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Asymptotic expansions, valid for large error degrees of freedom, are given 
for the multivariate noncentral F distribution and for the distribution of latent 
roots in MANOVA and discriminant analysis. The asymptotic results are 
expressed in terms of elementary functions which are easy to compute and the 
results of some numerical work are included. The Bartlett test of the null 
hypothesis that some of the noncentrality parameters in discriminant analysis 
are zero is also briefly discussed. 

1. INTRODUCTION AND SUMMARY 

In multivariate analysis of variance situations it is usually of interest to test 
whether a matrix of noncentrality parameters is zero, at least as a first step in 
the analysis. If such a test is rejected, questions arise as to the rank of the non- 
centrality matrix. To fix the ideas and motivate the problems, consider a typical 
one-way analysis of variance with independent samples from r groups; in the 
ith group there are mj observations drawn from a p-variate normal distribution 
with mean pi and covariance matrix Z(i = l,..., r; r > p). Let Wand B denote 
respectively the “within-groups” and “between-groups” matrices of sums of 
squares and sums of products, constructed in the usual way. These matrices are 
independently distributed; W has the (central) Wishart distribution W,(n, , Z), 
where n2 = M - r with M = & mi , and B has a noncentral Wishart distribu- 
tion W,(n, , Z; A), where n, = Y - 1 and d = .Z--lA is the noncentrality 
matrix with 

(1 = i mih - IL)(IG - IL)‘, 
i=l 

w = M-l gl mai. 
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The null hypothesis that the mean vectors are all equal is equivalent to A = 0. 
If this is rejected it is reasonable to look for linear functions which best dis- 
criminate between the groups. The number of meaningful discriminant functions 
is equal to the dimension of the subspace spanned by p, ,..., p, or, equivalently, 
to the rank of the noncentrality matrix A (see e.g. Kshirsagar [15, Ch. 93). 
Hence, in discriminant analysis, it is of interest to test the null hypothesis 

where w1 > a** > wp, (20) denote the latent roots of Q. Statistics used for 
testing Hb are functions of the latent roots Zr ,..., Z, of the matrix B(B + IV)-l. 
The joint density function of these roots depends only on w1 ,,.., w,, and is 
(Constantine [7]) 

k, fi [zy)(a-~-l)(1 _ ~p2)(n,-9-1)] I-I (li _ zj) 

t-3 

where 

(1 >I,> --* > z, > O), 

with 

r,(a) = &/4)P(@--l) fi qa - & - I)), 
i=l 

52 = diag(w, ,..., w9), L = diag(Z, ,..., I,), and ,Fp’ is a hypergeomemetric 
function having the matrices 9, L as arguments (see James [13]). That part of 
the distribution involving only the noncentrality parameters wr ,..., wz, , namely 

can be regarded as a marginal likelihood. There are substantial difficulties 
involved in calculating the ,Fp’ function exactly using the zonal polynomial 
expansion of James and Constantine, especially in cases which are of particular 
statistical interest, for example, large error degrees of freedom n, , large non- 
centrality matrixQ (i.e. large Sz). These difficulties stem primarily from problems 
involved in the calculation of zonal polynomials and in the extremely slow 
convergence of the series. For these reasons it makes sense to ask how the 
,Fy’ function behaves asymptotically, thus giving rise to asymptotic forms for 
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the density (1.2) and likelihood (1.4). Th ere are a number of asymptotic ap- 
proaches of statistical interest, some of which have been studied previously 
(see Constantine and Muirhead [8], Glynn [9] and Srivastava and Carter [19]). 
This paper is concerned primarily with a situation which has not yet been studied, 
namely the asymptotic behavior of ,Fy’ as the error degrees of freedom n, 
become large, with the noncentrality matrix remaining fixed. This is essentially 
the case when the differences between the means are assumed to be small. An 
asymptotic representation is given in Section 4 for the density (1.2) when the 
p - K smallest noncentrality parameters are zero. Bartlett’s [3] statistic for 
testing the null hypothesis Hk is also briefly discussed. In Section 3 the asymp- 
totic behavior is obtained for the density function of the matrix F = B1i2 W-lB1i2 
(the noncentral multivariate F); this distribution involves a JJi function of one 
matrix argument. 

2. PRELIMINARIES 

It will be shown later that the asymptotic behavior of both the one and two 
matrix 1Fl functions can be expressed in terms of 0F, functions (Bessel functions) 
of large matrix argument. The latter functions occur in the noncentral Wishart 
density function and in the density function of latent roots in the case of non- 
central means with known covariance. For definitions, etc., see [ll], [r/l, [13]. 
The asymptotic behaviors of these aF, functions have been studied by Anderson 
[I], Leach [16] and Muirhead [18], and can be expressed in terms of elementary 
functions which are easy to compute. For convenience the relevant results are 
stated here in the following two theorems 

THEOREM 2.1. Let R = diag(r, ,..., r,) where each ri is positive. As n -+ CQ 

oW; nR) - h,(n) exp (2r~l”~$ ,ti2) fi rji’4)(P-2c) <$ (Y”” + rf’2)-1’2 
i=l 

x (1 + .-l’ZP1 + O(n-I)}, (2.1) 

where 

PI = A f (Yj’” + Y;‘y - & (2c - p)(2c - p - 2) i $5 
f<3 b-1 

THEOREM 2.2. Let R = [,fl 3, where R is p x p, R, = diag(t, ,..., r,) with 

r1 > ... > rk > 0, andlet 8 = diag(s, ,..., SD) withs, > ... > s, > 0. As n -+ CQ 
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where 

and 

,,Fp’(c; nR, S) - k&z) exp 2 ( nl’2 fl (Y&)1/2) fi (Yisp’*)(-) 

x fJ fil c;’ ‘(1 + +‘“Ql + O(n-l)>, 

i<i 

(2.2) 

cij = (Yi - Yj)(Si - Sj) (i, j = l,..., k) 

= Y&i - Sj) (i = I,..., k; j = k + l,...,p), 

k,(n) = F,(c) r,(g p) 2-%r- U/Z)k(k+l)nU/4)k~k-~-2c+l) (2.3) 

QI = i $ ~~[(yisi)~~~ + (rjsj)““] + $ 2 f c3~~sp 
i-lj=k+l 

- & (2c -j)(2c - p - 2) ; (YiS&l'2. 
i=l 

The term Q1 of order +I2 in (2.2) h as not been given previously, except 
when K = p (Muirhead [ 181). Q1 was found using a partial differential equation 
for the ,,Fy) function. 

3. THE NONCENTRAL MULTIVARIATE F DISTRIBUTION 

Let the matrices 3 and W be distributed as in Section 1, i.e. B is W,(tz, , E, A) 
and W is independently W,(n, , Z). The density function of the matrix F = 
IN2 W-lB112 is (see [ 131) 

k4 det F(1’2)(n1-p-1) det(1 + F)-n 

x exp(- 4 tr A) ,F,(n; &; &A(1 + F-l)-l) 

where n = $(n, + n2) and 

(3.1) 

Since the 1Fl function in (3.1) depends on the matrix R = +A(1 + F-l)-l 
only through its latent roots we can assume, without loss of generality, that 
R = diag(r, ,..., yp) where each yi is positive. 
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THEOREM 3.1. As n -+ co 

,F,(n; c; R) - exp(* tr R) d;;(c; nR). (3.2) 

Proof. To avoid continually writing out long expressions we merely sketch 
the proof. We can write 

,F,(n; c; R) = 

@/4)P(41a-P-l) 

r&4 
e-pnJJl(c; nR) 

X 
I 

exp(-nl/Ztr ,‘$)&(I + n-1/2,‘J)n-U/2)~~+1) 
S+a"*I>O 

x OF& nR(I + n-1'2s)) &$ 
OF&; flR) ' 

this follows by expressing iF, as a Laplace transform of pi (see Her-z [Ill) 
and rearranging slightly. Now let a--+ co; Theorem 2.1 can be used to show that 
the ratio of the two ,,F, functions in the integrand tends to exp(tr Rl12S), while 

exp(-nli2 tr S) &t(l+ n-112&')+(1/z)(P+1) -+ exp(-$ tr S2). 

It follows that 

J&; c; R) - 

nw4M491-P-1) 

rzh4 
e--pn fll(c; nR) 

X 
s s 

*** exp(- + tr S2 + tr R112S) dS. I 

-ay<m 

The value of the last integral is (27r)pJ2 n-pcp-1)/4 exp(&r R) and the theorem then 
follows by using Stirling’s formula for the asymptotic behavior of F,(n). 

It can be noted that when p = 1, (3.2) agrees with the known asymptotic 
behavior of the classical confluent hypergeometric function (see Buchholz [4]). 

On putting c = &n, , n = $(n, + n2), Theorem 3.1 describes the asymptotic 
behavior of the $‘r function in the density (3.1) of the multivariate noncentral F 
distribution. An asymptotic result in terms of elementary functions which can be 
used for computational purposes follows by substituting the expansion for the 
oF, function given by Theorem 2.1. 

4. LATENT ROOTS IN MANOVA AND DISCRIMINANT ANALYSIS 

The method used in the last section can also be used to derive the asymptotic 
behavior, for large n, of the two-matrix function lFip’(tz; c; R, S) which occurs 
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in the density function (1.2) of the latent roots of the matrix B(B + W)-1. 
Alternatively, since 

,F~‘(n; c; R, s> = jotp) ,F,(n; c; RHSH’) dH 

the results of the previous sections can be used in conjunction with a multivariate 
extension of Laplace’s method due to Hsu [ 121 to obtain the asymptotic behavior 
of this integral, The details are reasonably straightforward and are omitted. The 
result is summarized in the following: 

THEOREM 4.1. Let R = [$ i], where R is p x p, R, = diag(r, ,..., yk) with 

Yl > ... > yk > 0, andlet S = drag(s, ,..., S,)wuithsl>...>s,>O.AsajcO 

lFi?))(n; c; R, s) 

An asymptotic expansion for the $, w function on the right side of (4.1) has 
been given by Theorem 2.2, and can be used for computational purposes. An 
alternative expression for the asymptotic behavior of 1Fy’ has been given by 
Chattopadhyay and Pillai [5] and Chattopadhyay, Pillai and Li [6]; however 
the result of these authors, at least as stated, appears to be incorrect. 

Some numerical work has been carried out in order to investigate the accuracy 
of the asymptotic approximations (4.1) and (2.2). The simplest nontrivial case 
is when p = 2 and we take R = diag(r, , 0), S = diag(s, , s,); in this case there 
are reasonably simple expressions for ,Ff’ and Ji2’ which allow exact calcula- 
tion, namely (Muirhead [17]) 

lF~)(n; c; R, S) = 1 - m wi PI(~&Y’“l~ p, 5 + $2 

j-0 (4 j !  [ 3 2(s,s,)1’2 I (4.2) 

and 

oF:)(c; nR, S) = f [nr1;)$‘21’ Pi [ 2~~l+jf;z ], (4.3) 
j=O 

where Pj(.) denotes the Legendre polynomial of degree j. The values of these 
functions quickly become very large, as can be seen in Table 1, where the actual 
values of the above two functions are given for some selected values of the 
parameters. In Table 1, Ratio refers to the ratio of the left side of (4.1) to the 
right side; this ratio tends to unity as n - 0~). These, and other more extensive, 
numerical results show that the accuracy of the approximation increases as sr 
decreases (all other values of the parameters remaining fixed), accuracy increases 
as c decreases, and accuracy increases as rl decreases. Similar results should also 
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be true for values of p other than two, although the exact calculation of the 
functions involved then becomes much more difficult. The asymptotic expan- 
sion (2.2) is used in place of the exact value of $i2’ in Table 2. Ratio (1) there 
refers to the exact value of $i2’ to H, where H denotes the right side of (2.2), 
and Ratio (2) is the exact value of rFi2’ divided by exp($r,s,) * H. 

TABLE 1 

Exact Values of ,Fi*’ and ,,Fr’ from (4.2) and (4.3) when rl = 10, rz = 0, sf = .25” 

Sl c n F’S’ 
1 1 ov’ Ratio 

.75 5 100 

500 

1000 

.50 5 100 .I737 x 10’5 .2291 x 1Ol4 .6224 

500 .4309 x 10%’ A422 x 1038 .7999 

1000 .8029 x 106’ .7736 x lo= .8523 

.25 5 100 .2924 x 1O’O .1146 x 1O’O .7313 

500 .loOO x 1026 .3335 x 1046 .8593 

1000 .1190 x 1038 .3805 x lOa’ .8965 

.75 1 100 .1813 x 102* A424 x lOa2 .9636 

500 .2076 x 10Ks .4961 x lo= .9842 

900 -2305 x 107’ .5484 x 108* .9883 

.4214 x 1Ol8 .I692 x lo’* .5857 

.2669 x IO*’ .8062 x lo”& .7786 

.5523 x 10BB .1553 x 106’ .8361 

a Ratio = ,F:a’/(exp(~rlSl)oF:l’). 

Substitution of (4.1) and (2.2), with R = $sZ, S = L, c = n,/2, in (1.2) 
gives a representation for the joint density function of the latent roots Zr ,..., I, 
of B(B + W)-1, under the assumption that the noncentrality parameters 
satisfy 

WI > ... > Wk > wk+l = ... = wp = 0. (4.4) 

This is summarized in the following: 

THEOREM 4.2. For large error degrees of freedom n2 an asymptotic representa- 
tion of the density function (1.2) of II ,..., 1, , when the noncentrality parameters 
satisfy (4.4), is 
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x exp 
[ 
5 ($.IJ~Z~ + (2nf~~Z#~l~) (4.5) 
i-l 

)] fi fi d,y2{l + O(n-1’S)}, 
i=l j=l 

i<j 

where n = $(n, + nJ, 

di, = (wd - w,)(Z,. - Zj) (i,j = l,..., K) 

= Wi(l - Z,) (i = l,..., K; j = k + I,..., p) 

k, = hk92 
(llah(n,+9-k-l) 

and k, and k, are@wen by (1.3) and (2.3). 

TABLE 2 

Ratio (1) = oFr’/H and Ratio (2) = ,Fi*‘/(exp(&,s,)H), where H 
Denotes the Right Side of (2.2), when rI = 10, r, = 0, sg = .25, c = 5 

n Ratio (1) Ratio (2) 

.75 100 1 s-m7 .5890 

500 1.0011 .7794 

1000 1.0005 .8366 

.50 100 1.0098 .6285 

500 1.0018 .8013 

loo0 1 JO09 .8530 

.40 100 1.0162 .6565 

500 1.0026 .8159 

1000 1.0013 .8637 

From Theorem 4.2 it is easy to obtain the following: 

COROLLARY. For large n, an asymptotic representation of the conditional 
density function of the p - k smaZZest sample roots Zk+l ,..., 1, given the k largest 
roots Z 1 ,..., II, , when the assumption (4.4) koolds, is proportional to 

fj ,Q1 (Zi - ,,)I’2 fi [zi(l’s)(nl-+-l)(l - 4) (l/2)(“+)] fi (zi - 4). (4.6) 
i-k+1 k+l 

i<j 
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It is worth remarking that although there are marked differences between the 
asymptotic joint density functions of I, ,..., 2, 1 in the three situations discussed 
in Section 1, these densities all give rise to the same asymptotic conditional density 

function (4.6) of Z,,, ,..., I, given I, ,..., 2, . If the “linkage factors” 

fi fi (E, - Zj)l” 
i=l i=k+l 

are ignored this is just the distribution of the latent roots of S,(S, + S.&l, 
where S, and S, have the independent Wishart distributions W,-,(n, - k, 2) 
and W,-,(n, - k, z) respectively. Note that (4.6) does not depend on wr ,..., wk 
(i.e., ZI ,..., II, are asymptotically sufficient for wr ,..., CL+); these are nuisance 
parameters in a test of the null hypothesis Hti given by (1.1) and their effect 
can be eliminated, at least asymptotically, by using the conditional distribution 
(4.6). The statistic most commonly used for testing Hk is (Bartlett [2, 31) 

Tk = -log fi (1 - 41, 
i=Jc+1 

and when H, is true, the asymptotic distribution of qTk, as n, + co, is 

XL1-k)(P-k, * A correction factor +z,), which improves the rate of convergence 
of the test statistic ~~(8s) T& to its asymptotic x2 distribution by improving 
agreement between the moments, can be found by using the conditional density 
(4.6) to compute moments of T, (cf. James [14], Glynn and Muirhead [lo], 
in other contexts). The following result, given by Glynn [9], follows directly 
from Theorem 4 of Glynn and Muithead [lo] : 

THEOREM 4.3. When the null hypothesis Hk is true the statistic 

L, = n2 - k + &(nl - p - 1) + 5 Zi-r TI, 
i=l 1 

has an asymptottc x&-k)(n-k) distribution, and 

E(Lk) = h - k)( P - k) + o(n;“). 

The multiplying factor suggested originally by Bartlett [3] is n2 + &(nl -p - 1); 
the multiplying factor in Lk is approximately this if the observed values of 
1 1 ,..,, Zk are all close to one. 
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