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ABSTRACT 

The nearest-neighbor rule and the potential-function classifier are nonparametric dis- 
crimination methods that require the storage of a set of sample patterns. Here, a relationship 
between the two methods in terms of subclasses and superclasses is developed. Considering 
an exponential potential function, necessary and sufficient conditions for identity of their 
decision surfaces are obtained. Based on these conditions, an algorithm for establishing 
identity is introduced. 

1. INTRODUCTION 

The nearest-neighbor decision rule [l, 21 and the potential-function classi- 

fier [3, 41 are two nonparametric classification methods. There exists little 
published analytical work concerning conditions under which the perfor- 
mances of the two classifiers are identical, with the exception of a heuristic 
comparison of their decision surfaces given in [5]. Here we demonstrate a 
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relationship between the two methods, and obtain conditions under which 
their two-class decision surfaces are identical. These conditions provide the 
basis for an algorithm that determines from the design samples whether the 
two classifiers will result in identical decision surfaces. 

2. PRELIMINARIES 

Consider the discrimination problem with classes C, and C,, where class Ci 
has n subclasses Cii. Let +si denote the prior probability of Ci, Q the prior 
probability of subclass C, when C;. is true, and p&(x) the su~la~-con~tional 
probability density function of the d-component pattern x. 

Let 1), and & be two parametric decision rules designed for the above 
problem as follows. 13, assigns x to the class associated with the sub&ss with 
the maximum a posteriori probability, and O2 assigns x to the class with the 
maximum aposteriori probability. That is, D, chooses class Ci corresponding 
to maxij{ g,(x)}, and D, chooses class Ci corresponding to maxi{Xjg,(x)}, 
where gU(x) -p@(x) *rrU*q. In general, D, and D2 have different decision 
boundaries, as shown in Fig. 1 for particular univariate Gaussian pi/(x) with 
mean a@, and a common variance. The locations of aii are such that D, assigns 
the interval (d2,d3) to Ct [Fig. I(a)] and & assigns it to C, [Fig. I(b)]. 

13, and D2 yield two different methods of nonp~amet~c classification if we 
let gii be a function of sample a@, as 

gu(x) = K[x, aii] I=: exP( - h* Ix, a& (1) 

Fig. 1. Example of nonidentity of decision rules D, and D,. 
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where [x,y]= llx-_~J1~, and h is a positive scalar. D, reduces to the nearest- 

neighbor (n-n) rule of associating an unknown x with the class label of its 

nearest sample, having decision surface 

which is piecewise linear due to the discontinuous choice function min. The 

potential function (pf) classifier computes the potential at x as XjiK[x, a,], where 
K is a potential function that varies inversely with its argument, and associates 

x with the class with larger potential [6]. Thus D, reduces to the pf decision 

rule having a decision surface with the continuously differentiable form 

2 K[x,av] = E K[x~Q]* 
i _i 

(3) 

As h+oo the pf surface defined by (3) and (1) approaches the n-n surface [7]; 
thus we restrict ourselves to the case of finite h. 

3. IDENTITY CONDITIONS 

We develop here conditions on sample patterns {&} E Ci, {bi} E C, for 
identity of decision surfaces of the n-n and pf classifiers, where the results 

obtained pertain to the general form of K as well as to its exponential form, as 

indicated. 

In the case n = 1, or C, is characterized by a, and C2 by b, in Rd, the 
surfaces of the two classifiers are identical to the hyperplane that orthogonally 

bisects the line segment joining a, and b,, or 

(aI-b,)‘(x- p)=O, 

thereby making identity independent of the samples. In the case n =2 we 
consider the two cases where all patterns are and are not on a single line. 

LEMMA 1. Zf{a,}~Ci, {bi}ECz, i=1,2, arepoints on (I line, the n-n undpf 
boundaries are identical iff the points are linearly separable and [a,,a]=[b,,bJ. 

Proof. First assume identical boundaries. The points can be in one of three 
distinct configurations: a2a,b,q, alb,baz, and a,b,a2b, the other permutations 
being identical to one of these except for labeling. With either a,b,ba2 or 
albla2b2, one of the n-n points is d, = ;(a, + b,), which is not a pf point, since 
[d,,aJ, [d,,b,], and [d,,aJ#[d,,b.J. Thus the only possibility is a$,b&, which 
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is linearly separable. With this configuration, let d, and d2 be the respective 
n-n and pf points. If boundaries are identical, d, =& = ;(a, +b,). Since 
K[d,,aJ + K[dl, az] = K[dl, b,] + K[d,, bzl, it fdows that h, a,1 = lh, W. 

To prove sufficiency, let [az,a,] = b, b,] = kZ’ for the lirkrly separable 
configuration. Thus for point 4, K[d2, a,] + K[d,, a, - k] = K[d,, b,] + K[d2, bl + 
k], a solution to which is 4 = ;(a, + b,)=d,. If d’ is another solution, then 
w.o.1.o.g. assume Id - a,1 < Id’- &I, which implies K[d’,a,] >K[d’, b,] and 
K[d’, a*] > K[d’,b& which contradicts d’ as a decision point; thus the solution is 
unique and boundaries are identical. 

A corollary of Lemma 1 is that if n =2 with linearly separable collinear 
points such that for each a, there exists a unique bi equidistant from the n-n 
hyperplane D, then the pf surface is also D. This corollary can be generalized 
to n > 2 and noncollinear points. Lemma 2 considers n -2 and points in 
general position, i.e., not all on a single line. The different cases are illustrated 
for R 2 in Fig. 2. 

LEMMA 2. If {a,} E Cl, {bi} E C2, i = 1,2 are in general position, the n-n and 
pf su&ces are identical iff (i) [a,, a2] = [b,, b2], (ii) [a2, b,] = [al,b& (iii) a1 + b, #a2 
+ 9, and either (iv) +(a2 - r) > 0 > w’@4 -r), or (v) [al, b,] = [a2, b.J, where w = a1 
-bl, r=$(a,+b,), and [al,b,]=minj[aL,bi]. 

Proof. The conditions are clearly sufficient, we show only necessity assum- 
ing surface identity. Due to the pf surface being continuously differentiable, 
the identity surface has to consist of hyperplanes of infinite extent, one of 
which is the perpendicular bisector D, of the line segment joining the nearest 
unlike pair, say (a,, b,). Since for each point x on w’(x -r)=O, [a,,x]=[b,,x], it 

follows that [a2, x] = [bz, x] for identity. Thus w’(x -r) = 0 is the perpendicular 

bisector of segment %q, from which (+-o-(i) follow. 

3 

. 
82 

Pl 

bz’ 

Fig. 2. Identity in R * with two references in each class. 
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If the identity surface consists of only D,, then points are linearly separable, 
or (iv) holds. Otherwise the identity surface consists of two hyperplanes, one of 
which is D, and the other is the perpendicular bisector D2 of segments a& and 
azbl from which (v) follows. 

A corollary of Lemma 2 provides the case where points are located on a line 
in Rd such that the condition of Lemma 1 is satisfied. In order to generalize 
these results to the case n > 2, consider introducing one point to each class in 
the cases of Lemma 2 such that the surfaces are unchanged. If we introduce a 
point a’ into one of the C, regions (half space or quarter space) defined by the 
separating hyperplanes, then by introducing points b’, bz at the mirrored 
positions of a’ with respect to D, and D2, and a point a2 at the mirrored 
position of bz in D2, we maintain surface identity. Symmetric location of points 
with respect to hyperplanes provides a sufficient condition for identity, as 
expressed in Theorem 1. 

THEOREM 1. Let the n-n surface with samples {a,} u {bi} consist ofp hyper- 

planes Dj : w$x - rj) = 0 (j = 1 , . . . ,p). If for each ak E fai}, and Dj there exists a 
unique b”’ E {bi} satisfying wj = (ak -b”), and rj = ;(a” +b”), then the n-n andpf 

surfaces are identical. 

Proof. For each point x on Di, the given condition implies that for every ak 
there is a unique b” such that K[x, ak] = K[x, b’“]; thus x is a point of the pf 
surface. These are the only points on the pf surface, due to continuity and 
single-valuedness of the pf surface between the pair of nearest unlike points 
determining Di. 

Theorem 1 implies that if the samples can be partitioned into disjoint 
subsets S ,, . ..,S,, where each S, has 2p points {a’, . . .,gP,b’, . . .,V}, and for 
each D, and each ak E Si there exists a unique b”‘E Si such that Dj is the 
perpendicular bisector of the line segment joining ak and b’“, then the n-n and 
pf surfaces are identical. 

If we restrict ourselves to the exponential form K(u) = e-“, we can exhibit 
nonsymmetric sample locations for which surfaces are identical. These exam- 
ples will be based on the following necessary and sufficient conditions for 
surface identity when the n-n surface is a single hyperplane. 

THEOREM 2. Zf the n-n surface with sat&es {au} E Ci, i = 1,2, j = 1,. . . , n is a 

hyperplane D, then identity with the pf surface with K(u) g e-” holds iff for empty 

26 {ati) 

(4) 

where L(A) is a normal from X to D, y is the intersection point of L(A) and D, 
and S,(A) = [vlv E {au}, v lies on L(A)]. 
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Proof. The necessity of (4) is considered first. In general all samples will be 

located on r < 2n lines perpendicular to D. Let Akk, k= 1,. . . ,r, be samples 
whose normals Z&) are distinct and exhaustive, and let yk be the intersection 

point of L(A,) with D. Since we assume D is the pf surface, we have for all 

xED 

Defining the constants q.,j$ (k = 1,. . . ,r), as 

the necessity of (4) follows by showing (Yk=& To do so, observe that 
orthogonality of L(h,) to D implies that for XE D, w E &(A,), we have 

[x, w] = [x, Yk] + [yk, w], which implies K[x, w] = K[x, yk] ‘K[Y,, w]. Thus (5) re- 
duces to 

i C$u,K[x, yk] = ki, fikKLX, Ykl’ 
k-l 

i 6,K[X,yk]=o VxED. 
k-l 

Since Yk are distinct, the function K[x, yk] are independent, which implies 

&=o, or ak=&. 
Next we need to show that when (4) holds and D is the n-n surface, the pf 

surface is identical to D. The proof will be to show that an arbitrary point 8, 
on D must also belong to the pf surface, and that a point 0, not on D cannot 
lie on the pf surface. 

Since for xE &(A), [x,O,]=[x,y] +[y,O,], for any sample X 

By considering equations corresponding to every sample, 

z K[y,&l= 2 K[z,f41; 
YEC, zcc, 

thus 0, belongs to the pf surface. 
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Let X+0, be an arbitrary sample on the C, side of D. We will consider two 

cases. 
First, let L(B,)#L(h). Let t and y be intersection points of L(f3J and L(X) 

with D. For any y E S,(X) an application of the law of cosines yields [y, 0,] < 

[y, t] + [t, f-$1. Since [y, tl = [Y,YI + h, 4, we have the i=qdty [Y, 021-c [Y, VI + [u, tl 
+ [t, O,]. Next let z E S,(X). Noting that z is on the C, side of D, we again apply 

the law, obtaining [z, e,] > [z, t] + [t, $1 and finally, as above, we have [z, e,] > 

[z, y] + [y, t] + [t, e,]. It follows that 

and 

where Q = K[y, t] + K[t, O,]. Combining these inequalities with (4) yields 

XX) K[Y,e21> ZX) K[z,821- 
2 

(6) 

For the second case, assume L(B,) = L(X) and t = y. For any YE S,(h) and 

z E S,(X), we have [y, e,] < [y, t] + [t, O,] and [z, e,] > [z, t] + [t, e,] which, using the 
same approach as in the first case, yields (6). 

Since (6) is true of every sample h, it follows that e2 belongs to the C1 side 

of the pf surface. Similarly, 0, on the C, side of the n-n surface is on the C2 
side of the pf surface, which completes the proof. 

It can further be shown that when the n-n surface consists of more than 

one hyperplane, then for identity with the pf surface each hyperplane has to be 
of infinite extent and satisfy the condition (4). Figure 3 demonstrates the types 
of identity surfaces possible, for the cases n = 3 and 4, in R2 and the following 

configurations: 

(i) D consists of a single hyperplane with pairwise point symmetry; 
(ii) D consists of a single hyperplane with points located on a single line in 

the configuration a,. . . a,b, . . . b, such that d, = +<a, + b,), K[a,,d,]#K[bi, d,], 

i> 1, and Zi>lK[ai,d,]=~i>IK[bi,dl]; 
(iii) D consists of three hyperplanes with a common intersection such that 

points are alternately located on the comers of a regular hexagon; 
(iv) D consists of a pair of orthogonal hyperplanes such that two points are 

located symmetrically in each quadrant; 
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(ii) 
n- 3 or 4 

{iii) 
I?=3 

(iv) Iv) (vi 1 
i-i=4 n=4 n=4 

Fig. 3. Identity in R 2 with three or four references in each class. 

{v) t) consists of four intersecting hyperplanes with a common intersection 
such that points are located on the alternate comers of a regular octagon; 

(vi) D consists of two parallel hyperplanes with points located on a line 
perpendicular to the two hyperpianes. 

The only ~onfig~ations not satisfying the symmetry sufficient condition of 
Theorem I are cases (ii) and (vi) which satisfy the weighting condition of 
Theorem 2. The existence of configuration (vi) can be shown as follows. Let 
points be located on a line in the order uza,b,bzb,b4a4a,, with [az,a,]=[a4,cz,] 
=/3, [~,,b,]=[6~,~,]=2a, and [6,,b,]=[b,,b,]=[b,,b,]=cu. The n-n points are 
thus 4) = $(a1 + b,), d2 = +(b.,f a,& For identity we need 

and 
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The two equations are identical, since 

The equation has a unique solution; for example, if (Y = 1, and K[x,y]= 

e-lx-J’12, then p*O.O99832 satisfies the equation. 

4. DETERMINING IDENTITY 

A procedure for determining whether a given set of design samples yield 
identical n-n and pf surfaces can be formulated. Essentially, the identity 

surface has to consist of a finite set of hyperplanes of infinite extent, each of 
which satisfies the condition of equally weighted points along each line 
perpendicular to it. 

A set of candidate hyperplanes He, Hi,. . . , Z!Z, are obtained as follows. Z& is 
the perpendicular bisector of the nearest unlike pair, i.e., Ho : (a-b)r[x- $(a+ 
b)] = 0, where [a, b] = min,, Jai, bj]. Let the two closed half spaces separated by 
Ha be hes and ha,. If there are points of more than one class in either half 

space, determine Hi as the perpendicular bisector of the closest unlike pair in 

either half space. Let hu, and hi, be the half spaces due to H,. If the regions 
bin h,, i, j = 0, 1, are such that one of them contains a pair of unlike points, 

obtain H2 as the perpendicular bisector of the nearest unlike pair, and so on. 
Algorithm I tests whether a candidate hyperplane determined by the above 

method satisfies symmetry and weighting conditions. First a check is made to 
determine if the symmetry condition of Theorem 1 is satisfied. If it is not, 
point sets Bk that lie on parallel planes Pk orthogonal to H are determined. 
Subsets of Bk that lie on lines perpendicular to H are tested to determine if the 

condition (4) holds. 

ALGORITHM I (Hyperplane identity). 

Il. Let M be a binary relation on U = { ai> u {bi} that defines matched pairs 

of points as 

M=[(q, bj)lH is the perpendicular bisector of the line segment joining 
a, and bj]. 

Determine partition (S,, S,) of U as 

S,= {x,y(x,y~ U and xMy}, S2’ u-s,. 
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12. If S,=0, H is a pf hyperplane; else, determine hyperplane P, that is 
orthogonal to H, passes through a pair of points (x,y) such that xMy, and all 
points in U lie in the same closed half space of P,. 

13. Initialize for loop: let k = 1, and B, = Bi= {X~XE U, and x lies on Pi}. 
14. Let X E Bk. Determine the set S,(X) defined as 

S,(X) = {x(x E Bk, and x lies on L(X), the normal from X to hyperplane H}. 

15. If the following constraint is not satisfied the surfaces are not identical: 

where y is the point of intersection of L(X) and H. 
16. Let Bk = Bk - &(A). If Bk #0 go to 14; else increment k by one, and 

determine 

17. If Bk#O, H is a hyperplane of the pf surface; else determine hyper- 
plane Pk containing points in Bk, and parallel to Pk_ ,, . . ., P,. 

18. Go to 14. 

In step I6 the notation [x, P,J corresponds to the distance between point x 

and hyperplane Pk. When each n-n hyperplane is also a pf hyperplane, the 
two surfaces are identical, due to continuity and single-valuedness of the pf 
surface between a pair of unlike points. 

5. CONCLUDING REMARKS 

When samples satisfy certain location constraints the decision surface of the 
pf classifier is identical to that of the n-n decision rule. We have presented 
symmetry and weighting conditions for identity of the two surfaces. In direct 
implementation, the pf classifier tends to involve more algebraic operations per 
decision than the n-n decision rule based on the same references; thus when 
identity is determined, the latter method is superior. Due to strict restrictions 
placed on the samples, identity cannot be expected with random samples. In 
such a case, due to surface identity being sufficient but not necessary for 
identical performance, generalization of the criterion from surface identity to 
error-rate identity may be considered. 
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