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Summary--Deformation by (liD-pencil glide has been analyzed by an upper-bound model 
which combines a least-shear analysis and Piehler's maximum virtual work analysis. The 
least-shear analysis gives exact solutions if three 01D slip systems are active, while the 
maximum work analysis provides solutions for the case of four active slip systems. In- 
dependent checks are used to determine which solution method is appropriate. 
, Computer calculations using this model have been made to determine; (1) the orientation 
dependence of the Taylor factor for axisymmetric deformation; (2) the yield loci for textured 
materials having [100], [110] and [11 I] sheet metals and rotational symmetry; (3) the isotropic 
yield locus for randomly oriented materials; and (4) flow stresses along critical loading paths 
for various assumed textures with rotational symmetry. The latter calculations indicate that 
anisotropic yield loci of textured bcc metals with rotational symmetry are much better 
approximated by 

o-xa +orya + RJorx-Ory] a = ( R  + I ) Y  a 

where R is the strain ratio and Y is the tensile yield strength with an exponent a = 6 rather 
than with a = 2 as postulated by Hill. It is not known how well upper-bound calculations like 
these represent actual yielding behavior. 
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external coordinate axes 
cubic crystal axes, [100], [010] and [001] 
[I10] and [110] axes 
angles describing orientation of x, y, z relative to 1,2, 3 
Taylor factor = dw]7 dez = crz/r 
plastic work per volume 
critical shear stress for slip 
normal stress along i axis 
normal strain along i axis 
shear stress on ijk coordinate system 
shear stress on slip system i 
shear strain on ijk coordinate system 
shear strain on slip system i 
sum of absolute magnitudes of 3'i 
angle describing rotation of slip plane normal, i, about the slip direction 
slip plane normals for the (111) slip directions 
generalized stress state along cubic axes I, 2, 3 
generalized strain state along 1, 2', 3' axes 

terms describing strain state 
ratios of yield strengths along several critical loading paths 
constants in generalized yield criteria 
yield strength in uniaxial tension along x 
imposed strain ratio = - ey[ex 
strain ratio, - ey/ex in uniaxial tension 
strain ratio, ey]e, = r/(l - r )  in uniaxial tension 
exponents in generalized yield criteria 

INTRODUCTION 

Recently there has been a considerable interest in mathematical modeling and com- 
puter simulation of sheet metal forming, especially with low-carbon steel. Such 
modeling requires satisfactory constitutive relations. Hill's anisotropic yield 

tThis paper is based on a senior project of Mr. Logan who is now a graduate student at the University 
of California (Davis). 
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criterion[l] has been widely used, but there are reasons to doubt how accurately it 
describes the anisotropic behavior. An alternative approach is to calculate yield loci 
from considerations of crystallographic texture and the crystallographic nature of slip. 
For low carbon steel and other bcc metals (11 D-pencil glide is a good description of 
the slip behavior. While it can be shown that for a given crystal orientation the plastic 
anisotropy with 01D-pencil cannot differ more than 15% from that with (111)(110} 
slip, this is not a good enough apiroximation for mathematical modeling of sheet 
forming of low carbon steel. 

Upper-bound calculations of anisotropy are based on assuming the same shape 
change in each grain. For fcc metals two methods of calculation have been used. One 
has been an extension of Bishop and Hill's analysis [2] which is focused on the limited 
number of stress states capable of producing the multiple slip required for an arbitrary 
shape change of a grain. The principle of maximum virtual work is used to identify the 
correct stress state for producing the required shape change in each grain. The other 
approach is based on Taylor's analysis. All combinations of five independent slip 
systems are considered and that combination which can produce the shape change 
with the least shear (and hence actual work) is identified. Although the computational 
strategies of the two methods are very different, the results are identical. 

Much less work has been done in analyzing the pencil-glide model. Using a Taylor 
least-work analysis, Chin et al.[4, 5] and Hutchinson[6] approximated pencil glide by 
assuming slip on any of a large but finite number of slip planes containing the (111) 
directions. These planes differ in orientation by small rotations about the 0 1 D  slip 
directions. Examining all independent combinations of five such slip systems, they 
selected the one for which the work is the least. Chin has calculated the orientation 
dependence of strength under axisymmetric flow and Hutchinson reported the yield 
locus shape for a randomly oriented polycrystal. 

A minimum of five independent slip variables are required to produce an arbitrary 
shape change in a crystal. If slip is restricted to specific crystallographic planes and 
directions, these variables must be the amount of shear strain on each of five active 
slip systems, so a minimum of five active slip systems are required. With pencil glide, 
however, there are two variables associated with each slip system; the orientation or 
angular rotation of the slip plane about the (111) direction as well as the shear strain. 
Therefore, a minimum of three active slip systems are required. 

Penning[7] described an exact solution for pencil glide based on a least work 
(Taylor-type) analysis. He treated both the case of three and four active slip 
directions. Parniere and Sauzay[8] also described pencil glide calculations based on a 
least work analysis. Their upper-bound locus for randomly oriented material shows 
less strengthening under plane-strain than predicted by yon Mises and their locus for a 
sharp {111}(110) texture indicates much less strengthening under biaxial tension than 
would be predicted by the Hill theory for the same R-value. The Penning analysis has 
been applied to calculation of upper-bound yield loci from orientation distribution 
functions [9]. 

Piehler et al.[10-12] approached the problem in a way analogous to Bishop and 
Hill by considering the stress states capable of activating enough slip systems to 
satisfy an arbitrarily imposed strain state and showed that there are eight independent 
variables, namely the orientations of the four active slip planes and the magnitudes of 
the four shear strains, while if three 0 1 D  directions are active there are six 
independent variables. He derived expressions for the stress states for the four slip 
system case. However, he was unable to derive general expressions for the three slip 
system case, so instead of a general solution, he used a limited number of specific 
solutions. For each assumed shape change, the stress state corresponding to the 
largest virtual work was selected as appropriate. The method was applied to calculat- 
ing the orientation dependence of the M-factor (M = dw/~ dEx = o'x/~') for axisym- 
metric deformation about x, and to calculating yield loci for sheet textures with 
rotational symmetry about common sheet normals of (111), (011) and (001). However, 
these results must be regarded as approximate in view of the way the three slip 
system case was treated. 
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R e c e n t l y  M o r r i s  et al. [13, 14] h a v e  d e r i v e d  e x a c t  s o l u t i o n s  f o r  a m a x i m u m  v i r t u a l  

w o r k  a n a l y s i s  o f  p e n c i l  g l i de  a n d  a p p l i e d  t h e i r  a n a l y s i s  to  c a l c u l a t i o n  o f  y i e l d  l oc i  

f r o m  o r i e n t a t i o n  d i s t r i b u t i o n  f u n c t i o n s .  

CALCULATION METHOD 
The present calculation employs both the maximum virtual work and the least-shear upper-bound 

solution methods. For the four slip system case Piehler's stress states and the principle of maximum virtual 
work are used to identify the appropriate stress state. This solution is valid, however, only if the implied 
shear strains on the four slip systems may be achieved with an internal energy dissipation equal to the 
external work. 

Taylor's least-shear principle is used for the three slip system solution. Five independent equations 
relate the external strain to the four shear strains, y~, and four angular rotations of the slip plane normals, $~. 
By setting one of the shear strains equal to zero, six variables remain (three angular orientations of the slip 
planes and three shear strain). One of the remaining angular orientations is fixed and the shear strains 
required to satisfy the imposed strain are determined and Yr = X lyll is found. The angular orientation, $~, is 
then given a new value and the process repeated until the minimum value of Yr possible with these tress 
slip directions is found. This procedure is then repeated with each of the slip directions in turn being 
inactive to identify the three slip direction solution requiring the least shear. However, this solution is 
appropriate only if the stress state necessary to activate the three slip systems does not cause a shear 
stress on the fourth system exceeding the critical value for slip. 

Since one and only one of the two possibilities (four slip systems or three slip systems) is correct, we 
first assume the three slip system solution, and determine whether this solution is appropriate. If it is not 
appropriate the four slip system solution is used. Alternately, the four slip system solution could be 
checked, but it was found in preliminary calculations that it always checked when the three slip system 
solution was inappropriate. 

The soundness in the combination of these two principles lies in the fact that checks are available for 
both solutions. The least-work analysis eliminates the problem of identifying all necessary stress state 
groups for simultaneous slip in three directions, while the maximum virtual work principle avoids the very 
complicated least work analysis for the four active system case. 

Shear strains on slip systems 
A set of imposed external strains, ex, ~y and ¢~ (with yy, = y= = Yx~ = 0) are assumed. The crystal 

orientation is described by the latitude, ~b, and the longitude, 0, of z axis relative to the 1 = [100], 2 = [010] 
and 3 = [001] crystal axes and by an angular rotation, a, of the x and y axes about z (see Fig. 1). The strains 
on the x, y, z axis system are transformed to strains on the 1, 2, 3 axis system and these in turn transformed 
to the strain on the 1,2',Y system where 2 '=[011] and 3 '=  [031]. Finally, the strains on the 1,2',Y axes 
may be expressed in terms of the shear strains on the four slip systems by five independent equations with 
eight unknowns. 

A' = - (3/X/2)er = Yb cos 0b + Ya cos Oa 

B' = - (3/X/2)e3, = Ya cos ~b~ + Yc cos ~b~ 

C' = (X/6/2)yzr = - 7o sin Ca + yb sin 4~b - yc sin ~bc + ya sin 0a 

D ' =  3yr~ = yo cos 0a + X/3yb sin 4Jb - yc cos ~bc - V'3ya cos tpa 

E '  = 3yl,z = V'3yo sin ~b~ + yb cos tkb + X/3yc sin ~bc - Y d  COS I//d 

(1) 

(2) 

(3) 

(4) 

(5) 

where yo, yb, Yc and yd are the shear strains on the four slip systems and ~ba, ~bb, ~bc and ~bd describe the 
orientations of the four slip planes (see Fig. 2). 

3=001 

FIG. 1. Stereographic representation of the axis system. 
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FIG. 2. Stereographic representation of the l~encil glide s~stems, a,_. b, c and d are the slip 
plane normals for slip directions [ 111 ], [ 1111, [ 111 ] and [ 1111 respectively. 

L e a s t  shear  ( three slip s y s t e m s )  
If only three slip systems are active there are only six unknowns on the right hand side of equations 

(1)-(5). For example, if we assume Ya = 0, these equations simplify to 

Yc = B' /cos  ~< (6) 

Yb = ~/[(Dp + Cp) 2 + (Ep + A')2]/2 (7) 

Ya = X/[(Dp - Cp) 2 + (Ep - A')2]/2 (8) 

where Cp = C'  + Yc sin ~bo Do = (D'  + B ' ) / ~ 3  and Ep = E '  - X/3yc sin ~bc. 
A value of ~c is assumed and equations (6)--(8) solved for the shear strains Yb, Yc and Ya and the total 

shear strain Yr = ]Yb[ + lYd + lYa]- The angle 4,c is varied using a "golden-section search"[15] to minimize YT 
and values of ~bb, ~bc and ~a at the minimum are noted. 

The next step is to find the corresponding stress state, A = ~2 - 0-3, B = 0" 3 - -  Orl, C = 0 - 1  - -  0-2, F : T23 , 
G = ~'3, and H = ~,2. Equations (9)-(16) were developed by writing expressions for the four values of h in 
terms of the stress state and ~bi and setting drild~,i = 0 to find the orientation ~bi corresponding to the largest 
value of ~. 

• ~ sin tPa = ( A  - G - H ) / ~ / 6  (9) 

% cos ~ba = (C - B - H + G + 2F)/(3~/2) (10) 

rb sin tkb = (-- A + G - H) / ' k /6  (11) 

~'b COS tkb = (C - B + H + G - 2F)/(3~/2) (12) 

~'~ sin ~b~ = ( A  + G + H ) [ V ' 6  (13) 

~'~ cos ~b~ = (C - B + H - G + 2F)/(3"v/2) (14) 

ra sin ~ba = ( -  A - G + H ) / ~ 6  (15) 

ra cos ~b d = (C - B - H - G - 2F)/(3X/2). (16) 

Now letting the critical shear stress for slip be unity, so rb = ~'~ = ~'a = 1, equations (11)-(16) are solved for 
the values of  A, B, C, F, G and H. With these values the level of z~ is determined using equations (9) and 
(10). If I~1 -< 1, the solution is appropriate. Otherwise,  the remaining cases of simultaneous slip on three 
systems are examined in a similar manner. If none are found appropriate this implies that four slip systems 
are active. 

M a x i m u m  vir tual  work  ( f o u r  slip s y s t e m s )  
Piehler[1 1] showed that the stress state must  satisfy the equation 

F2(B  - C)  = G2(C - A )  = H 2 ( A  - B )  = 0 (17) 

for four systems to operate simultaneously, and found four general solutions (equations (1), (3a), (3b) and 
(3c) in Ref. [1 1]) which are expressed in terms of  the strain on the 1, 2, 3 axis system. The appropriate stress 
state is that one which gives the largest value of dw, where 

dw = - B d~l + A d~2 + F dy23 + G d3,31 + H d3q2. (18) 

The maximum virtual work solution can also be checked for consistency. Since the shear stresses on all 
four systems must  be equal, equations (6)-(13) yield the slip plane angles. Equations (1)-(5) may then be 
solved for the shear strains on the individual system. If the solution is correct,  the sum of  the magnitude of 
the shear strains will equal the external work from equation (18). Otherwise,  the calculated stress state will 
not produce the imposed strains. 

The value of virtual work calculated for the four slip system case always lies below the least shear 
solution for the three slip system solution, except  at points of tangency where the transition from one 
solution to the other occurs,  as shown in Fig. 3. 
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FIG. 3. Calculated Taylor Factor for the three slip system (Yb =0) and four slip system 
solutions as a function of ~ for 0 = 25 °, The ratio of ~'b/¢ is also shown. The Yb = 0 solution is 

valid for ¢~" -< 1 (i.e. ~ -> 6.75) while the four-slip solution is appropriate for ~'b -> I. 

APPLICATIONS 
The computer program based on these analyses was applied to four problems; the orientation 

dependence of the Taylor factor for axisymmetric deformation; the yield loci for sheets having rotationally 
symmetric texture about sheet normals of [001], [011] and [111]; the isotropic yield locus for randomly 
oriented grains; and finally a few critical parameters describing the yield loci shapes of a large number of 
randomly chosen textures with rotational symmetry. 

Taylor factor/or axisymmetric deformation 
Values of the Taylor factor, M = dw/T d~z, for the axisymmetric deformation (~  =~y = -  l/2~z, 3% = 

Y= = "/xy = 0) were calculated for orientations of z varying at one degree increments of 0 and d~ over the 
basic stereographic triangle. The results, shown in Fig. 4, differ in several Elaces from those of Piehler[12]. 
The most significant difference is the extension of the region for which [111] is inactive down to 4' = 0 ° at 
0 = 9.75 o. 

To calculate the average Taylor factor, randomly oriented material was approximated by 750 orien- 
tations. The values of 0 and 4' were chosen randomly within regions described by 25 increments of 
A sin 4~ = 0.04 and 30 increments of A0 = 1.5 °, covering spherical triangle of 0 -< 0 < 45 and 0 -< ~b < 90. The 
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FIG. 4. Orientation dependence of the Taylor Factor, M, over the basic orientation triangle. In 
regions 1 and 3c, four slip systems are active, while in regions Yd = 0 and Yb = 0 only three slip 

systems are active. The average value is M = 2-7398 -+ 0.0016. 
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FIG. 5. Yield locus for rotationally symmetric sheets with z = [100]. The present calculations 
coincide with those of Piehler. 

calculation was reported five times to allow a t-test of the confidence limit. The average M-value was found 
to be 2.7398-+ 0.0016 within the 90% confidence limits compared with previously reported values of 2.733 
for pencil glide [ 12], and 2.748 for approximate pencil glide [6], and 2.754 for mixed (111)-{ 110}, { ! 12}, { 123} 
slip [4, 5]. 

Yield loci for rotational symmetry about [100], [110] and [111] 
Yield loci were calculated for orientations of the sheet normal, z, fixed at [100], [110] and [Il l] .  

crylT 
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FiG. 6. Yield locus for rotationally symmetric sheets with z = [110]. The present calculations 
are shown by the outer curve while the inner curve is from Piehler. 
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FIG. 7. Yield locus for rotationally symmetric sheets with z = [111]. The present calculations 
are shown by the outer curve while the inner curve is from Piehler. 

Rotational symmetry was approximated by considering orientations differing from one another by rotations 
of Aot = 3* about the sheet normal. The imposed strain ratio p = -  ey/~x was varied from - 1  to + 1 in 
increments of 0.1. For each strain ratio the calculated stress state was converted to the x, y, z system, with 
tr, = 0 and averaged over all the a-values. The strain ratios, R, for uniaxial tension were found by a search 
for the condition ~ry =0.  Figs. 5-7 show the yield loci for [100], [110] and [111] sheet normals. For 
comparison, the yield loci previously calculated by Piehler[12] are also indicated. The values of ~rx/~- for 
critical loading paths are given in Table 1. For the [100] sheet normal the present results coincide with 
Piehler's. It is interesting to note that for the [100] calculations less than 1% of the solutions correspond to 
the three slip system case for which Piehler's analysis is only approximate. In contrast, our [110] and [111] 
loci differ considerably from Piehler's especially in the first quadrant where our loci lie outside of Piehler's. 
The three slip system solution was found appropriate for [110] and [111] about 54 and 92% of the times 
respectively. We found no corner at biaxial tension for [111] and a very much blunter corner for [110]. 

lsotropic yield locus 
A yield locus for isotropic pencil-glide material was calculated by assuming that the material was made 

up of 900 texture components, with the orientations of these components being chosen randomly from each 
of 300 regions given by 15 increments of A0 = 1.5 °, and 20 increments of A sin 4, = 0"05, covering the 
spherical triangle 0 -< 0 -< 45 °, 0 -< 4, -< 90 °. For each 4, and 0, three values of a were also randomly selected 
within 60* intervals. The calculations were repeated six times with different random numbers so that the 
90% confidence limits could be established. The results are shown in Fig. 8, where the boxes indicate the 
confidence limits and in Table !. Hutchinson's calculations [6] are shown as solid points. It can be seen that 

TABLE I. VALUES OF o-x/'r FOR CRITICAL LOADING PATHS 

~r, l z G, I r 2~xl r ~ l  r 
Biaxial tension Plane strain Plane strain Uniaxial tension Strain ratio 

Texture (ey = ex) (~y = 0) (ey = 0) (o'y = 0) T = ey/ez 

[I00] 2.121 2.288 3.409 2.236 0.105 
[110] 3.182 3.317 2.910 2.748 1.714 
[111] 3.182 3.626 3.038 2-844 2-632 

Random 2.7398±0.0016 3-0647±0.0087 3-065 2.739 1.000 

M S  Vol .  22,  No .  7 - - C  
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FIG. 8. lsotropic yield locus for randomly oriented material. Note  the ,r~ scale is expanded.  
Calculated points are shown by boxes indicating the 90% confidence limits. For comparison,  
Hutchinson 's  approximate  pencil glide calculations are shown as solid points. The von Mises 

and Tresca criteria are indicated as well as generalized isotropic criterion with a = 6. 

the calculated results are very closely fit by an exponent  a = 6 in a generalized isotropic yield criterion of 
the form[16, 17] 

which reduces to 

I ,~=- ,~,1 ~ + I ~ -  ,~,1 ~ + I ,~ , -  ,~=1 a = 2 Y ~ ,  (19) 

I~xl a + I~,1 ° + I ,~  - ~ ,1  ° = 2Y a (20) 

for plane-stress (cr~ = 0) loading. The von Mises criterion (a = 2) overest imates  the s trengthening due to 
biaxiality. 

Yield loci/or mixed textures with rotational symmetry 
To more fully explore the anisotropic characterist ics predicted by the upper-bound pencil-glide model, 

101 rotationally symmetric textures were considered.  In these calculations, real sheet  textures were 
approximated by mixed textures consist ing of three texture components ,  each with a single sheet  normal. 
Rotational  symmetry  was generated by rotational increments  of Aa = 18 ° about  each sheet  normal,  the 
starting a being randomly chosen to lie be tween 0 and 18 °. The volume fraction of each component  and the 
orientat ion of its sheet  normal,  0 and sin 4~, were also randomly chosen.  

Instead of exploring the entire yield locus, calculations were made of yield strengths along several 
critical loading paths: biaxial tension (~y = ex), plane strain (ty = 0), plane strain (e~ = 0) and uniaxial tension 
(~ry = 0). In the latter case, a search for the cry = 0 condit ions produced both the R-value and the yield 
strength. The ratios of yield strengths along these loading paths,  

= @x(biaxial tension)/CTx(uniaxial tension) 

• ~ = O'x(plane-strain, ~y =O)/O'x(uniaxial tension) 

= 20"x(pnane-strain, , ,  =0)/o'~(.niaxia, tension) 

= O'x(plai,~-strain..y=0)/O'x(biaxial tension)= )L/X 

B = (Tx(plal~c-strain, ,,=O)/2Orx(plane-strain, ,,=0) = A/~b 

were calculated and plotted against the strain ratio in Figs. 9--13, each solid point represents  one texture. 
The open circles at R = 1 are f rom the calculations of the isotropic yield locus (X =/3 = 1) and (~. = 41 = ¢ = 
I. 1186). The  abscissae are linear in r = - ~y/ex and the corresponding strain ratios R = ey/ez are shown at the 
top of each plot. 

DISCUSSION 
The scatter  in these calculations shows that the shapes of the yield loci are not uniquely related to the 

R-values.  The greatest  scatter  occurs  for the parameters  X and ~: which involve biaxial tension. This loading 
path is fur thest  removed from uniaxial tension, along which the R-value is defined. Despite the scatter, it is 
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Fin. 9. Dependence of biaxial/uniaxial strength ratio, X, on the strain ratio, R. Each point is 
for a randomly chosen rotationally symmetric mixed texture. The Hill theory is shown by the 

line a = 2 and equation (22) by the line a = 6. 

apparent that the general trends are not well described by Hill's anisotropic yield criterion, which is 
indicated by the solid lines labelled (a = 2) in Figs. 9-13. 

Recently an anisotropic yield criterion of the form 

FIo '~  - ,7~1" + G[o'~ - ,7~[ ° + H I # ~  - o'~1" = 1 (21) 

was suggested[18]. This reduces to Hill's criterion for a = 2  and to equation (19) for isotropy. For 
plane-stress loading and rotational symmetry about z, equation (21) becomes 

I , ~ l  ° + I# ,1"  + R I , ~ ,  - (~,1 ° = ( l  + R ) Y  °. (22) 

The general trends in Figs. 9-12 are well described by this criterion with a = 6. In similar upper-bound 
calculations for fcc metals the best fits were obtained with a = 8-10. Fig. 14 shows the yield loci shapes for 
a = 2 and a = 6 with R = 0.5 and 2. As a is increased from 2 to 6, the yield loci approach the Tresca 
criterion. 

The scatter of the points in Figs. 9-12 strongly suggests that no yield criterion, without many adjustable 
parameters could completely describe the calculated results. Our intent is to offer instead a simple yield 

R 
0.2 0.4 0.6 0.8 1.0 1.5 2.0 4.0 

1.3 I I I 1 I I /  I 
t 

°7 '2 
X . ' .  ; ' . "  

~ e  e 

I1 y -  

, 1 
I.o I i i l I I 

0.1 0.2 0,3 0.4 0.5 0.6 0.7 0.8 
r= R/(R+' I )  

Fro. 10. The dependence of the plane-strain (~y = 0)/uniaxial strength ratio, A, on the strain 
ratio, R. Each point is for a randomly chosen rotationally symmetric mixed texture. The Hill 

theory is shown by the line a = 2 and equation (22) by the line a = 6. 
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FIG. 1 I. The dependence of the plane-strain (Ez = 0)/uniaxial strength ratio, ~b, on the strain 
ratio, R. (Note the plane-strain strength (~y = 0) equals twice the value of or, along that loading 
path.) Each point is for a randomly chosen rotationally symmetric mixed texture. The Hill 

theory is shown by the line a = 2 and equation (22) by the line a = 6. 

criterion with a single exponent, a, to approximate the general trends. This criterion requires only 
experimental values of R and Y, both measurable in a single tension test, to allow prediction of yielding 
behavior under other loading conditions. 

However, it should be recognized that the calculations presented here, and represented by equation (22) 
are based on an upper-bound model of deformation in which it is assumed that every grain undergoes the 
same strains. It is not known how well this model describes the yielding behavior of real metals. Other 
models or experimental data may be better described by other yield criteria or by equation (22) with 
exponents other than six. 
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FIO. 12. The dependence o f  the plane-strain (Ey = 0)/biaxial  strength rat io,  ~, on strain rat io,  R. 
Each point  is fo r  a randomly  chosen ro ta t iona l ly  symmetr ic  texture. The H i l l  theory  is shown 

by  the l ine a = 2 and equat ion (22) by  the l ine a = 6. 



Upper-bound anisotropic yield locus calculations 
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FI~. 13. The dependence of the plane-strain (ey = 0)/plane-strain (ey = 0) strength ratio, ~, on 
the strain ratio, R. Each point is for a randomly chosen rotationally symmetric texture. The 

Hill theory is shown by the line a = 2 and equation (22) by the line a = 6. 

Hill [19] has recently suggested an even more general anisotropic yield criterion 

Flo 'z  - o, , l"  + O [ o ' 3 -  o' , I"  + H i m  - o'21" + A12o',  - o-= - o' , I"  + B12o-2 - o-, - o"31" 

+ C 1 2 ~ , 3 -  G, - ,~21" = Y "  (23) 

which reduces to equation (21) if A = B = C = 0. Several investigators[20-23], working with sheet metals 
having _R < 1, have derived biaxial s t ress-strain curves from bulge test data that lie above the uniaxial 
s t ress-s t ra in curves for the same materials. These findings of X > 1 for i~ < 1 are surprising and not possible 
according to either the original criterion or equation (22). Although the upper bound calculations do indicate 
that X > 1 for R < 1 for some textures (see Fig. 9), this is not the general trend. Some forms of Hill's new 
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FIO. 14. Comparison of anisotropic yield loci predicted by equation (22) (with a = 6) and Hill 
(a = 2) for R = 0.5 and R = 2.0. 
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criterion will permit X > I with R < 1 for rotationaly symmetric textures. Parmar and Mellor[22, 23] used 
one special form with A = B = F = G = 0, 

I0., + 0.21" + (1 + 2R)10., - 0.21" = 2(1 + R ) Y "  (24) 

to explain the anomalous bulge test data. They found that the ratios of biaxial to uniaxial yield strengths, X, 
implied exponents of m from !.38 to 2.0. It should be noted, however, that a different exponent was needed 
for each R-value and that no attempt was made to determine whether that exponent described the yielding 
behavior under other loading paths. 

Bassani has made Bishop-Hill type calculations of yield loci for fcc metals with rotationally symmetric 
textures, and has attempted to fit these with a criterion of the form 

O-i.4_O. 2 n O.1__O.  2 ra 
(25) 

where 0-b and ~- are the yield strengths in biaxial tension and in pure shear respectively, where m and n are 
two adjustable exponents. Both equations (24) and (25) require more than a simple tension test to evaluate 
the constants. 

CONCLUSIONS 
1. An upper-bound (111) pencil-glide model has been developed which combines a least-shear analysis 

for the case of three active slip systems with a maximum virtual work analysis for the case of four active 
slip systems. 

2. Calculated yield loci for both isotropic (random) and randomly chosen mixed textures with rotational 
symmetry are closely approximated by 

[0-x[a + [0-y[a + R[0-x - 0-y[a = (R + l ) Y  a 

with a = 6. It is not known, however, how accurately the upper-bound model describes actual yielding 
behavior of bcc metals. 
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