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SUMMARY 

Phase-selective alternating current polarography can be advantageously used for the 
observation and quantitative description of adsorption at a solution-electrode interface; 
for example, in the absence of a faradaic process, the quadrature current component is 
simply related to the interfacial differential capacity. Such a-c. measurements are 
especially advantageous for the occasional investigation of adsorption_ The basis of using 
such measurements is considered; the data analysis is examined; specifics for computer 
calculation of differential capacity, surface charge density, and relative surface excess, 
and the requirements for data smoothing are described. The computer programs developed 
are sufficiently general for handling special situations_ 

The thermodynamic properties of and conceptual models for the electrical 
double layer have been reviewed [l-6], as have experimental and theoretical 
progress in double-layer research and remaining problems [ 7,8] , the experi- 
mental measurement of adsorption at electrodes [9], and the adsorption of 
organic compounds [lo-121. H owever, most electrochemists seem to avoid 
detailed adsorption studies, probably because of (a) the tedium of employing 
either a capillary electrometer to obtain interfacial surface tension data or an 
a-c. impedance bridge to obtain differential capacitance data, (b) the diffi- 
culty involved in precise and accurate determinations of the potential of 
zero charge (p.z.c.) [ 131 and of surface tension at the pzc_, and (c) the 
quite lengthy analysis of experimental double-layer data. 

Although digital computers have made the data analysis less arduous, 
computer program development can be very costly in terms of man-hours 
and computer expense, particularly for one with limited experience in 
programming. Mohilner and Mohilner [ 141 have discussed the basis for curve 
fitting and data smoothing with emphasis on electrocapillary data analysis; 
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no main program for combining the subroutines to form a complete program 
is given and the smoothing routines may be more sophisticated than necessary 
for capacitance-data analysis. MacDonald [ 151 has described a program for 
the determination, based on capacitance data, of relative surface excesses of 
uncharged species, which totally desorb at one potential extreme before the 
onset of faradaic activity; the program is not mathematically flexible in 
terms of handling special situations. 

In an attempt to minimize the difficulties indicated, various methods of 
data analysis, based on alternating current (a.c.) polarography as a means of 
data acquisition, have been compared with the aim of developing the most 
efficient combination of data acquisition and analysis which would meet the 
needs of routine adsorption studies. 

In the absence of faradaic current, the quadrature current component 
obtainable on phase-selective a-c. polarography (as well as the total a-c.) is 
capacitive and directly related to the differential capacity. As a-c. polarography 
is basically an automated non-nulling version of a-c. bridge measurement, it 
should have the advantages of the bridge method except for the slight loss in 
precision inherent in techniques which do not empIoy null detection_ Phase- 
selective a.c. polarographs are commercially available and are becoming quite 
common. 

Computer programs were developed for analyzing data on uncharged 
adsorbates; these are sufficiently general for handling most special situations. 
Because of space limitation, the programs are not given; program listings or 
decks can be made available. Because some investigators may desire to develop 
comparable programs to meet special requirements or may find the program- 
ming language employed (FORTRAN IV) unacceptable, precautions are 
noted which must be observed in efficient and successful programming of 
adsorption data analysis_ 

MATHEMATICAL BASIS 

The physical situation involves an electrochemical ceil, in which the 
solution to be investigated contains solvent, supporting electrolyte (including 
buffer if necessary), and the uncharged adsorbate of interest with only the 
absorbate concentration being varied. The applied potential is varied over the 
range of interest and capacitance data are acquired in the form of capacity- 
current magnitudes, e.g., a-c_ polarographic quadrature-current components. 

The capacity current, Z,, is converted to capacitance, C’, and then to 
differential capacitance, C: 

C’ =Z.J(2 -JT f U,,);C= C’IA 

where f is the frequency in Hz of the applied alternating voltage, U,, is its 
amplitude in V (peak or r.m.s. depending on the instrumental current display 
utilized), and A is the electrode area. 

The relations between C and electrode charge, q, and between q and 
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r = taY*iadE (8) 
It can be shown that, within the potential region for which (ay/a~), = 0, 
(aC/ap)), = 0; hence, coincidence of the capacitance curves, independent of 
adsorbate concentration, is an experimentally observable verification for the 
applicability of eqns- (4) and (8). Coincidence of the capacitance curves at 
one potential should not be adjudged as confirming the applicability; 
coincidence of all capacitance curves over a finite potential range is necessary. 

PROGRAMS DEVELOPED 

The general formula involved in a least-squares fit, y = Cy = o ~iXi, is a power- 
series relation between independent variable, X, and dependent variable, y, 
with the coefficients, ri, to be determined. The relations involved (capacitance 
and charge as a function of potential) in the case of a quadratic polynomial 
are as follows (the n coefficients differ for the parameter involved): 

C=7T0 +n*E+7rITZEZ (9) 

q=ao +rlE+rrzE2 (10) 

Because the chemical potential is generally unknown, it is necessary to express 
eqns (2) and (8) in terms of activity, a, or concentration, c, through the 
equation ~1 = ~1’ + RT In Q_ At constant ionic strength, the activity coefficient 
of the adsorbate is independent of adsorbate concentration; hence, d(ln a) = 
d(ln c), and dl_r = RT d(ln c). Substituting this equation into eqn. (2) yields 

r = -(l/RT) [ar/a(ln c)] E (11) 

Thus, the polynomial necessary for least-squares analysis is 

y=7ro+iilInc+n2(Inc)2 (12) 

Equations (9), (10) and (12) are also the basis for all least-squares curve 
smoothing, interpolating, integrating and differentiating involving C’, q* and 
y*, respectively. 

Procedures for performing a least-squares fit can be found in numerical 
analysis books 1171. Figures 1 and 2 give general flow diagrams for setting 
up the least-squares-matrix equation and for its solution by the Gauss- 
Jordan method of upper triangulation. 

Smoothing and interpolating program 
Some smoothing of a-c. polarographic capacity-current data is advisable 

because these data lack the precision of a-c. impedance-bridge data and 
small errors may occur in reading the x-y recorder plots. Additionally, 
within potential regions of smooth capacitance variation, data can be supplied 
to the program at large potential increments and more closely-spaced inter- 
polated values can be calculated from the smoothing functions, saving 
considerable man-hours of reading recorder plots and key-punching data. 
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Fig. 1. Procedure for assembling the least-squares matrix, An = B. 

Because a seriously faulty point can bias a curve fit, a computer-controlled 
check of each data point is recommended before curve fitting. The procedure 
described (Fig. 3) separately checks all data points for each concentration 
except the first and last. Because the computer cannot distinguish fine struc- 
ture in the data from faulty data points, only regions showing an apparent 
minimum or maximum (“minimax”) in the data can be tested; therefore, as 
the program proceeds sequentially through the data, any point, C’i, for which 
the criterion C: _ , < Cl < Ci + , or Cf _ 1 2 C: 2 C: + 1 is satisfied, is assumed 
correct, and the program proceeds to check data point C: + 1 . If the criterion 
mentioned is not satisfied, an apparent “minimax” at Ei is indicated. Since 
a true minimax shows a decreasing slope as the minimum or maximum point 
is approached, then the criteria 

AJAi- 1 > O;IAi-_I> IAiI;Ai+,lAi+ 1 > 0; Ia,+ *I> IAi+ II (13) 

(where A is the slope of a straight line connecting the point indicated and the 
preceding point) can be used to determine whether a true minimax occurs at 
Ei. If these conditions are satisfied, Ci is assumed to be correct. A faulty 
point at Ei is easily corrected by calculation of a capacitance value at Ei from 
a curve fit to the adjacent points, (Ei - *, Cf -, ) and (Ei + 1, C: + 1 ). If the 
quadratic fit is used, the third point required can be determined from 
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Corpuec 7. eq12.11 to difference . 

drvxded by A. .; for .=3+1-i 

1 = 2. il + 1 I 
Fig. 2_ Solution of rz* degree po 1 nomid least-squares matrix equation, As; = B, for y 
values of 7ri_ 

IA~_,I-l~I=K;IAi_,I-l~I=J,where~istheslopeofalineconnecting 
(Ei-,,C:-,)and(E,;,.Cf,, )_ If K < J, the third point is (Ei --2, C: - *); 
otherwise, the third point is (Ei + 2, Ci + -,)_ 

Next, the data are smoothed and interpolated by using a least-squares 
moving polynomial fit to eqn. (9), i.e., m data points are fitted k points at a 
t*e(k<m) with each fit corresponding to a progression of I points farther 
into the data (I < k); the options available are the values of k, I, and n (the 
degree of the fit)_ Figure 4 shows various possibilities for a moving quadratic 
polynomial fitting four points at a time. Low-order polynomials are preferable, 
particularly the quadratic case (n = 2), and one degree of smoothing is 
generally sufficient, so that k = n + 2 1141. For optimum smoothing, I should 
be l_ With the exception of data points 1,2, m - 1, and m, all points are 
fitted by more than one polynomial (two for k = 4) (cf. curve C, Fig. 4); 
averages of the values generated by each fit add to the smoothness of the 
data_ 
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Fig. 3. Check of raw capacitance data to isolate and to correct faulty points. 

For each fit, it is acceptable to generate smoothed capacitance data at any 
potential within the potential region defined by the fitted data points; how- 
ever, because one or more degrees of smoothing are permitted, the polynomial 
need not perfectly follow the data points, and the data trend beyond the 
limits of the points being fitted has no effect on the curve fit. The combi- 
nation of these two facts indicates that values generated near the potential 
range extremes may not tend smoothly toward the data outside this range. 
Therefore, the region in which values are to be generated should be restricted 
to at least one-half potential increment (magnitude between measured values) 
from potential range ends for an individual polynomial fit. A flow diagram 
for smoothing, which employs this restriction and the condition I = 1, is 
shown in Fig. 5. 

Once the data for each concentration have been smoothed, printed, 
punched and plotted, the adsorption parameters can be calculated. 

Adsorption parameter program 

The program for analyzing the smoothed capacitance data, based on eqns. 
(2) and (3) (version CP-I) or eqns. (4), (7) and (8) (version CP-II), performs 
both numerical integration and differentiation and if desired, attempts an 
adsorption isotherm assignment based on the computed P-c profiles. The 
procedure is outlined in Fig. 6. 
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Fig. 4. Overlap of curve-fitting intervals depending on the number of points advanced for 
sequential fits, by using a four-point fit. A: advance three points. B: advance two points. 
C: advance one point_ 

Two alternative procedures are available for numerical integration: Simpson’s 
Rule [l’i] or the least-squares technique selected which involves fitting a 
moving polynomial with subsequent integration of the fitted polynomial. 
Integration of eqn. (9) as the moving polynomial for calculation of 4 yields 

Ei -L 1 
/ C dE = no (Ei .+ I- Ei) + x1( (E2i + I- E’i)/Z) + ~2 ( (E3i + I- E3i)/3) (14) 

Ei 

whose left-hand side defines the difference in 9 between Ei and Ei + , , so 
that it can be rewritten as 

Qi i- 1 - qi = no (Ei i I - Ei) + TT~ (Ef + 1 - E2i)/2 + ‘TI:! (E’i + 1 - E3i)/3 (15) 

The coefficients, nl, determined in the moving-polynomial fit of eqn. (9) are 
used in eqn. (15). A similar procedure is used to integrate the q-E curves to 
determine r_ 

To minimize integration errors, a second-degree polynomial is used with- 
out smoothing_ Since three points are fitted, two integrals are calculated for 
each fit. The polynomial is advanced one point at a time; where the 
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Fig. 5. Smoothing and interpolating procedure_ 

polynomials overlap, the integrals are averaged. Figure 7 shows a flow 
diagram for the integration procedure_ 

Starting values for CJ (Q I) and y (y i) are required in applying eqn. (15) or 
the analogous equation for y_ If eqns. (2) and (3) are used, Q 1 = 0 and y 1 = yz _ 

If eqns. (4), (7) and (8) are used, it is possible to use qf = 0 and rf = 0, since 
the values q* and -y * are relative and are not concentration-dependent at E,. 

The major difference between the method based on q and y, and that 
based on q* and y*, is that the latter permits integration to begin at one 
potential extreme, whereas the former generally requires integration to begin 
at a potential which is internal to the potential range. Although this is no 
problem with a compiler language such as PLl, it presents a problem in 
FORTRAN IV because data are generally stored in such an order that the 
corresponding potential sequentially increases or decreases. Thus, for 
FORTRAN IV programs, the data array to be integrated must be separated 
into two arrays, properly ordered for integration. It is obvious from the 
equation 

,“i&-&;iiCd&C~ (16) 
El El E * 



Fig. 6. Main routine procedure, where n, is the number of concentrations and m is the 
number of data points per concentration. 

that the method based on 9” and y* never requires reordering of the array. 
After y or y* has been computed as a function of potential and concentration, 
the relative surface excess can be calculated, by using a moving polynomial 
curve fitted to eqn. (12), whose derivative is 

aria (In C) = x1 f 2 ~1~ In c (17) 

From eqns. (11) and (17), it follows that 

r = - (l/RT) (n, + 2 7r2 In c) (18) 

For calculations based on y *, the negative sign in eqn. (18) is deleted. The 
blank data are not used in the calculations. Because eqn. (18) is a derivative 
of the moving polynomial equation, it is unwise to compute r at the edge 
of a fit; hence r is not computed for the highest and lowest substrate 
concent.rations. 

Adsorption isotherm assignment generally begins by testing for a fit to 
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Fig. 7. Integration with the least-squares technique. 

either a Langmuir isotherm (eqn. 19) or a Frumkin isotherm (eqn. 20) 

Kc = O/(1 - 0) (19) 

Kc = [O/(1 -O)] exp (--2aO/RT) (20) 

where it is assumed that a- = c, r,is the saturation coverage, ti = r/I’, , a is the 
interaction factor, K = exp (-AG’/RT). and AGo is the standard free energy 
of adsorption. Equation (20) can be written as K’c = f3/(1 - e), where K’ = 
exp [-(4c” - Za0)/RT]. The adsorption isotherm fit is made here at con- 
stant potential. r-c profiles are tested one potential at a time as follows: 
(1) supply Ts; (2) calculate 0 and O/(1 - 0) from r at each value of c; (3) 
calculate K (hence, AGo) at each c from eqn. (19); (4) check that 4G” is 
relatively independent of c (“relatively” is defined in terms of accuracy of 
the data; a systematic change in A Go with c probably means that 4 Go is not 
independent of c); (5) if AGo is dependent on c, perform a linear regression 
on AGo vs. 0. The slope will be equal to -2a, and the intercept will be the 
“true” value of 4c” for a Frumkin isotherm. Figure 8 shows a flow diagram 
for computing r and for testing for either a Langmuir or a Frumkin isotherm 
fit. 

Surface excess at constant electrode charge 
Because of the simplicity of computing r‘ at constant potential, adsorption 

isotherm fits are made at constant electrode potential. Since there is considerable 
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Fig. 8. Calculation of I‘ at constant electrode potentiai and test for isotherm assignment. 

controversy (cf- refs- 7 and 8) as to whether adsorption of a neutral species 
should show isotherm congruency at constant potential or constant charge, 
r-c profiles should be computed at constant charge and isotherm assign- 
ment under those conditions attempted. 

Surface tension and charge data (available as punched output from the 
previous program) are supplied along with the values of Q at which I’ is to be 
computed. The program sequentially deals with the 4 values; for each 
concentration, it scans the q-E profile to determine in what potential region 
q occurs. If the value of q is a data point, the corresponding value of E is 
noted; otherwise, a quadratic least-squares fit of q vs. E, based on eqn. (lo), 
is performed on the three (E,q) points having values of 9 closest to that 
requested_ Since eqn. (10) is a quadratic polynomial, the potential at which 
the desired q occurs can be calculated from 

E = {--xi + [T$ + 4 7r2 (4 --o)] 3/27r, (21) 

Since there are two possible solutions for E, a test must be performed to 
determine which one lies within the potential range of the points fitted. For 
the concentration being considered and those immediately higher and lower, 
the 7-E profiles are scanned to find the region which includes the value of 
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E just determined. For each concentration, the three points (E,r) closest to 
the desired E are fitted to the equation 7 = no + sr,E + n,E* ; y at the desired 
E is computed by interpolation for each of the three concentrations. The 
three points (y, ln c) are used to determine r at the central value of c, as 
previously described. 

Once values of r have been computed at all concentrations, the adsorption- 
isotherm tests previously described are made. Figure 9 shows a flow diagram 
for computing r at constant charge. 

Charged adsorba te modification 
The thermodynamic derivation for the relative surface excess of a charged 

species yields a relationship identical to eqn. (2), except that (1) the deriva- 
tive is evaluated at constant potential versus a reference electrode reversible 
to the counter-ion of the charged adsorbate, or (2) a constant potential 
reference electrode is used and a theoretically computed correction is applied 
to reflect potentials referred to an eIectrode reversible to a solution ion. 

If the adsorbate ion is sufficiently strongly adsorbed that it displaces any 
other adsorbed ions, which would be the usual situation of interest, the terms 
involving surface excesses will be negligible except that involving the adsor- 
bate-ion of interest. If the theoretical reference electrode chosen is reversible 
to a supporting electrolyte-ion whose concentration remains constant as 
that of the adsorbate-ion is varied, the theoretical reference electrode 
potential is constant. Under these conditions, no potential-scale correction 
is required. 

Fig. 9. Evaluation of surface excess at constant electrode charge. 
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Appiica tion 
The experimental application of the program is discussed and the two 

forms of cl&a analysis, i.e., eqns (2) and (3) (version CP-I and eqns. (4) and 
(8) (version CP-II), are compared in a subsequent paper [ 181; the chemical 
system investigated is adenine in aqueous media at a dropping mercury 
electrode. 

The authors thank the National Science Foundation, which helped support 
the work described_- 
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