bl 

× 
b3 

o 

x 
ba 

b2 

Fig. 4. Identity with non-symmetry. Fig. 5. Insufficiency of v, eighting. 
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We next develop necessary and sufficient conditions 
for a hyperplane to belong to the n-n surface. These 
conditions can be used to provide necessary and 
sufficient conditions for surface identity. First we 
characterize the n-n surface in terms of the Voronoi 
region "1~. For  each U~{Uk} = {a~} ~ {bj} define the 
Voronoi region, 

= ( x l [ x , u ]  _< 

and let v°(u) denote the interior of the region. 
Note that v(u) consists of all points in IR d closest to u. 

If we let h(uk, u j) be the closed half-space of P(Uk, U j) that 
contains Uk then 

v(u~) = 0 hIu~,uj). 
j~k 

In particular the boundary of v(uO consists of segments 
of hyperplanes determined by the h(uk, u~)s. Thus v(aO 
n v(bj) either consists of a segment of P(a~, b j) or it is 
empty. 

Lemma 3. The n-n surface consists of 

U. {v(a,) r~ v(b,)}. 
t , j  

Proof Let D be the n-n surface. If x ~ D then there 
exist ak and b~ such that 

fx, a,]  = m~n {Ex, a,]} = rain {[x, b,]} = [x, b,]. 

If follows that x e V(ak)r~ v(bl). On the other hand if 
xev(ak) C~ v(bl) for some ak and b~ then 

min, {[x, ai]} = [x, ak] = [x,b,] = m!n{[x,b~]}, 

which implies that x E D. 
We now state a theorem which specifies conditions 

for a hyperplane to be part of the n-n surface. 
Theorem 3. A hyperplane D is part of the n-n surface 

if and only if 

(i) there exists an unlike pair a and b such that D 
= P(a, b), and 

(ii) for arbitrary a~ either there exists a b~ such that D 
= P(ai, bi) or v°(aO c~ D = 42. 

Proof. First assume that D is part of the n-n surface. 
Condition (i) is then obvious. To show (ii) let a~ be 
arbitrary. If there exists b~ such that v(aO c~ v(b~) ~ 
then v(a i) r~ v(b~) is a segment of P(a~, b~). Since by 
lemma 3 v(aO c~ v(b~) is also a segment of the n-n 
surface, it follows that P(ai, b~) = D or v°(aO ~ D = 42. 
If on the other hand v(a~) ~ v(bj) = 42 for a l l j  then by 
lemma 3 v(aO ~ D = 42. 

Next assume (i) and (fi) are satisfied. We show for all 
x e D that 

min { Ix, ai]} = min { Ix, b~] }. 
i 3 

The proof is by contradiction. Suppose for some x ~ D 
there exists a~ such that 

Ix, ak] = rain { Ix, a,] } < m)n { Ix, b~] }. 

This implies x ~ v°(ak) SO v°(ak) ~ D ~ 42. However, the 
strict inequality implies D ~ P(ak, b~) for all j, so by (ii) 

v°(a~) r~ D -- 42, a contradiction. Q.E.D. 
If we examine Fig. 5 in light of Theorem 3 we see that 

for aa there is no bj for which D = P(a a, bj) but v°(a3) c~ 
D ~ 42 so D cannot be the n-n surface. If a a, a4, b3, b4 
are translated so their Voronoi regions do not intersect 
D, yet the weighting at 2 is satisfied, then D is the 
identity surface. Finally, for inclusion in the n-n 
surface, a hyperplane D has to satisfy the condition 
that if a and b are the nearest unlike pair on any line 
normal to O then either v(a) n D = v(b) c~ D = ~b or D 
= P(a ,  b). 

5. I D E N T I T Y  D E T E R M I N A T I O N  

A procedure for determining whether a given set of 
points yield identical n-n and pf surfaces can now be 
formulated. Essentially, the identity surface has to 
consist of a finite set of hyperplanes of infinite extent, 
each of which has to be a n-n surface hyperplane as 
specified by Theorem 3 and also satisfy the weighting 
condition along each line perpendicular to it as 
specified by Theorem 2. 

To begin, a set of candidate hyperplanes 
DI, D2 ..... Dp are obtained as follows. D1 = P(a,b) 
where 

[a, b] = min { [ai, bj] }. 
1.] 

The approach of using an exhaustive search to de- 
termine the nearest unlike pair (a,b) requires n2/4 
distances to be computed; however recently- 
developed algorithms have time complexity 
O(nlog~-ln) t12) and 0(nlog n). (13) Let the feature space 
partition due to DI be H 1 = {H~, H~}, where H~ = 
h(a, b) and H~ -- h(b, a). If there are points of more than 
one class in any block of partition H 1, determine D 2 as 
the perpendicular bisector of the nearest such pair, 

A B giving the partition refinement H 2 = H 1 ~ {H2, H2}. 
This process is continued until Dp with partition Hp_ 
r~ {H~, Hp n) separates the classes. It is clear that 
segments of each of the resulting D r have to be part of 
the n-n surface. Furthermore, when identity holds the 
Dj are the only members of the identity surface. 

Algorithm 1 tests whether a candidate hyperplane D 
determined by the above method satisfies symmetry, 
weighting and Voronoi conditions. First a check is 
made to determine if the sufficient condition of sym- 
metry is satisfied. If so the algorithm terminates, 
otherwise point sets B k that lie on parallel planes R k 
orthogonai to D are determined. Subsets of B k that lie 
on lines perpendicular to D are tested to determine 
whether the weighting condition holds and if points 
nearest to D have their Voronoi regions intersect D. 

Algorithm 1. Hyperplane Identity 

l(a) (obtain matched pairs). Determine the partition 
(U~,U2) of U as 

Ux = {xlP(x,Y) = D, x e C i , ) ' e C j ,  i ~ j} and U 2 
= U - U 1 ;  

l(b) (symmetry?). If U2 = 42, D is an identity hyper- 
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plane; else determine hyperplane R t that is 
orthogonai  to D and passes through a pair x, 
y~  U such that P(x, y) = D; 

l(c) [initialize for loop]. Set k - 1  and B 1 = B'I 
= { x l x e U  and x lies on R1}; 

l(d) [obtain points on line]. For  u e B k determine the 
set S(u) = { x l x  ~ Bk and x lies on L(u), the 
normal  from u to D}; 

l(e) [necessary conditions].  If the following two 
constraints do not  hold, D is not  an identity 
hyperplane, 

weighting : 

Z K([y,  7]) = ~ K([z,7]) 
y~A c~S(u) :~Bc~S(u) 

Voronoi: either v°(a) ~ D = v°(b) ~ D = ~b or 
[a, 3'] = [b, y] where ~, = L(u) n D, [a, y] = min 
{ [y , y ] l y eAc~S(u ) }  and [ b , ? ] = m i n { [ z , ~ , ]  I 
z ~ B ~ S(u)} ; 

l(f) [next line]. Set B k = Bk -- S(u). If B e # q5 go to 
l(d);  else increment k by one, and determine 

a'k ---- Be = x, x e { U  - a'k-1 . . . . .  -- a'l}, 

and 

[x, Re-  1] = min {[x, Rk- t]} 
x~U 

where Ix, Re] = m i n { [ x , y ] l y ~ R k } ;  

l(g) [next plane'?.]. If Be = dp, D is an identity hyper- 
plane;  else determine hyperplane R k containing 
points in Bk and parallel to R,_ ~, and go to l(d). 

If any candidate hyperplane is not  an identity 
hyperplane then identity does not  hold. On the other 
hand when each candidate hyperplane is an identity 
hyperplane, the two surfaces are identical. 

6. RESULTS AND DISCUSSION 

When samples satisfy certain location constraints 
the n-n and pf decision surfaces are identical. Sym- 
metry of samples with respect to a set of hyperplanes is 
sufficient to determine identity. A weighting condit ion 
is necessary for a n-n  decision hyperplane to be a pf 
decision hyperplane. The Voronoi  regions of points 
provides a necessary and sufficient condit ion for a 
hyperplane to belong to the n-n decision surface. These 
condit ions form the basis for an effective procedure to 
determine identity. 

Decision surface identity is sufficient for equal error 
rates independent of the types of underlying pro- 
bability distributions. If one restricts consideration to 
specific types of distr ibutions it is then possible to have 
equal error rates but  non-identical decision surfaces. 

In direct implementation,  the pf and n-n  decision 
rules are similar in terms of the number  of algebraic 
operations per decision, with the exception of the need 
to compute the potential function of every sample 

distance by the pf rule. Thus when identity is de- 
termined the n-n rule may be considered to be 
somewhat better. We have also quantitatively de- 
monstrated that due to restrictions placed on the 
points, identity cannot  be expected with random 
samples. 

The need for developing theoretical guidelines for 
classifier comparison has been felt by pattern re- 
cognit ion researchers. (~4) A solution to the meta- 
decision problem of analytically determining whether 
two decision rules are identical or not  may be viewed 
as an aid in this context. They are also a source of 
challenging problems which can be tackled using the 
developing tools of computat ional  geometry. 
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.APPENDIX 

Proof of Theorem 2 

The necessity of weighting condition (4) is considered first. 
In general all samples will be located on r < 2n lines 
perpendicular to D. Let 2k, k = 1,...,r be samples whose 
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normals L(;.k) are distinct and exhaustive, and let ~,,~ = L(2 D 
c~ D. Since we assume D is the pf surface, we have for all x • D 

i ' Z r[x,~.] = Z Z K[~,--3, 151 

where 2~A and )-ks are u,, and un with u = 2~. Defining the 
constants 

~ =  Z K[;,,,y] 

and 

p, = y r[~,,~] 
y~2ka 

the necessity of (4j follows by showing cq = ilk" Orthogonality 
of L(2kl to D implies that for x • D, w •  U c~ L(2k) , [x,w'l = 
[x, )'k-I + ['A, w] which implies K[x, w] = K[x, 7k] " K[Yk, w]. 
Thus (5) reduces to 

k= l  k= l  

If 3k = ak -/~k then 
r 

~. 3iK[x,Tk] = 0 Y x • D  . 
k=l  

Since the 7k are distinct functions, K[x,'~,k] are independent, 
which implies 6k = 0, or ak = ilk- 

Next we need to show that when (4) holds and D is the n-n 
surface, point dx • D implies d~ • D', the pf surface; and point 
d 2 ¢ D implies d 2 ¢ D'. Since for x • )'kA kJ )*kB, IX,  ~]  = IX,  7 ]  "~" 
[y, dl] for any sample u 

Z KEy, d , ]= Z K[z. dl]. (6l 
?;~uA zeu4 

By considering equation (6) for every sample, 

E KD',d,] = E K[z,d,]. 
)'cA ~,eB 

or d~ eD' .  
Let 2 • A  and 2 :# d 2. We will consider two cases, first 

L(d2):# L(2). Let t = L(d2} ~ D and 7 = L(2) ~ D. For any y • 
,;.A an application of the law of cosines yields [y, d2] < [y, t] 
+ [t, d2]. Since [y, t] = [y, 7] + [7, t] we have the inequality 
[y, d2] < [y,~] + [~,,t] + [t, dz].Nextletze).n. Notingthat 
z is on the C2 side of D we again apply the law obtaining 
[z, d2] > [z,t] + It, d2] and finally, as above [z, d2] > [z,7] 
+ [ '; ,t] + [t, d2]. It follows that 

X Kb',d21 > ~. Z KEy,~,3 
ye2~ ye2~ 

and t7) 

Z r[z ,  d2] > Q" Z K[z,';] 

where Q = K[7,t ] + K[t, d2]. Combining inequalities (7) 
and (4) yields 

3~ K[y,  d2] > ~ K[z, d2]. (8) 
y~24 z~. B 

For the second case, assume L(d 2) = L(2) and t = 7. For any y 
• ,;,Aandze).swehave[y, d2] < [y,t]  + [t, d2]and[z,d:] > 
[g, t] + It, d2] which, using the same approach as in the first 
case, yields equation (8). Since equation (8) is true of every 
sample 2, it follows that d 2 belongs to the Ct side of D'. 
Similarly d: on the C2 side of D is on the C: side of D'. 
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