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Abstract--The motion of a satellite in orbit, subject to atmospheric force and the motion of a reentry 
vehicle are governed by the same forces, namely, ffravitational and aerodynamic. This susgests the 
derivation of a uniform set of equations applicable to both cases. 

For the case of satellite motion, by a proper transformation and by the method of averaging, a 
technique appropriate for long duration flight, the classical nonlinear differential equation describing 
the contraction of the major axis is derived. While previous authors, and in particular King-Hele, 
inteBrated this equation using various heuristic methods, the present authors present a rigorous 
analytic solution, with a high degree of accuracy, using Poincar6's method of small parameters. 
Next, using Lagrange's expansion, the major axis is expressed explicitly as a function of the 
eccentricity. The solution is uniformly valid for moderate and small eccentricities. This is a major 
achievement due to the discovery of a certain recurrence formula which facilitates the long and 
tedious analytic process. For his]dy eccentric orbits, the asymptotic equation is derived directly from 
the general equation. To obtain the same equation King-Hele must use an entirely different method. 
Again, while King-Hele only succeeded in obtainin~ an approximate solution to this case using a 
heuristic method of integration, the exact solution to the asymptotic equation has been obtained by 
the present authors. Numerical solutions have been generated to display the accuracy of the analytic 
theory. 

The explicit solution has been derived using a spherically symmetrical atmosphere with exponen- 
tial variation of density with height but the basic equations developed and the technique for their 
intelp~ation apply to the case of an oblate atmosphere which is locally exponential. 

In t roduc t ion  

THE THEORY of  satellite orbi ts  in the  p re sence  o f  an  a t m o s p h e r e  was  deve loped  
dur ing the late fifties with the launching  o f  the  first artificial satellite. Wi th  
increas ing knowledge  o f  p lane ta ry  a tmospheres ,  especia l ly  the a t m o s p h e r e  o f  
the Ear th ,  the t heo ry  has  n o w  r e a c he d  a high degree  o f  e laborat ion.  F o r  a first 
es t imat ion  o f  the l ifet ime o f  a satellite and  fo r  a cor re la t ion  be tween  the  
semi -ma jo r  axis and the  eccen t r i c i ty  o f  the orbi t  while it undergoes  a con t rac t ion  
due  to the  per turb ing  effect  o f  a tmosphe r i c  drag,  analyt ic  t heo ry  is adequate .  
The  classical  t heo ry  was  p resen ted  in a m o n o g r a p h  wri t ten by  King-Hele  (1964), 
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who is among the authors who have contributed the most to the development of 
analytical solutions. 

There are two reasons for presenting this new study of a well established and 
analyzed subject. 

The first reason concerns the approach to this problem. In the early days, 
development of the theory of flight inside an atmosphere was conducted from 
two different approaches. On the one hand, researchers analyzed the small 
perturbations of satellite orbits at very high altitudes. The mathematical tools are 
perturbation theories in celestial mechanics based on Lngrange's equations for 
the variations of orbital elements. The space object, usually referred to as a 
satellite, is not intended for recovery. The main subjects of concern are its life 
expectancy and, while in orbit, the slow variations of its orbital elements. On the 
other hand, engineers and scientists who were concerned with the same recovery 
of an entry vehicle concentrated their effort in the study of the deceleration and 
heating during entry. Here the elements of prime consideration are the position 
and velocity of the vehicle, both varying rapidly. The smooth behavior of near 
Keplerian orbit is no longer valid and strong physical assumptions were made to 
such an extent that, although describing the same phenomenon, namely flight of 
an object inside a planetary atmosphere, the equations became totally different. 
The gap got wider, as the two theories became more and more sophisticated, so 
that now the two groups, one consisting mostly of mathematicians, and one 
consisting mostly of space dynamicists seldomly reference the other group's 
work. With the objective of providing a unified theory for flight inside a 
planetary atmosphere, we have formulated a set of universal, exact equations. 
These equations have been successfully applied to the study of planetary entry 
of a space vehicle (Vinh eta/. ,  1977) and even to optimization of such an entry 
(Vinh et al., 1975). In this paper we shall present the necessary transformation 
such that the equations can be used for analyzing the slow variations of the 
orbital elements while the vehicle is still in near vacuum. This successful 
wedding is necessary since the future space vehicle is designed to stay for an 
extended period in orbit as a satellite, and also to be recovered safely after a 
fiery entry followed by a glide, an approach and a landing on an airfield. 

The second reason concerns an improvement of the existing theory. Often, 
because of mathematical difficulties in the analytic integration of the equations 
of motion, the types of solutions are artificially classified. One can easily 
understand the classification of orbits into hyperbolic and elliptic because the 
natures of the orbits are different, as reflected by the Keplerian equations with 
e > 1 and • < 1. However,  when it comes to different orbital phases with e very 
small and with • not so small, then it is clear that the classification is purely for 
easing the integration and usually the resions of validity of different solutions 
are at best defined empirically. Our effort in going over the classical theory is to 
remove, whenever possible, such an ambiguity. 

F o r c e s  o n  a satellite in orbit 
The satellite and the planet are assumed to be in two-body relative motion. 

For a spherical planet, the gravitational force is an inverse square force of 
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attraction with acceleration 

e(r)=~. (1) 

The atmospheric force is in the form of drag, DA, acting in a direction opposite 
to the velocity VA relative to the ambient air 

l 2 =  pSCvV,, (2) 

Cv is the drag coefficient measured using a reference area S and the atmospheric 
density p. For the sake of mathematical purity of the theory, we shall use a 
strictly exponential law 

where # is a constant 
p=peoeP( 'h  -~ ( 3 )  

I 
# -- ~- (4) 

H is the scale height, and subscript P0 denotes the initial periapsis condition. 
Extension of the theory for including the effect of oblateness of the atmosphere 
will be discussed in the last section. 

The equations of motion are written with respect to an inertial frame with the 
orilgin at the center of the planet. Let V be the absolute velocity of the satellite. 

V = VA + V, (5) 

where V, is the velocity at the point M, of the ambient air relative to the planet 
center (Irtg. 1). If w is the angular velocity of the rotating atmosphere, then 

. p  

W ~ M 

l~s. 1. Nomenclature. 



700 N.X. Vinh eta/. 

V.  = ~ c o s  6 (6)  

where ~ is the latitude of the point M. 
Let ~' be the angle between V¢ and V. Then by squaring eqn (5) 

VA 2 = V 2 + V 2 - 2 VV.  cos ~'. (7) 

The vector V, is in the local horizontal plane. Also, near the periapsis where the 
aerodynamic drag is most effective, the satellite travels in a nearly horizontal 
direction and hence the angle .y between the velocity V and the horizontal plane 
is small. Then, the angle h' between V, and V is nearly equal to the angle h 
between V, and the projection Vu of V on the horizontal plane. This angle h, 
called the heading, is related to the latitude 4' and the inclination i of the orbital 
plane by the well-known relation 

cos ~ cos 4, = cos i. (8)  

Therefore, we have approximately 

V. c o s  ~ ' ~  V, c o s  O = rw c o s  O c o s  O = rw c o s  L (9) 

Upon substituting eqns (6) and (9) into eqn (7) we have 

( rw VA 2 = V 2 1 - ~ cos i + r2w2(cos e ~b - cos 2 i). (1o) 

The rotation of the atmosphere is generally slow so that the term w 2 can be 
neglected. For the small term rwlV, it is appropriate to use an average value. 
King-Hele suggested using the value at perigee r ~  V~o to replace r/V. Finally i, 
which usually varies by less than 0.3 ° during a sateilite's life, may be taken equal 
to its initial value/o. Then we have King-Hele's expression (King-Hele, 1964) 

VA" = fV 2 (I I) 

where the average constant value f is 

r~ow )2 
f =  l - ~ c o s i 0  • 

Thus, in terms of the absolute speed, the drag force is 

(12) 

DA = IoSfCoV2 (13) 

acting opposite to the direction of the velocity VA of the satellite relative to the 
ambient air. 
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The equations of motion 
For the flight of an aerodynamic vehicle with a lift coefficient CL and a drag 

coefficient Cw it is customary to use the equations of motion with the notation in 
Fig. i. 

d r  
d-t = V s in  3' 

dO Vcos  7 c ° s  ~, 
dt r cos ~b 

d..~.~ = V c o s  3' s in  0 
dt r 

d V pSCDV 2 
dt - - -  2m - g s i n Y  (14)  

Vdd-~t = P S C L V 2 c ° s a - ( g - ~ - )  c°s 

v d__~ = pSCL V 2 sin a 
d t  2m cos y 

V 2 
- - -  cos 3, cos q, tan 4, 

r 

where the bank angle a is defined as the angle between the local vertical plane 
containing the velocity and the plane containing the velocity and the aerody- 
namic force. 

Using the dimensionless variables 

V2 c°s2 7 U---- 
gr 

2 = 2m V ~  (15) 

and a dimensionless independent variable 

s -- cos 7 dt (16) 

we have derived the exact, universal equations for entry trajectories into a 
planetary atmosphere assumed to be at rest (Vinh et aL, 1975) 

d Z = _  [ l d p _  1 ± 1 d . ~  
~'s ~ r~-  ~Sp dr 2~8r'- 2-~ d r ]  z~ tan T 

du  _- _ 2~/(~r)2u (1 + CL cos cr tan 3' + sin T 
ds cos y x CD 2~/(~r)Z/ 

ds cos y ~ / ( 0 r )2  u -J  
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dO cos 0 
ds cos 0 

d_.~ = sin 
ds 

dd/ V(pr)2 (CL c°s2 7 cos ¢ tan h'~. 
d-'s" ---- COS 2 7 \C"~v sin o" - x/(~r)Z / (17) 

We shall use the necessary transformation to obtain the equations for 
satellite motion inside a rotating atmosphere. 

First, still with the notion of an atmosphere at rest, we use the transformation 

cos 4' cos ¢, = cos i 

cos O sin O = sin i cos a 

cos a = cos 4' cos (0 - fl) 

(18) 

to transform the last three equations of (17) into 

da 1 ~v/(flr)Z' sin a (CL) 
d's--- - t an i cos  z3' ~ sino- 

dfl X/ (~r)2 sin a ( CL ) 
~ ' s =  s in icos  23' ~ sin 

di V'(~r)2, cos a (C~) sin or. 
d"s" --  COS ~ y 

(19) 

From Fig. 1 we notice that / is the inclination and II the longitude of the 
ascending node of the osculating plane. The angle a is the angle between the 
ascending node and the position vector. The angle a,, as stated earlier, is the 
angle between the vertical plane passing through the velocity, the (r, V) plane, 
and the plane containing the aerodynamic force and the velocity, the (A, V) plane 
(Fig. 2). For satellite motion, we have a simplification, and at the same time, a 
complication. The simplification is that there is no lift. The complication is that 
the drag force is modified by the factor f (eqn 12), and it is directed opposite to 
the velocity VA, not the absolute velocity V. 

Figure 2 is the aerodynamic force diagram used in deriving the equations of 
motion (14), to which we have added the velocity VA with respect to the ambient 
air, and the drag force DA, opposite in direction to VA. In the present situation, 
we remove the lift force L and replace the vector drag D by DA. This force DA 
Can be decomposed into one component in the orbital plane and one component 
normal to the orbital plane. Since V~ is small, VA is nearly aligned to V and the 
drag component in the orbital plane can be considered as directly opposite to V, 
with magnitude DA as given by eqn (13). To have the component DN of D,t 
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\ 
w 
y "  

o 
Fig. 2. Aerodynamic forces. 

orthogonal to the orbital plane we find the projection of 

1 2 VA 
n A  = - (20) 

By the vector relation (5), since V is in the orbital plane, and since V, makes an 
angle h with the orbital plane, the projection of VA on the normal to the orbital 
plane is the same as the projection of V, which has magnitude 

V, sin h = rw cos ~ sin O = rw sin i cos a. (21) 

Hence, the vector Dn has magnitude 

V2 
Ds  = #SfCcrw sin i cos a V--~s" (22) 

By relation (11), we write it as 

DN = ~ rw sin i cos a (23) 

and its direction is opposite to the vector L sin or in Fig. 2. 
The end result of the analysis is that, in the eqns (17) and (19), we replace Co 

by the modified drag coefficient ]Co, we delete the component CL cos or and 
replace the component CL sin or by 

eL sin o--- - f 1 ~ c D ( ~ ) s i n  i cos a. (24) 
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Finally, the variable Z, the modified Chapman Z function defined by eqn (15), 
is most effective in analyzing the entry phase of the vehicle. While the vehicle is 
still in orbit, we use it in the form 

X/ (13r)Z = 2o(-f--po) e#¢" ,o-'J 

where the dimensionless constant Z,0 is 

(25) 

Zo = pp.SfCDr~ 
2m (26) 

We can now rewrite the eqns (17) and (19), introducing the equation for rlrpo to 
replace the equation for Z, 

d r 

d+ 2 0. (,)o0.0_+ 

d z = 1 - c°s2'¢" 
ds u 

dot . rpowZo / r \ tacos  i sin a cos a 
~- = 1 .  vo,s/,p ~,~) . '~ c o s  7 e ' " , 0 - "  

d[l rawZo { r ~St2sin a cos a 
ds = V(--~) ~r-~) u '~ cos ~/ e#'%-'> 

di rp0wZ0 ( r ~f2 sin i cos z a 
~" = x/~-'~TfP ~ , ~ /  u '"  c o s  ~, e#",o-" .  

(27) 

The variational equations 

Equations (27) are the bridge between satellite theory and entry theory. 
As a matter of fact, they can be used to follow the motion of a vehicle subject to 
gravitational force and drag force of a rotating planet for its entire life in orbit 
until the end of its entry and contact with the planetary surface. The accuracy 
depends on the readjustment, for each layer of the atmosphere, of the "constant 
value"/3. The equations are most useful for analyzing the last few revolutions 
and the entry phase. The variables a, II and i which are orbital elements are 
related to the entry elements ~, 0 and ~ through the relations (18). On the other 
hand, the variables r, u and 7 which are the entry variables can be transformed 
into the orbital elements through explicit relations. 

Consider the osculating orbit, that is, the orbit the vehicle would follow if at 
any time the drag force suddenly vanished. Putting Z0 -- 0 in eqns (27), we have 
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d r r 

du 
- - =  - u  tan 7 
ds 

d--z = 1 - c ° s 2  Y 
ds u 

d a  
ds 

df t  
d--~- = 0 

di 
d--~ = O. 

(28 )  

The  integration is simple and we have the general solution 

COS 2 3' = 
2u - Ct 

C2 
r = - -  

U 

u = 1 + ~/(1 - CO cos (s - C3) 

S = a + C 4  

f t  = C5 

i = C 6 .  

(29) 

We see that s is equivalent to a and actually, we have only 5 constants of  
integration. The last constant  of  intewration is obtained through the time equa- 
tion (eqn 16). In the first three equations,  we evaluate the constants  of  in- 
tegration by taking the origin of  time at the time of  passage through the 
periapsis. We have 

/42 

c°s2 Y = 2u - (1 - e 2)  

u = 1 + e c o s ( a - c o )  

a ( l  - e 2)  r---- 
1 + e cos (a  - =o)" 

(30) 

These  three equations provide the link between the entry variables r, u and Y 
and the semi-major axis a, the eccentr ici ty • and the argument of  the periapsis 
oJ, which are the orbital e lements  used in the theory of orbits. 

During the phase in orbit,  20 is small and the orbital e lements  vary slowly. By 
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taking the derivatives of eqns (30), considering a, e and a~ as varying quantities 
and using the eqns (27) for the derivatives of r, u and , / w e  have the variational 
equations for a, • and a~. 

First, for e, we have 

de 2Zou 2 [ c0s27_  )(~.~) D =  1 r ds eco-~'~s~ u eB(rpo-r)" (31) 

We present the equation in this form to show an interesting behavior of the 
eccentricity of the osculating orbit. It is a general belief that the eccentricity 
decreases continuously under the action of atmospheric drag. This, however, is 
only the secular effect. During each revolution, the flight path angle passes 
through a maximum and a minimum as seen by the third equation of (27), and by 
eqn (31) it is seen that, at the same time, the eccentricity passes through a 
minimum and a maximum respectively. 

Next, we shall use the more familiar eccentric anomaly E to replace s as an 
independent variable in the variational equations. The following relations can be 
easily derived. 

L = ( 1  - e ~) 
a l + e c o s ( o t - o ~ ) f l - e c ° s E  

(1  - e 2) 
u ffi I-e cos E (32) 

(I - e b  
cos 2 3' ffi (1 - • cos E)(I + • cos E) 

ds V( I  - -  e 2) 

dE l - e c o s E "  

Hence, changing the independent variable from s to E, the equation for • has the 
form 

__de = _2~o(l_e2)(a~cosE(l _+ e cos E )  'n eB(,po_r)" 
dE \rpo/ \ l  e cos 

(33) 

Similarly, we have for the semi-major axis 

eB(rpo-r). da = _ 220 a2 (I + • cos E) 312 
dE r~ (I - • cos E) ~ 

The last three equations of (27) become 

x (I + • cos E) If2 e~('po -')] 
J 

(34) 
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d l l  rpowZo t , a -sn  
= - V( I/r V(1- (1  - • c o s  + • d E  

x s i n  a c o s  a @(rpo-r) 

di  r . w Z o  ( a ~ ' t 2 ( l _  e cos  E)St2(l + e co s  E)l/2 
d E  = ~/(ltf/r~e)%/(1 - e z) 

x sin i cos 2 a eB('~ -'). 

(35) 

The eentraetion of orbits 
T h e  a v e r a g e  e q u a t i o n  

Consider the variations in e and a, eqns (33) and (34). Under the dissipative 
effect of the drag, the major axis decreases while the eccentricity, although 
having an oscillatory behavior, also decreases secularly with the time. 

For  the radial distance we have, 

r = a ( l  - • cos E) 

r ~ - -  a o ( l  - eo) .  
(36) 

We write the exponential function in the equations 

exp ( /3 (%-  r)] -- exp [/3(ae- a - aoeo) + IJae cos E]. (37) 

Along each revolution a is nearly constant  while the varying quant i ty /Jae  cos E 
provides the fluctuation in atmospheric density. This leads to a natural choice of 
the dimensionless variable 

x = t3ae (38) 

to replace the eccentricity. The equation for • is replaced by 

dx -= - 2""r'a2(eT"n + cos E ) |  1 / + • cos E~ 1t2 eB(, _, ) 
d E  r~ \ 1 - e cos E /  " 

(39) 

The new variable x behaves like the eccentricity e; that is, during each 
revolution x passes through stationary values when cos E = - e. On the average, 
however, x decreases with the time. Since the decaying process is slow we can 
use the averaging technique (Bogoliubov and Mitropolsky, 1961), applied to the 
right hand side of the eqns (34) and (39) for a and x. 

For  the equation for a, we have 

- a 2 1 f l . ( l + e c o s E )  ~ . 
da  - 2Zo ~ exp [/3(ao- a - aoeo)] ~ Jo (1 - • cos E) ~rz exp tx cos E) dE. dE -.= 

(40) 
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For small eccentricity, the integrand can be expanded in a power  series in e and 
upon integrating, we have 

d_.aa = _ 2Z, oa 2 exp [/3(ao- a - aoeo)] 
d E  rpo 

{1o+ 2el t+3e2(lo+ e3 e4 714) + 0(eS)} x 12) + ~-(3Ii +/3) + ~ (21 Io  + 2812 + ( 4 1 )  

where l , (x)  is the Bessel function of  the first kind and of imaginary argument, of 
order n 

_if 2- 
In(x) - 2~" )o cos nE exp (x cos E) dE. (42) 

Similarly, the average equation for x is 

Let  

dx 220~a 2 f 1 e 2 
d E  = r~ exp [/3(ao- a - aoeo)]~ll + 2e(310 + 12) + ~-(1 Ill  + 13) 

I 

e 3 e 4 1 
+ ]-~ (7Io + 8/2 + 14) + ]-~(78It  + 31Is + 31s) + O(eS)L 

J 
(43) 

Z ffi a ( 4 4 )  
a 0  

be the dimensionless semi-major axis. By dividing the eqn (41) by eqn (43) and 
expanding the ratio in a power  series in e we have 

dZ  1 1 
2 e ( 4 -  3yo 2 -  ~ao ~x- x = Yo + YoY2) + me [2yo(3yo + y2) 2 - 29yo-  2y2 - yoy3] 2 

+ -~-~6 [ -  32 + 113yo 2 + 38yoy2 - yoy4 -t- 2y22 + 6yo2ys + 2yoy2y3 

- 2yo(3yo + y2) 3] 
e 4 

+ l-~[8ye(3yo + y2) 4 -  8(3yo + y2)2(9yo + Y2)- 12yo(3yo + y2)2(11 + y2) 

+ 2yo(11 + y2)24. 8yo(3y0 + y2)(7yo + 8y2 + Y4) -4- 16(3y0 + y2)(19 + y2) 

-- 12(y0 + Y2)(I 1 + y2) -- ye(78 + 31Ys + 3y2) -- 2(35yo + 36y2 + Y4)] + 0(e 5) 
(45) 

where we have defined the ratios of Bessel functions 

y. -- ~ n ,  1. (46) 
It ' 
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The equation (45) has been derived by King-Hele, to the order e 3. For x > 3 
he integrated this equation by using the asymptotic expansions of the function 
y,(x). In this case the right hand side of eqn (45) has a very simple form and the 
semi-major axis a is obtained by quadrature. Mathematically, the method of 
integration is not rigorous since on the right hand side of eqn (45), the eccen- 
tricity is a function of a and x by the definition (38); hence, the equation is 
actually a nonlinear equation in a. We shall arrange the equation in a form that 
allows Poincar6's method of perturbations to be applied UPoincar6, 1960). 

The Bessel functions satisfy the recurrence formula 

2n 
l ,_ , (x ) -  I,+l(x) = - T  l ,(x) (47) 

so that any y,(x) can be expressed in terms of yo(x) and x. For example 

2 
Y2 = Y0 - -  - -  X 

8 4 
Y3 -- 1 + ~ - -  ~ - Y 0  (48) 

-8  48 x~ y4 = - ~ - -  x--~ + y0+24 

72 384 12 192 
y5 = I + ~ +  x--T- T y 0 -  x-~-y~ 

Next, the eccentricity e, expressed in terms of Z and x is 

x 
• = • ~ (49) 

where 

1 
• = (50) 

Oao 

is a small quantity of the order 10 -2 or less. Then, we can write eqn (45) 

YO - -  ,... 3 ~ "  = •Yo + • 2 2 - 2yo 2 + + •3 - 8yo - 7 ~ -  -,- uYo + 

+ .% (-, + 20 o -10 20 -1  o. 
+•54-~(32y°-96Y°3+82Y°2" x x6 17X_~+X~_24x~.Yo 3 o 2 

• ""  Y°~ 16~-Yo 104--Y°' + 64yo ~) + 0(•*). -I- ~yx---- Y - x (51) 
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We see that the true nature of the equation is a nonlinear equation. Since • is 
very small we need not go further with the expansion, and to the order • 5 
included, the solution of this equation can be considered as the exact solution of 
eqn (45) truncated to the order e 4 included. We shall use Poincar6's method of 
small parameters for the integration of eqn (51). 

Integration by Poincar~'s method o f  small parameters 
Poincar6's method for integration (Poincar6, 1960) of a nonlinear differential 

equation containing a small parameter is a rigorous mathematical technique, 
proven to be convergent for small values of the parameter e. It has been used 
extensively in analytic work in celestial mechanics (Monlton, 1920). 

We assume a solution for Z of the form 

Z = Zo + eZI + e2Z2 + e3Z3 + e4Z~ + e5Z~ +.  • • (52) 

Upon substituting into eqn (51) and equating coefficients of like powers in e, we 
have the equations for the Z~ 

dZo = 0 
dx 

dZx 
= Ye dx 

dZ2--- ~o(2 + Y--e- 2y02) dx x 

,( 2 )  x 1 Yo 3 dZ3 - x Z , / ~ _  yo q..2~+ 
dx = ~ ~z "1" x - ,~J'0 ] x -  8yo - 7-~- + 8y0 

dZ4 - x 2 Z I / 1  ^ 7Y02+ 3 x Yo 2 Zt 2 
-- ~ - ' ~ r - ' - - g Y o -  - -  8yo)+~o(2+x-2yo) (~o-zZ- -~o)  dx Z0 \x  x 

x 3 1 2 x . ,Y0 rye  2-,~nyo 3 16ye4) + 2-~e ( - 4 +  x-~+ 20yo - 10 Ye+.,x--~-, x.~-r,u-~--- 

dZ5 x / . ,Z iZ2  Zi 3 Z3~/2_2yo2+_~) 
dx = Zoo ~'~-~r'0 - Z-~o - Z'e]~ 

x 2/3 ZI 2 Z2~[ n 7 ye2 + T ,,o'+}) 
o yo'.,..,,,.,,o' -3X'Zl  ( - 4 +  20y°2- ' 0Ye+4x~-5  x '  .... X - 16y°4 + ~ )  

2Zo 4 x 

x 4 (32y0_96yo3+82Yo 2 6 17xY~+ 3 .,,ye 2 
+4- o x x P -  

+49Yx~-16x-~-104 Y'~+ 64y05) (53) 

with the initial conditions 
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Zo(xo) ffi 1, Zl(xo) ffi Zz(xo) . . . . .  O. (54) 

The integrations of eqns (53) is accomplished by successive quadratures and 
its success depends on whether or not the integrals can be expressed in terms of 
known functions. It has been found that the following recurrence formula is very 
useful. We have 

f p(x)y0,+ldx = -  p(X)n Y0"+ f p(x)y0 "-I dx+ f IP(X)+ P'(X)]y 0" dx (55) 

where n ~ 0 and p(x) is any arbitrary function. To derive the formula we use the 
well-known relation 

so that for n = 1 

xl',,(x) + nI.(x) = xl.-i(x) (56) 

and for n = 0 

Ii 1 yo ffi ~ + x - (57) 

I~ = l ~ ( x ) .  (58) 

Therefore, if Yo ffi 10111 

Now consider 

Y6=z~I-~- " i 7  - I J i -  l + x ~ -  yo 2 . 

- ~ ~,o d x  

o r  

f p(x)yo'- 'y6dx=f p(x)yo ' - ' ( l+~-yo2)dx 

n yo - Yo" d x .  

(59) 

Rearranging the equation, we have the recurrence formula (55). 
Using these relations, we proceed with the integrations of the eqn (53) using 

the initial conditions (54). 
We have 

and by eqn (57) 

Zo(x) = 1 (60) 

xl,(x) 
ZI -- log XoIl(xo) (61) 

where Xo:/3aoeo is the initial value of x. 
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With Zo = 1, the equation for  Z2 is 

dZ2=  2x dx + Yo -- 2Xyo 2. 

Integrating 

¢ 

z~ = x 2 + log xIt(x)  - 2 J xy02 dx. (62) 

By the recurrence  formula  (55) with p(x) = x, n = 1 

f xyo dx = 1 2 ~x - xyo + 2 log xl l(x)  (63) 

so that, in eqn (62) with the initial conditions, we have 

xh(x)  
Z2 = 2xydx)  - 2x0ydx0) - 3 log xoll(xo)" (64) 

The integrations for  obtaining Z3, Z4 and Zs are pe r fo rmed  the same way,  but 
they are much  more  laborious. I t  is found that  the Zi(x) can be expressed  in 
terms of  two funct ions 

lo(x) _ xl l (x)  
A (x )  = x I - ~  - xydx) ,  ZI(x) = log xolt(xo)" (65) 

We have  the final solution 

Zo(x) ffi 1 

xl~(x) 
Z~(x) = log xoll(xo) 

Z g x )  ffi 2(A - Ao) - 3Z, 

7 2  I~32 (A _ Ao)_  2(A2_ A : )  + 13Z, _ 2AZ,  + 3 Z 2 z , ( x )  = ~ ( x  - xo  ~) - 

Zs(x)= - 3-~ (x2-  xo2)+ 7~ ( A -  Ao)+ 3(A 2 -  A ~ ) +  8 ( A 3 -  Ao 3) 

+ 4 A d A  - Ao) - 2(x2A - x~AO 

- (69 + 6Ao + 7x 2 - 19A - 4Az)ZI - - ~ Z j  2 

- Z13 + 2AZI z 
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Z~x) = ZlZ(162 + 6Ao) + ~ Z I  3 +~ZI3 4 

+Z1(437 2 1 . 5 ±  143a  ± , : ~  2~ - --~,,o 7- --~-t ,o -,- u~o ,] - 2ZI3A - 6ZIZA 2 

- 6--92ZI2 A + 2.~Zi2xZ- 8A3Z1 - 21AzZI  + 6x2AZ!  

. / - 3 4 3 8 A o ) "  147 , _  
" T  x 

3 . 4  4" (14Ao + - - ~ ) ( x ' -  + ~l,x - Xo ) + xo ~) 

+  9Ao 

+ 4 x ' A  2 - 4xo2A~ + 2A s - 2Ao s - 4 A  4 + 4Ao 4. 

The semi-major axis of  the orbit under contraction is 

(66) 

a = 1 + EZI + e2Z, + e3Z3 + e4Z4 + esZs. (67) 
ao 

Using x as a parameter,  we easily express the other quantities of interest. 
The eccentricity e is given by eqn (49) while the drop in the periapsis is obtained 
from 

or  

r ~ - r p  

H 
= g[rpo- a ( l  - e)] = g a o -  ~aoeo+ ~ae - gao(1 + e.Zt + . . . )  

r ~ -  rp 
H = (x - X o ) -  (ZI + eZ,  + e~Z3 + e3Z4 + e~Zs). (68) 

The ratio of the eccentricity can be obtained from 

- -  = . (69) 
eo 

For each initial value • = t t lao, and eccentricity e0, we can calculate the 
initial value x0--/3a0e0 = e0/e and evaluate the expressions for a/a0, e/eo and 
(rp o -  r~)lH as a function of x. Then these functions can be cross plotted in any 
combination. 

The orbital period is 

T 
-~o-- (a--a~ = (Z(x)) ~ . (70) 
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Since the quantities a, e, rp and T are all easily observable, and the integration 
has been performed to • 4 included, for small and moderate eccentricity, which is 
the case for most scientific Earth satellites, the equations can be used to verify 
the assumption made on the atmosphere. In general, the density, as a first 
approximation, can be assumed to be locally exponential. That is to say, the 
parameter #, or H = 1/#, can be assumed constant for each layer of the 
atmosphere. Since the value of /3  enters the analytic solution, by adjusting for 
concordance between theory and observation,/3 can be determined. 

The expansions used to obtain the basic nonlinear equation (51) are only 
valid for small and moderate values of eccentricity. To be exact, expansions in 
elliptic motion apply to eccentricities which are less than 0.663. Above that 
value, the series are no longer absolutely convergent. King-Hele used the 
equation, truncated to the order of e 3 and showed that his theory is accurate for 
orbits with • less than 0.2. Because of the difficulty he encountered in the 
analytic integration, he divided the contraction of the orbit into two phases. For 

phase  1, the eccentricity has the approximate range 0.02 <: • < 0 .2 .  In this phase 
the range of x is 3 < x < 30 and the integration is performed using the asymptotic 
form of the Bessel ratios y~(x). For phase 2, the eccentricity has the approximate 
range of 0 < e < 0.02, and the range for x is 0 < x < 3. Simplification by asymp- 
totic expansion is not available, but integration to the first order in e is feasible. 
Also, for the case of large values of x, the integration by King-Hele involves a 
heuristic step in that he assumes a certain form for the solution Z on the right 
hand side of eqn (51) in its asymptotic form so that finally Z can be obtained by 
quadrature. 

For the present formulation, the nonlinear equation (51), to the order of • 4 
has been integrated rigorously to the order of e s. The artificial division of the 
contraction of the orbit into two phases has been removed and the solution is 
uniformly valid for the entire lifetime of the orbit for • in the range 0 < • ~ e0. 

Explicit formulas for  the orbital elements 
For small and moderate eccentricity (e < 0.4), the solutions obtained, (eqns 

66-70), are very accurate. This has been verified by computing the numerical 
integration of the nonlinear eqn (51) and its analytic solution, (eqns 66 and 67). In 
this case, the solution was always found to be greater than the numerical 
integration with a maximum error of approximately eeoS/5(1- e02) for 0.1 s e0 s  
0.99. It is interesting to note that even as e0--~ 1, which is outside the region of 
strict mathematical validity, the maximum error is less than 1/10ASr~ (of the order 
10-3). For small values of eccentricity the solution is extremely accurate. For 
example, when e0 = 0.1 and • = 0.008, eqns (66) and (67) provide 7 digits of 
accuracy, while for the same case King-Hele's solution gives only 4 digits of 
accuracy. Thus, the present solution provides a major improvement in thai it is 
much more accurate and that it is uniformly valid for all eccentricities, 0 < • 
e0. 

The solutions obtained for the orbital elements, a/ao, e/eo, etc. are expressed 
in terms of the variable x. It would be useful to derive formulas to relate any pair 
of orbital elements. This amounts to the elimination of x between any two of the 
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eqns (67-70). Because of the transcendental nature of the solutions, the task is 
cumbersome. Fortunately, since • is small, elimination of x through Lngrange's 
expansion is feasible. 

To derive the explicit expression for the semi-major axis in terms of the 
eccentricity, we write eqn (67) as 

where, by observing that 

we can write 

with 

z = p + e4,(Z) (71) 

x -- gae = gaoeo( ~'o) ( ~'o) 

x = aZ  (72) 

a = Xo • ( 7 3 )  

Then, explicitly 

4,('23 = Z l (aZ)  + •Z~(aZ) + e2Z3(aZ) + . . .  (74) 

If Lngrange's expansion is applied to eqn (71), we have 

" e "  " d xm-1 

If we carry out the expansion, and then put p = 1, we shall have to the order of 
E 5 

Z = 1 + ehl(a) + e2h2(a) + e3h3(a) + e4h4(a) + eshs(a) (76) 

where 

h i  ----" Z l  

hz -- 2(A - Ao) + (A - 3)ZI 

h,  = ~(, ,  - x o b -  Ao) + - A b Z ,  

+ 1(3 + a z + A - AZ)Z~ z 
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1 2 x02)(35 + 4 A o -  7 A )  h ,  = - ~ ( a  - 

+ I ( A  - A0)(213 + 42A0 + 16A 2 + 12a  2 - 9 A  + 4 A o A  - 8 A  2) 

- 1Z1(138 + 2 5 a  2 - 4 6 A  - 7 A  2 - 2A  3) 

- I z i 2 ( 3 5  + 7 a  2 - 6 A  2 + a 2 A  - A 3) 

+ 2 (A - A0)ZI(3 + a 2 + A - A 2) 

- -  1ZI3(6 - a 2 +  2a2A + 3A 2-  2 A  3) 

3 .  2 42 I .  2 hs = - ~ ( a  - xo') + ~ ( a  - x2) (885 + 6 8 a  2 --  9 2 A  - 12A 2) 

- ( a 2 -  x2)(A - Ae)(l~92 + 4 A o +  2 A )  

- ( A - A 0 ) ( ~ - ~  1 +-~-a332 +~_A+2a2A137. + 9 A 2  + 2A3)  

+ ( A - A o ) 2 (  8~-~ + 2 a 2 +  2 3 A +  , 2 A ' ) -  ( A -  Ao)3(10 + 3~---A) 

+ 4 (A  - A0) 4 + 7 ( a 2  - x02)Zl(3 + a 2 + A - A 2) 

+ Zt(437 + 8 8 a  2 + 2 a  4 - 154,4 - 5a2A - 2 2 A  2 - 3 A  3 - A 4) 

- 21-(A - A0)ZI(143 + 2 9 a 2 +  2 5 A  + 12a2A - 17A 2 - 12A s) 

+ 2 (A - Ao)2ZI(3 + a 2 + A - A 2) 

+ 1ZI2(648 + 133a  2 + 4 a  4 - 9 6 A  + 14a2A - 9 1 A  2 - 4 a 2 A  2 - 10A 3) 

- ( A  - Ao)ZI2(6 - a 2 + 2a2A + 3 A  2 - 2 A  3) 

+ 1Zi3(123 + 4 a  2 - a 4 - 6 A  + 18or 2A + 15A 2 + 2 a 2 A  2 - 18A 3 - A 4) 

+ 2~Z14(18 - a 2 _ 2 a  4 - 8 a 2 A  - 3A  2 + 8 a 2 A  2 + 12A 3 - 6A4). 

(77) 

In  t he  e x p r e s s i o n s  f o r  h~(a), w e  h a v e  def ined  

all(a) 
A = aye(a), ZI  = log  x0/t(xo)" (78) 

S ince  a = xe(e/eo), t h e  so lu t ion ,  as  g iven  b y  e q n s  (76) a n d  (77) p r o v i d e s  an  
expl ic i t  e x p r e s s i o n  o f  the  va r i a t i on  o f  a/ao as  a f u n c t i o n  o f  e/ee. 

T h e  o t h e r  o rb i ta l  e l e m e n t s  c a n  a l so  be  e x p r e s s e d  in t e r m s  o f  e. T h e  d r o p  in 
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the periapsis is 

rpo- rp 
H = (a - x0) - (1 - e)(hl + eh2 + e2h3 + e3h4 + e4hs). (79) 

For the apoapsis, we have 

rao- r, 
H = ( x 0 -  a )  - (1 + e)(hl  + Eh2 + e2h3 + e3h4 + e4h5). (80) 

In addition, the following formulas can be easily derived 

= ( 8 1 )  
rpo 

r_. = (1 + c a ) . , . . .  
g e0) z t ' J  (82) 

T = Z,r~(a). (83) 
To 

The last expression provides the orbital period as a function of the eccentricity. 
As pointed out by King-Hele, such a relationship, if R is accurate, which is the 
case in the present theory, provides a powerful method of verifying the assump- 
tion made on the atmosphere from two of the most accurate and easily measured 
orbital parameters, namely, the period of revolution and the eccentricity. 

The contraction of  highly eccentric orbits 
For the case of orbits with large eccentricities, King-Hele has used an 

entirely different method to derive the basic equation for the contraction. Using 
the present notation, we have his equation in the form 

dZ ( + 1 )  e 2 
ctx = • I ~-~ Z + ~ "  (84) 

It is possible to obtain this equation from the basic eqn (51). Since x =/Jae, 
when e--, 1, a-.,o o, x becomes very large and the asymptotic expression for 
Bessel's ratio y0(x) is 

J r -  ° ° , Y0 = l + 2 x  

y02= 1 + _ 1 + . . .  
x 

(85) 

Using this form in eqn (51) we have 
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dZ e ( l +  1 ~ )  42 43x 4'x ~ 4'x ~ = - - ~ + - ~ - - - ~ - + - ~  . . . .  (86) 

an equation which can be seen as the development of eqn (84). While King-Hele 
can only provide an approximate solution to the nonlinear eqn (84) by assuming 
that on the right hand side Z is approximated by Z = 1 -  4 (xe-x)  so that the 
equation can be integrated by simple quadrature, it is enlightening to know that 
the exact solution to the equation can be obtained. This is done by using the 
transformation 

Z =  e(x+ q) (87) 

and changing the independent variable from x to q to have the Bernoulli 
equation 

Using the change of variable, 

dx = 2x + 4xz (88) 
dq q 

e2q 
x = K(q) (89) 

we have after substituting into (88) 

dK 
dq 

- 4 e ~ ( 9 0 )  
q 

Integrating, we find that K can be expressed in terms of the exponential integral. 

e74 
K = - 4 f ~ - ~ d ( 2 q ) + C  

= - 4E~(2q) + C. 

Thus, we have the exact solution in parametric form. 

e~q-~0 
x-m 

1 +  4 e-Z~[Ej(2qe) - El(2q)] 
xe 

along with eqn (87) and the initial conditions 

Z(Xo) = 1 

1 ( l -  eo) q ° = ~  - x ° =  • 

(91) 

(92) 

(93) 
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To evaluate the exponential integral, we first observe that the argument 2q is 
large, hence its asymptotic form is adequate. In general, we consider the integral 

E . ( x )  = f eXx "-~ dx. (94) 

B y  integration by parts 

E . ( x )  = x" - l e  ~ - (n - I)E._~. 

By repeated application of this formula, we deduce the asymptotic expansion for 
large x 

E . ( x )  = x"-leX[l (n x- 1) ÷(n - l)(nx z - 2 ) _  (n - 1)(nx 3-2)(n - 3 ) + . .  .]. (95) 

When n = 0, we have the exponential integral and by taking 6 terms of the series, 
for x > 50, the solution is identical to the numerical values tabulated by 
Abramowitz and Stegun (1972). 

Numer ica l  appl icat ion 
The theory applies to any planetary atmosphere that is locally exponential. 

Numerical examples have been selected for a wide range of orbits with the 
values of H appropriate for the Earth's atmosphere assumed spherical. The 
numerical solution is obtained by integrating the basic nonlinear eqn (51). The 
analytic solution employed is either the solution Z = Z ( x )  as given by eqns (66) 
and (67) or the explicit solution Z = Z ( a )  as given by eqns (76) and (77). 

The parameters used are the initial eccentricity e0 and the initial perigee 
distance r~, or equivalently the dimensionless small parameter lll3r~. Then we 
have 

( 1 -  eo) 
• = (96)  

which tends toward zero as e0~ 1. By using the three values ll[3rpo = 0.005, 0.01 
and 0.02 we cover a wide range of perigee heights. 

Figure 3 plots the variation of Z -- alao as function of xlxo for different values 
of the eccentricity. Since the analytical solution has a high degree of accuracy, 
its small deviation in the fifth or sixth digit from the numerical solution cannot 
be detected in the figure. Initially the solution is nearly linear with the slope in 
the figure approximately equal to eo, but near the end, as x and • approach zero, 
it exhibits rapid decay. This explains the difficulty encountered by King-Hele in 
his analytic integration. It is interesting to note that the analytic solution Z ( x )  of 
the truncated eqn (51) remains accurate for high eccentricity. For e0 = 0.99, this 
solution and the exact solution (87) and (92) of the asymptotic eqn (84) are nearly 
identical except for very small values of x/xo. 
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Fig. 3. Variations of  Z = a]ao as function of  x/x0. 

1.00 

Figure 4 plots the solution Z = Z(a)  = Z(e/E) as a function of the eccentricity 
for several values of e0. The range of validity is limited to eo = 0.5 since the Z(a)  
solution is not as accurate as the Z(x)  solution. It was found that Z(a)  exceeds 
the numerical solution by a maximum value approximated by e06J15(1- e0), 
which still gives 7 digits of accuracy for e0 = 0.1, but diverges as e0~ 1. For 
e0 = 0.5 the error is imperceptible in the figure. The decay in the perigee distance 
rp versus the eccentricity for e0 = 0.1 and e0 = 0.4 is presented in Fig. 5. The ratio 
rp/r~ remains nearly equal to one for a large portion of the decay process, but as 
e ~ 0  the drop in perigee altitude increases rapidly. For small values of 
1/~r~(0.005) the decay is much slower than for large values (0.02) as evident in 
the figure. The fractional error in this plot and in the next two is kept to an 
imperceptible amount by considering the error formula mentioned earlier. 

The decay in the apogee distance ro versus the eccentricity for several values 
of e0 is presented in FiB. 6. It is evident that the ratio rJr, o decreases rapidly with 
the eccentricity. Initially the parameter 1/#r~ seems to have little effect, but as 
the eccentricity approaches zero the larger values of 1/13rpo yield more rapid 
decay. 

Finally the decay in the orbital period T as function of the eccentricity is 
presented in Fig. 7. As pointed out by King-Hele this functional relationship 
T = T(e, •) provides a powerful formula for testing the atmospheric parameter • 
since orbital period and eccentricity can be accurately measured. 
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Fig. 4. Variations of Z = a/ae as function of e. 
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Fig. 5. Variations of the perigee distance. 
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Conclusions 
To bridge the gap between satellite theory in the presence of an atmosphere 

and entry theory we have developed a set of equations using a set of dimension- 
less variables applicable to both cases. For a first estimate of physical quantities 
like the altitude, the speed, the deceleration and the heating rate during entry, a 
spherically symmetrical atmosphere with exponential variation of density with 
height seems to be adequate. For satellite theory there are several perturbing 
factors that should be taken into consideration. For example, for orbits with 
eccentricities greater than 0.5, the lunisolar perturbations cannot be neglected. 
For orbits with smaller eccentricities, the theory can only be accurate if a 
realistic model for the atmosphere is employed. For the sake of mathematical 
purity of the solution we have adopted a spherical atmosphere which is locally 
exponential. In this respect, the scale height H varies with the altitude, so that 
different values of # have to be used at different phases of the satellite's life. 
Also, it should be remembered that in the Earth's atmosphere, an oblateness of 
20 km can greatly alter the density at any distance r. This has been discussed by 
King-Hele (1964) and, following his development, we can use the method of 
integration as presented in this paper to generate the additional perturbing terms 
to the solution which account for the effects of the oblateness. 
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