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Abstract-The paper treats the elastic layer that is pressed uniformly against a half space and is 
subsequently subjected to a concentrated force tending to induce slip and separation between the bodies. 
The formulation, based on known results for discrete dislocations, reduces the problem to a coupled system 
of integral equations which is solved numerically. Various results of interest are given graphically. 

I. INTRODUCTION 

SUPPOSE THAT an elastic layer is pressed uniformly against a substrate and subsequently 
subjected to a concentrated load tending to separate locally the two bodies. It was shown in a 
previous paper [ 11 that, under these circumstances, slip takes place before separation is reached 
for any value of the friction coefficient. In the present article we pursue the separation phase of 
the loading process, after the slip zones have merged and a gap develops. For the sake of 
brevity, we omit many definitions of symbols and rely on several results given before[l]. 

2. FORMULATION 

The geometry of the layer and the substrate with the anticipated separation and slip zones is 
shown in Fig. 1. The separation zone extends from -6 to b, and the slip zones cover the 
intervals (- c, - b) and (b, c). The layer and the substrate, the latter modeled as an elastic half 
space, are supposed to be made of the same material. 

The solution of the unilateral problem involving separation and slip is constructed by 
superposing on the bilateral solution[l] corrective fields designed to satisfy the boundary 
conditions in the separation and slip zones. The boundary conditions in the slip and stick zones 
are as beforell]. The boundary conditions in the separation zone (xl< b are 

N(x) = 0, S(x) = 0, g(x) > 0 (LZ3) 
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Fig. I. Separation and slip zones. 
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where g(x) denotes the gap developing between the solids, or 

g(x) = u:“(x, 0) - uyyx, 0). (4) 

In order to construct the corrective solution we cover the interval (- c, c) with a distribution 
Bx(x) of glide dislocations and the interval (-b, b) with climb dislocations of density B,(x). The 
tractions on y = 0 for a discrete dislocation situated at x = 6, y = 0 were given in [l]. The 
tractions induced by a discrete climb dislocation are[2-41 

3a3 16a' 
[4a2 + (x - n212 - [da2 + (x - &)2]3 

X-Z 4a2(x - () 

4a2 +(x - f)2- [4a2 +(x - .f)2]2 

128a4(x - 5) 
- [4a2 + (x - [)2]3 I ’ 

Using (6) above and eqn (11) of [l], (1) becomes 

T(K + 1) 
~Mx)=- 4&%3k I) d5 

-1’ B,G%dx,&V+~ 
--c 

=O, Ixj<b 

where 

X-5 4a2(x - 5) 128a4(x - 5) 

“(” ‘) = 4a2 + (x - o2 + [4a2 + (x - [)2]2 + [4a2 + (x - [)2]3 
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Mx9 5) = 14a2 +2::__ 5~212 - f4a2 :r_ n213. 

(5) 

(6) 

(7) 

(8) 

(9) 

Anticipating the direction of slip for a steadily increased magnitude of the applied concentrated 
force P, the relation between the shearing and normal tractions is 

S(x) = f sgn xN(x), b < jxj< c. (10) 

Because of (1) and (2), this relation can be rewritten as 

S(x) = f sgn xN(x), O<Jx)<c. (11) 

Using (5) and (7) above, and eqn (11) of [l], this condition becomes 

lxl<c (12) 

where 

X-l 12a2(x - 5) 64a4(x - 5) 

“(” ‘) = 4a2 + (x - t)2- [4a2 + (x - [)2]2 + [4a2 +(x - [)2]3 (13) 

k& 6) = - kdx, 5). (14) 
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N(x) is given by the expression entering (7), and H( ) is the Heaviside step function. 
Equations (7) and (13) form a coupled system of singular integral equations with generalized 

Cauchy kernels, subject to the conditions 

I ’ B,(Z) d5 = 0, I b By@) d[ = 0. 
--c -b 

(15,161 

In addition, we note that 

K(x) = &(-x)9 B,(x) = -B,(-x) (17,18) 

which are implied by the symmetry of the problem. Hence, (16) is satisfied automatically. 
However, the numerical technique to be used for solving the integral equations does not 
incorporate these properties of the dislocation densities, and (17) and (18) must be verified after 
the solution is obtained. It must also be noted that both unknown functions B,.(x) and B,(x) are 
bounded at the end points of the slip and separation zones, respectively[S]. 

3. NUMERICAL SOLUTION AND RESULTS 

For the numerical solution, we first normalize the intervals (-b, b) and (-c, c) in (7) and 
(12) by the change of variables 

r = tlb, s =x/b (19920) 

i = t/c, s^ = x/c. (21,22) 

Then we set 

B 
x 

(i) = P(K + 1) F( 1 - i*)-“*@,(i) 

B 

Y 
(r) = P(K + 1) X(1 - r2)“*Qy(r). 

(23) 

(24) 

The density B,(i) given by (23) is assumed singular for the numerical computations only, and 
we cancel the singularity by requiring that 

@,( 1) = @(- 1) = 0. (25) 

We discretize the singular integral in (7) by the Erdogan-Gupta quadrature[6], the singular 
integral in (12) by the Theocaris-Ioakimidis quadrature 171, and the remaining regular integrals by 
the Gauss-Chebyshev quadrature[8]. Thus (7) and (12) become, respectively, 

POU = --+ 2a41b4 
P r(a*/b* + s;)*’ 

j=1,2 ?..., n + 1 (26) 

E+ C@,(ik)kS(fk, Q)] +$$+y(rk)k,(rk, S,)) 
k I 

2 (U3/C3)ii =-- 
P (a2/c2 + s^:>* 

-fsgns,N(s,)[H(IS,I-~)-H(ls^,l-1)], 

i=1,2,... , n - 1 (27) 
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where 

D. SCHMUESER et al. 

and 

kr 
t-k =co?,- n+ 1’ 

(2j - 1)~ 
s. = cos 2(n, I j=1,2,...,n+l 

4 =cos(k 
n-l ' 

k=l,2,...,n 

S,=COS$f$, i=1,2,...,n-1 

1 
WI = W” = 2(n _ 1) 

wk=& k=2,..,n-1. 

The discretized form of (15) is 

(28) 

(2% 

(30) 

(31) 

(32) 

(33) 

(34) 

It may also be noted that the system of equations in (26) incorporates the consistency condition 
required for a bounded solution. In all, we have 2n + 2 equations from (25)-(27) and (34) for the 
2n + 2 unknowns ax(&), aY(rk), b and c. Equation (16) and one of (25) are not used because of 
symmetry which is found to be automatically satisfied. 

The unknown parameters b and c defining the extents of the slip and separation zones make 
the algebraic system highly nonlinear. To simplify the iteration procedure, we specify b/a, and 
leave c/a and the loading parameter A = P/pOa as unknowns. Choosing n as even, we use the 
n/2 t 1 equation of system (26) to solve for A and to eliminate it from the remaining equations. 
Moreover, by using the Theocaris-Ioakimidis scheme, we can directly incorporate (25) into the 
algebraic matrix and eliminate one unknown at the same time, because the end points belong to 
the collocation points defined by (30). Thus we are left with a system of 2n equations (n 
equations from (26), n - 1 equations from (27) and one equation from (34)) for 2n unknowns (n 
values of aY(rk), n - 1 values of QX(?k) and the unknown c/a). For fixed b/a, we choose a value 
for c/a and solve the system (26) with j = 1,2,. . . n/2, n/2 t 2, . . . , n t 1 and (27) for @,(i$) and 

Fig. 2. Gaps for f = 0.5 and different values of A. 
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@Jr,,). Then we substitute into (34) which is generally not satisfied. We proceed by iteration until a 
value of c/a is found so that (34) is satisfied. For this value, we verify that (16)-(18) are satisfied and 
also check the various inequalities for the problem[ll. 

The results thus obtained are shown in Figs. 2-8. Figure 2 shows the gaps for different 
values of A and f = 0.5. Figure 3 shows the tangential shift h(x)[l] in the interval (0, c) for 
f = 0.5 and different values of loading parameter A. The effect of friction on h(x) is depicted in 
Fig. 4 for the fixed value b/a = 0.4. Figure 5 shows the effect of friction on the normal tractions 
and Fig. 6 the effect on the shearing tractions for b/a = 0.4. The variation of c/a with A for 
various values of the friction coefficient is given in Fig. 7, and that for b/a in Fig. 8. 

x/a 

Fig. 3. Tangential shifts for f = 0.5 and different values of A. 

x/a 

-6 

Fig. 4. Tangential shift for b/a = 0.4. 

x/a 

Fig. 5. Normal tractions for b/a = 0.4. 
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Fig. 6. Shearing tractions for b/a = 0.4. 
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Fig. 7. Variation of c/a with A. 
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Fig. 8. Variation of b/a with A. 
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