
ORGANIZATIONAL BEHAVIOR AND HUMAN PERFORMANCE 24, 382--399 (1979) 

Prediction of Bids for Two-Outcome Gambles in a 
Casino Setting 

BARBARA GOODMAN, MARK SALTZMAN, AND 

WARD EDWARDS 

University of Southern California 

AND 

DAVID H. KRANTZ 

University of Michigan 

An experimental game was conducted in a Las Vegas casino. Ninety two- 
outcome gambles were presented in turn, and the player's monetary evaluation 
of each gamble was determined by the Marschak bidding procedure. Ordinal 
tests supported the monotonicity and the cancellation properties that are nec- 
essary for any from the family of expectation models. A number of different 
parametric expectation models were tested by a least-squares method. The 
bids were well predicted by the expected value (EV) of the gambles. More 
elaborate predictors, in which parameters were estimated to represent the 
individual player's subjective probabilities and/or utilities, merely capitalized 
on noise; cross-validation showed that no real improvement could be obtained 
over the EV predictor. Furthermore, no single feature of the bet nor any linear 
combination of them did as well as EV. 

Traditional descriptive models of choices among bets have been varia- 
tions on the notion that subjects attempt to maximize expected utility, 
calculated either with "objective" (whatever that means) probabilities 
(EU models) or with subjective probabilities (SEU models). Such models 
have had modest but not spectacular success in predicting decisions in 
simple laboratory gambling situations (for reviews of this large literature, 
see Becker & McClintock, 1967; Edwards, 1954c, 1961; Rapoport & 
Wallsten, 1972; Slovic, Fischhoff, & Lichtenstein, 1977). Because the 
success was modest, and perhaps also because some psychologists do not 
believe that maximizing expected value captures the essence of a descrip- 
tive theory of this type of behavior, workers in the field have urged other 
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Angeles, CA 90007. 
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kinds of approaches. Payne (1975; Note 1) argued for process models 
quite different in character from SEU. Coombs and his associates (1970a, b, 
1975) combined expected value (EV) maximization with an undefined 
notion of risk. Lichtenstein and Slovic (1971) have criticized the be- 
havioral relevance of EV. Anderson and Shanteau (1970) and Svenson 
(1975) have argued for different rules to aggregate the relevant numbers. 

This study has various motives. The older studies have used small 
stakes and have been conducted in university laboratory settings. This 
one raises the stakes and uses a real-life gambling setting. We thought that 
possibly the higher stakes and greater realism of the situation might lead 
to more successful prediction for example, by extending the range of the 
relevant portion of the utility function for money and thus including more 
of its curvature. We also wanted to explore the extent to which convinc- 
ing certainty equivalents for simple bets can be elicited; the question is 
significant for applications to decision analysis. 

This paper reports a study of bids for gambles of the form xpy (obtain x 
with probability p, otherwise, obtain y), conducted in the Four Queens 
Hotel and Casino, Las Vegas, Nevada. The bids were analyzed by means 
of a hierarchy of traditional expectation models from expected value 
(EV), through various weaker models in which standard probabilities 
and/or values are replaced by personal probabilities and/or utilities (Ed- 
wards, 1962). We find that EV accounts for much of the variance, and at 
present we do not know of any way to improve the predictions obtained 
from EV in this situation. 

METHOD 
Apparatus and Procedure 

The apparatus included a PDP-7 computer, a cathode ray tube (CRT) 
display, a set of push-button controls for the subject, a set of push-button 
controls for the experimenter, and a roulette wheel. The experimenter 
was a professional dealer and pit boss at the Four Queens Casino. 

Each subject was run individually. After a subject was taught the game 
and played some practice bets, he or she chose to play with chips having 
one of the following values: 10¢, 25 ¢, $1, $5, or $10. Once a choice was 
made, the chip value could not be changed during the play of that game. 

However, if a subject chose to play another round of the game, a new 
choice could be made. The subject was, of course, free to stop playing the 
game at any time. 

Ninety bets were displayed to each subject, one at a time, on the CRT. 
A typical bet is displayed in Fig. 1. This bet is translated as follows. The 
numbers of the standard roulette wheel were divided into six groups of six 
numbers each. Group 1 included the numbers 1 through 6. Group 2 in- 
cluded the numbers 7 through 12, and so on through Group 6, which 
included the numbers 31 through 36. The 0 and 00 were not a part of this 
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Pick Two Groups 

Yours-Win 30 

Others - L o s e  6 
FIG. 1. Display of  a typical bet. 

game. When either one of them came up, the roulette wheel was operated 
again. Thus, the probability of any one number was 1/36 (odds 35 to 1 
against) and the probability of any group of six numbers was 1/6 (odds 5 to 
1 against). "PICK TWO GROUPS" means that the subject could choose 
any two of the six groups. If a number in one of the two groups came up, 
30 chips were won; otherwise 6 chips were lost. 

All communications with the computer by either the dealer or a player 
were transmitted via a push-button network placed in front of each per- 
son. The computer, in addition to displaying the bets, kept track of what 
was going on, relayed a message to the subject and to the dealer if either 
of them made a procedural error, recorded the data, and kept financial 
records. 

When a bet was displayed on the CRT, the subject's task was to bid for 
this gamble. The sale was conducted according to the Marschak bidding 
method (Becket, DeGroot, & Marschak, 1964). In this version of the 
method the subject stated a bid. Then the roulette wheel was operated, 
and the number that came up was fed into the computer. The computer 
used this number and a table stored inside it to specify a selling price. The 
gamble was then sold to the subject if and only if the selling price was at 
least as favorable to the subject as was the bid. If the sale took place, it 
took place at the computer's price, not at the subject's bid. The subject's 
bid served in effect as a cutoff point or threshhold level. This cutoff point 
indicated the value at which the subject was indifferent between playing 
and not playing the bet. The subject's best strategy was to name his or her 
true indifference point. 1 

Because the sale took place at the computer's price, the game could 
have overall positive expectation for the subject. In order to neutralize 
that advantage, and also to discourage the subject from using a strategy of 
always making absurdly low bids, mostly not playing but occasionally 

' If  a person bid too little for certain bets ,  then  the opportuni ty was probably missed  to 
play some of  these  bets where  the t ransact ions  had posit ive expected  utility. Similarly, if a 
person bid too much  for part icular bets ,  then  certain of  these  bets  were probably played and 
those  t ransact ions  had negat ive expected  utility. 
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getting a real bargain, we charged a two-chip-per-bid bidding fee. With 
this two-chip bidding fee, each complete transaction (bidding fee, selling 
procedure, and play of the gamble) had an expectation of zero, if the 
subject named as a bid either the EV of the gamble or the EV plus one 
chip. For any other strategy, the expectation of the complete transaction 
for the subject was negative. 

If a sale took place, the appropriate number of chips was exchanged. 
Then the subject selected the groups and the roulette wheel was operated 
again to play the gamble. After the subject received the winnings or paid 
the loss, the next bet was displayed. If a sale did not take place, the 
computer immediately went on to display the next gamble. 

Experimental Design 
The game consisted of 90 bets of the form x~pjy~, where x~ is the amount 

the subject received if the event with probability pj occurred and yk is the 
amount the subject received (or paid off) if the complementary event 
occurred. Five probability levels were used--I/6, 2/6, 3/6, 4/6, and 5/6. At 
each probability level there were 18 bets. These bets are displayed in 
matrix form in Fig. 2. The blank cells indicate bets presented to the 
subject. For example, the bet represented by the asterisked cell is 30, p~, 
- 6  which means there is a probability of p~ of winning 30 chips and a 
probability of 1 - p~ of losing 6 chips. 

Subjects 
Thirty-five different subjects, mostly male, completed all bids. Nine of 

these subjects completed a second play of the game on another day. All 
subjects were customers of the Four Queens Casino who volunteered to 
play. Each person knew that this was a research game. The subjects were 
run individually and a typical play of the game took about 3 hr. 

x i  0 12 18 24 

iiii iii! ! L 
-12 

30 

-6  "X" 
L............... 

0 ~ii:~i:~:~:~:~:!:i 

N N  ii:ii'ii: 
FIG. 2. Experimental design, where the blank cells indicate bets presented to the subject  

pj = Constant value. 
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DATA ANALYSIS 

We performed both an ordinal analysis (in which bids are only used to 
establish a rank ordering of the 90 gambles) and a series of regression 
analyses, using different expectation models to predict numerical values 
of bids. 

All expectation models imply certain ordinal properties. We tested two: 
monotonicity and double cancellation (Krantz, Luce, Suppes, & Tversky, 
1971; Tversky, 1967). 

For these stimuli, the subjective ordering on each dimension can be 
assumed the same as the natural ordering. Monotonicity requires that the 
ordering of gambles be the same in each row of the matrix in Fig. 2 and 
likewise in each column. Within a row, yk andp~ are constant and the bids 
should increase as x~ changes from 0 to 30. A similar argument applies in 
each column. And third, with x~ and yk fixed, the bids should increase as pj 
increases (cutting across matrices like that shown in Fig. 2). 

Monotonicity predicts the order of 450 pairs of bids; 27 row and 27 
column pairs for each of five matrices and 10 probability pairs for each of 
the 18 (x~, yk) combinations. 

Double cancellation uses the observed order of two pairs of gambles to 
predict the ordering of a third pair. Any 3 x 3 matrix formed by the 
intersection of three xi (ordered with xi increasing) and three Yk (ordered 
withyk increasing) in which bids exist for the relevant cells yields a possible 
test. There are 22 possible tests in eachpj matrix. An example of a testable 
matrix is shown in Fig. 3. If the pairs connected by single arrows are 
ordered in the same sense, then the pair connected by the double arrow is 
predicted to be ordered in that same sense. Specifically, let a through i be 
the bids for the games (18, pj, -18) . . . . .  (30, pj, -6), respectively. (See 
Fig. 3.) Then ifd > b and h ~>f, or ifd 1> b and h >fi  theng > c; alternatively 

18 24 50  

-18 o jb y 
/ 

-12 d 

FIG. 3. Example  of a matr ix which yields a test  for double cancellat ion,  pj = Constant  

value. 
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Set A: No Free Probability Set B: 2 Free Probability Porameters 
Parameters (2 f pp) 

Q(pt)  = I /6 R(I-pt)= 5 /6  

Q(p2) =2/6 R(I-p2)=4/6 

! Q(p3) =3/6 R(I-p3) =3/6 

Q(p4)=4/6 R(I'P4)= 2/6  

Q(ps) = 5 /6  R(I -ps)=l /6 

Q(Pt ) free R( 1 -Pl ) = i -Q (Pt) 

Q(p2) free R ( l - p z ) = l - Q ( p  2) 

Q(p3) = 3 /6  R( t -p3)  =5/6 

Q(p4)=l-Q(p2) R( I -p  4) =Q(p2 ) 

Q(ps)=t-O(pl) R( I -ps)=Q(p I) 

Set C: 5 Free Probability Set D: I0 Free Probobility 
Parameters ( 5 f p p ) Parameters (10 f p p ) 

Q(pl) free R(l -pt )  = t -Q(p  t ) 

Q(p2 ) free R(f-p2) = l -O(p  2) 

Q(p3) free R(I -p3 ) = I-Q (p3) 

Q(p4) free R(t-P4) = f -Q(p 4 ) 

Q (ps) free R(t-Ps) = 1-0(ps)  

Q(pl)  free R( I -b t )  free 

Q(p2)  free R(t-p2) free 

Q(p3) free R(1-p 5) free 

Q(p4)free R(1-p4) free 

Q(ps)f ree R(~-ps) free 

FIO. 4. The four sets of probability constraints. 

i fd = b andh =f ,  theng  = c. If the two pairs connected by single arrows are 
ordered in opposing directions, i .e. ,  i fd > b and h < f o r  d < b and h > f ,  no 
prediction can be made. (Note  that none of  these orderings are predictable 
from monotonici ty  considerations. For a discussion of  predictions of  this 
sort, see Coombs,  Bezembinder,  & Goode,  1967; Tversky, 1967.) All the 
expectation models make this prediction. Double  cancellation predicts the 
order of  a maximum of 110 pairs of  bids per subject. 

The regression analysis was based on prediction equations of  the form: 
Predicted bid for x~pjyh, is 

Zijk = U -1 [U(xOQ(pj) + U(y~.)R(1 - p j ) ] ,  (1) 

where U is a utility function and Q and R are personal probability func- 
tions. Different models varied (i) the form assumed for U and (ii) the 
constraints on Q and R. 

Four different sets of  probability constraints, shown in Fig. 4, were tried. 
In set A, Q and R are the identity functions, i .e. ,  personal probability = 
probability calculated on the basis of  the symmetry of  the roulette wheel.  
In set B, two additivity assumptions were imposed: 

Q(p) + Q(1 - p )  = 1, 
and (2) 

R(p)  + Q(1 - p )  = 1. 

In set C, only the second additivity assumption was imposed. Finally, in 
set D, there was no constraint. Thus, the number of  free parameters was 
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For all  Sets, i.e., 1 through 5, the parameter 
t represents either an x i ,  Yk, or bid amount. 

Set t :  Objective Value Set 

U ( t )  = t  

Set 2: Exponential Family (exp) 

e e t - l ,  if 0 t t 0 f U(t, O) 
!, t , if e = o 

Set 5: Cubic Family (cu) 

U(t,  a, b) = I / 3 t  3 -a t2+(a2+b2) t  

Set 4:  Power Family, Type 1 (p 1) 

t a , 
U(t,  a, B) = { t _>0 

-( - t ) /9,  t < 0 

Set 5: Power Family, Type 2 (p 2) 

[ ( l+ t )8 -1 ,  t _> 0 
U(t, ~, y) k 

I - [ t - t )  y,  t < 0  

FI6. 5. T h e  f i v e  u t i l i t y  f u n c t i o n s .  

0, 2, 5, or 10. In addition, the functions Q and R were constrained to be 
strictly increasing, in all four cases. 

The five utility functions (all strictly increasing) that were tried are 
shown in Fig. 5. The exponential function has one free parameter, 0. The 
cubic and both kinds of power functions constitute two-parameter fami- 
lies. The functions were all transformed linearly so that U(0) = 0 and 
U(12) = 12. 

The 20 prediction equations were formed by combining each of the four 
probability cases with each of the five utility functions. Note that the 
combination of probability set A with utility function 1 (linear) is the EV 
predictor. Sets B, C, and D combined with utility function 1 are subjec- 
tively expected value (SEV) models; Set A combined with functions 2 - 5  
are expected utility (EU) models; and the remaining 12 predictors are 
SEU models, The prediction models had from 0 to 12 free parameters (12 
in set D combined with utility functions 3-5) .  

The criterion was defined to be the minimum of the squared error sum 
(MSE) 

D = ~ ~ (Z~jk - Z~k) 2, (3) 
i J k 

where Z~jk was the observed and Z ~  the predicted bid for gamble (x~p~y~). 
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For  the 19 predictors with parameters ,  a computer  search was con- 
ducted for parameter  values that minimized D. Several  different search 
procedures  were tried. It became apparent  that the minima of  D are very  
flat. That  is, almost the same value can be obtained with widely different 
parameters.  Our search routine did not seem to encounter  local minima 
and so we believe that the MSE values are close to their true minima. 

RESULTS 
For the first half of this experiment  we offered subjects the choice of  

playing for chips worth 25 ¢, $1, $5, and $10. Later  we added 10¢chips to 
the permit ted list. Of the 44 completed games, 28 were played for 25¢ 
chips; 11 were played for l0 ¢ chips; 2 were played for $1 chips; and 3 were 
played for $5 chips. We did not get many high rollers. 

The largest amount  won in any one completed game by a subject was 
$200. The largest amount  lost was $485. 

From the nine subjects who completed a repeat  game we can get an 
estimate of  the t e s t - r e t e s t  reliability. The average correlation coefficient 
between the repeat-game responses and the 90 bids from the first play was 
.89. The range went from .81 to 1.00 where the r equal to 1.00 was for the 
subject who bid EV perfect ly 179 out of  180 times. Thus a subject 's  bid in 
a subsequent play of  this game can be predicted reasonably well from his 
bids in the first play. 

Ordinal Analysis 

Tests of  monotonici ty and double cancellation were performed on each 
of the 44 sets of  complete data. The number of  violations of monotonici ty 
ranged (across data sets) from 0 to 75, with an average of  33. Out of  450 
predictions per subject, there was an average of  7% violations with a 
range extending from 0 to 17%. In the strictest sense there was only one 
subject, subject 2, who did not violate the monotonici ty criterion. How- 
ever,  it is hard to know how many violations to expect  on the basis of  
" e r r o r . "  The only way to be sure that violations are important  is to 
discover that they vary systematically with other variables. In fact, the 
violations of  monotonici ty seem to be concentrated in regions where the 
variable examined plays only a small role in determining the EV. For  
example,  44% of  the 413 violations for x values were concentra ted in the 
matrix with probability of  x equal to l/6, and the next  largest number  in 
the 2/6 matrix; 47% of the 483 y value violations were concentrated in the 
matrix with 5/6 probability o f x  (1/6 of y), with the next largest number  in 
the 4/6 (2/6 of  y) matrix. The f requency of  monotonici ty violations for p 
was far higher when the range (x - y )  was low than when it was high. Thus,  
there were 17% violations w i t h x - y  = 6, but less than 3% w h e n x - y  = 48. 
The drop-off  in between was smooth. The regularity of  these results 
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suggests that the expecta t ion models are not seriously invalidated by 
violations of  monotonici ty .  

For  each data set there is a m ax i m um  of 110 tests of  double cancella- 
tion, not logically independent .  The average number  of  tests that could 
actually be per formed was 84.0 and the average number  of  violations was 
13.8 or 16.5%. This percentage is higher than the one for monotonici ty ,  
but that  may be because  there are three sources of  error  in a cancellat ion 
test. There  is systematic  variat ion of cancellation violations with proba- 
bility level. The percentage violations for p = 1/6 is 5.3%, p = 2/6 is 
16.2%, p = 3/6 is 31.0%, p = 4/6 is 23.0%, and p = 5/6 is 10.7%. This 
systematic  variation may be a consequence  of  the systemat ic  change in 
difference be tween  EVs of  the bets being compared  as one moves  away 
f rom p = 3/6 in either direction. 

Regression Analyses 
The results of  an EV analysis (probability set A in Fig. 4, utility func- 

tion 1 in Fig. 5), with no parameters  est imated,  are shown in Table 1, 

T A B L E 1  
EV MODELSTATISTICSFORALLSUBJECTS 

Subject M S E  r b Subject M S E  r b 

S1 3421 .87 1.13 $15 190 .99 .98 
$1 '  1018 .95 1.00 $16 1791 .89 .82 
$2 0 1.00 1.00 S17 18 1.00 .99 
$2" 1 1.00 1.00 S18 1783 .91 1.06 
$3 4797 .85 1.04 S19 1198 .93 .88 
$4 1819 .96 .93 $20 150 .99 1.00 
$5 1833 .87 .79 $21 394 .98 .94 
$5" 1002 .93 .81 $22 872 .96 1.09 
$6 1586 .89 .87 $23 191 .99 1.00 
$6" 2302 .89 .95 $24 1225 .92 .84 
$7 1878 .91 1.07 $25 686 .97 1.09 
$8 2239 .87 .83 $26 1176 .96 1.13 
$8" 931 .93 .91 $27 704 .96 1.06 
$9 1020 .94 .97 $28 468 .97 1.02 
S10 1583 .89 .86 $29 344 .98 1.04 
SI0* 1106 .93 .99 $30 1119 .94 .91 
S l l  1276 .91 .86 $30" 1798 .90 .81 
S12 257 .98 .97 $31 818 .94 .94 
S12" 199 .99 1.01 $32 1220 .95 .91 
S13 1120 .94 1.06 $33 1145 .93 .95 
S13" 1034 .93 .97 $34 937 .93 .83 
S14 16 1.00 1.00 $35 1940 .88 .86 

N o t e .  An asterisk signifies that these data were collected from the second game for the 
subject in question. 
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where we give for each subject the M S E  [or D value, = XXX ( Z ~ k  - E V )  2 ], 
• i j / c  . 

the value of the product-moment correlation, r, and the regression slope, 
b, of bids on EV. 

Note that the gross fit of the EV model is excellent in every case. 
Nevertheless, subjects do differ with respect to goodness of fit; and for 
subjects for whom the fit is not perfect, one may hope to predict more 
accurately by using a model that takes into account personal probabilities 
or utilities. Therefore, the remaining 19 expectation models were tested 
on a sample of data sets• We chose ones for which the EV fit was not 
perfect (correlations ranging from .85 to •97) and for which the scatterplot 
showed some suggestion of nonlinearity. 

The results of all 20 regression analyses, for the 11 selected data sets, 
are shown in Table 2. 

The entries in Table 2 show the M S E  for each model divided by the 
error for the EV model; they thus show the percentage of residual squared 
prediction error after estimating the parameters for the expectation model 
in question. Roughly speaking, the reduction in prediction error depends 
on the number of parameters estimated from 5•6% (average) for 1 pa- 
rameter (the exponential EV model in column 3) to about 40% for 12 
parameters (the last three columns of the table). 

How significant and how important are the improvements in fit ob- 
tained with multiparameter expectation models? The importance is obvi- 
ously limited by the high correlations shown for EV (Table 1). Still, the 
reduction in prediction error by the use of multiparameter models could 
be very important for theories of choice, provided that these models really 
capture characteristics of individuals in their parameters. 

Convincing evidence that the improvements over EV are both nonsig- 
nificant and unimportant can be obtained by examining the nine subjects 
for whom two complete data sets were collected. The question is, are the 
bids in the second data set better predicted by EV or by the best fitting 
multiparameter expectation model from the first session's data? 

A good example is offered by subject 6 and subject 6* whose analyses 
are presented in the third and fourth rows of Table 2. We see that on both 
occasions, the best multiparameter model (D4) produces over a 40% drop 
in M S E ,  compared with the EV prediction. For this subject, EV predic- 
tions are much better than test-retest  reliability. The latter correlation is 
• 81, while EV correlates .89 with each set of data (Table 1). If we use the 
D4 parameters from the first session to predict the second session's data, 
however, there is no improvement over an EV predictor; the correlation 
is .885. 

A full set of comparisons of this type is given in Table 3. For each 
subject we compare the correlation coefficients between the second ses- 
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sion's data and three predictors: first-session data ( test-retest) ,  EV, and 
best first-session multiparametric model. 

The table shows that, by and large, EV is substantially better than 
first-session bids. The EV model successfully removes a substantial ran- 
dom error component from the subject's bids. Moreover, it predicts well. 

Out of the 44 possible bids for each of the bets, over all subject data 
sets, on the average 21.5 or about half were within one chip of EV. This 
does not mean that subjects simply bid EV routinely. The average of the 
ratios of range of bids to range between best and worst outcome of each 
bet was 0.79. Although subjects did not routinely bid EV, Table 3 indi- 
cates that their individual bids were highly correlated with EV and that 
none of the more complex models we tried were meaningful improvements 
over EV in predicting bids. 

In view of the above results, our best guess is that the results of Table 2 
cannot be interpreted as favoring any particular class of multiparametric 
models. (In any case, the present design would not have been appropriate 
for comparing SEV with EU models, because of the differing degrees to 
which their respective parameters are constrained by the data collected 
here. Each bid places a constraint on three utility values and on two 
subjective-probability values.) 

DISCUSSION 

The purpose of this experiment was to determine which of the different 
expectation models best accounted for subjects' behavior in this gambling 
task according to our set of established criteria. In the light of the data, 
this was the wrong question to ask for many reasons. 

First of all, on the average, 88% of the variance of the maximum buying 

T A B L E 3  
CORRELATONS OF SECOND-SEsSION BIDS WITH THREE PREDICTORS 

Firs t -sess ion Bes t  first- 
Subject  bids EV sess ion model  

SI* .86 .95 .92 
$2" 1.00 1.00 - -  
$5 '  .86 .93 .94 
$6" .81 .89 .885 
$8" .83 .93 .90 
SIO* .89 .93 .93 
S12 '  .97 .99 .99 
S13" .93 .93 .94 
$30" .89 .90 .88 

Note. An aster isk signifies that  these  data  were collected f rom the second  game for the  
subject  in quest ion.  
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prices can be accounted for by the simplest model. Moreover, some frac- 
tion of the variance is irreducible. Therefore, almost no variance is left 
over for the more sophisticated models to explain. 

Second, although the additional degrees of freedom of the subjective 
model allow a better fit, one must ask whether anything is to be gained by 
permitting the additional degrees of freedom. Certainly, the regression 
statistics did not improve much. Furthermore, for at least half of the 
subjects, the regression line for predicted bids against predictor values 
had slopes further from one, using subjective values than using EV. Ad- 
ditionally, once subjective parameters are allowed, one must arbitrarily 
decide which set of values to use, since it turns out that very different sets 
of subjective parameters yield about the same MSE.  

This study shows that the EV model fits the data as well as the more 
complex expectation models. But nontrivial residuals from EV exist. On 
the average, half of the subjects bid within one chip of EV, and EV was 
the modal value of the distribution of bids for 81 out of the 90 bets. But 
intersubject variation was substantial. Slovic and Lichtenstein (1968) and 
Anderson and Shanteau (1970) have proposed several lines of thought in 
which linear combinations of the characteristics of a bet are used as 
predictors of behavior with respect to it. We explored a number of ver- 
sions of this idea. 

The range of chip values is the single most important determinant of the 
standard deviation of the bids for a bet. (F test significant beyond the 
.0001 level.) The probability level is the only simple feature of a bet (F test 
significant at the .05 level) that affects the skewness of the distribution of 
bids. Subjects overbid for the 3/6 probability bets (Edwards, 1953, 1954a, 
1954b) and underbid for the 5/6 probability bets. 

No simple feature of a bet, x, y, orp, taken singly or in linear combina- 
tions can account for the data as well as EV does. In regression analyses 
of both individual and grouped data, no single dimension could even begin 
to compare with EV in explanatory power. Table 4 shows the percentage 
of variance of individual bids unaccounted for by various predictors, av- 
eraged over subjects. For comparison, it also presents the same calcula- 
tions for the subject who always bid EV. The subjects clearly were not 
focusing primarily on x, or y, or p. The fact that 20% of the variance is 
unaccounted for by linear combinations of x, y, and p (as compared with 
11% for a perfect EV subject) rules out a variety of other simplistic wrong 
strategies. Introducing nonlinear terms did not help. Nor did using proba- 
bility as five variables rather than one. 

Of the residual variance not accounted for by EV, 14% on the average is 
explicable by linear combinations of x, y, and p. This is almost certainly a 
typical regression artifact. 

These statements are based on data aggregated over subjects. Perhaps 



396 GOODMAN ET AL. 

TABLE 4 
PERCENTAGE VARIANCE UNACCOUNTED FOR 

Percentage Variance Unaccounted for by 

EV x alone y alone p alone 
Linear combination 

of x, y, p 

Mean subject 12 78 78 66 20 
Perfect EV subject 0 79 79 56 11 

individual subjects used idiosyncratic strategies that aggregate to look like 
EV. We repeated all these analyses on a single-subject basis, and found 
little reason to believe that subjects might be grouped by idiosyncratic 
strategies; there are no x subjects, y subjects, andp subjects, for example. 
However, the linear regressions for different subjects show some varia- 
tion. There are some subjects for whom the greatest single factor con- 
tributing to the variance was x, while for other subjects y or p accounted 
for the most variance. 

Implications for the Marschak Bidding Procedure 
The Marschak bidding procedure, used in this study, has been widely 

advocated because it is the only available method for asking a subject to 
state a certainty equivalent for a bet that makes it optimal to state his or her 
true certainty equivalent. Since these data were collected, von Winterfeldt 
and Edwards (Note 2) have pointed out that decision-theoretical optima are 
universally f la th tha t  is, that significant deviations from optimal strategy 
produce only relatively small reductions in EV. How much EV would a 
suboptimal subject lose in this experiment7 Consider the bet (30, 0.5, 
-18),  for which the losses from suboptimal bids are maximal. The least 
optimal acceptable bids are, of course, 30 and - 18. The expected losses 
(in chips) associated with them are -2 .5  and -2 ,  respectively. The ex- 
pected loss functions are smooth, of course. For that same bet, a bid of 
two chips above the higher optimal bid would lose one-sixth of a chip on 
the average and a bid of two chips below the lower optimal bid also would 
lose one-sixth of a chip on the average. 

Deviations from optimal bidding cost virtually nothing in EV (or EU, or 
SEU; the arguments are the same for all expectation maximizing models). 
Yet EV was the overwhelming determiner of bids. Most subjects varied 
their bids around the EV in a way that we could not predict from utility 
and probability transformations. If suboptimality, random or systematic, 
is so cheap, why did EV account for 88% of the variance in bids? 

We can think of two possible answers to this question. One is that 
subjects may have taken very seriously the instruction, emphasized by 
the detailed explanation of the properties of the Marschak procedure, that 
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they should bid exactly what the bet is worth to them. For near-linear 
utility functions and close-to-correct personal probabilities, combined ac- 
cording to an intuitive version of the appropriate calculation, the result 
would be bids on or close to the EV. This hypothesis would imply that the 
Marschak bidding procedure serves primarily an instructional function; 
its decision-theoretical optimal strategy properties are relevant only in 
reinforcing the instruction. 

A second possible explanation is that these subjects could, at least 
approximately, calculate EVs. It may be that some significant percentage 
of the general population does use such a strategy, especially a significant 
portion of the population that visits Las Vegas casinos. However, it may 
also be that there were certain characteristics of this situation that made 
an EV strategy especially salient here. Some of the subjects were profes- 
sionals, dealers, or pit bosses. Since we did not record personal informa- 
tion about our subjects, we do not know this percentage. There were 90 
plays to each game. Subjects knowing that they would be playing a re- 
petitive type game for a long time might be encouraged to develop some 
strategy to reduce the information processing loads placed on them. Fur- 
thermore, the payoffs and the probabilities were explicit. In fact, the 
payoffs were integer multiples of the probabilities, making the EV 
strategy easy to calculate. Finally, while the stakes were much larger than 
typically used in laboratory experiments, the total money involved may 
have represented only a small fraction of many players' total wealth. Any 
one or combination of these factors may account for an EV strategy being 
used by these subjects in this situation which would not generalize to 
quite different groups of people faced with quite different decision prob- 
lems. This explanation is not alternative to the one proposed in the previ- 
ous paragraph; it supplements it, and both might be true. 

Implications for Decision Analysis 
Most formal treatments of elicitation methods in decision analysis (e.g., 

Keeney & Raiffa, 1976; Raiffa, 1968) call for elicitation procedures that 
require respondents to state the certainty equivalents of imaginary bets. 
Edwards (1977) has criticized such procedures and proposed others of a 
more psychophysical nature, mostly out of distrust of choices among 
bets, real or hypothetical, as an effective way of obtaining information 
about opinions or values. 

This study produced no basis for preferring other expectation models to 
EV, though that was its purpose. For all expectation models, including 
EV, it produced fairly high MSEs for some subjects. A priori, for these 
subjects at least, it seemed that an expectation model allowing some 
freedom in the utility or probability parameters should provide a better fit 
to the data than EV. It did not. Furthermore, the results enhance our 
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distrust for inferring subjective probabilities and utilities from elicited 
responses such as the certainty equivalents used in this experiment. This 
distrust arises because very different combinations of  inferred subjective 
probabilities and utilities lead to the same or very similar goodness of fit. 
Therefore, it is not possible to determine which combination is "the" 
appropriate one. In such cases, the flat maximum phenomenon com- 
pounds the problem. If small divergences from EV are allowed, then an 
even larger set of possible combinations of subjective probabilities and 
utilities becomes acceptable. 

A decision analyst might legitimately complain that this experiment 
used untrained subjects, a complex procedure, and stakes very small 
relative to those of most decision problems for which decision analyses 
are done. True. Yet we remain unconvinced that greater training and 
higher stakes will induce enough additional stability of assessment to 
compensate for the instability that we think would almost certainly be 
produced by the use, for example, of multidimensional payoffs. These 
data, though far from conclusive, should not enhance the confidence of  
those who use elicitation methods based on obtaining certainty equiva- 
lents of imaginary bets. 
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